Série de TD 1. Initiation la Théorie des Opérateurs

Exercice 1. Soit H un espace de Hilbert complexe de dimension infinie. Soient $(e_n)_n$ et $(f_n)_n$ deux suites orthonormales de H et $(\lambda_n)_n$ une suite de nombres complexes. Considérons l'opérateur $A: H \to H$ défini par $A(x) = \sum_{n=1}^{\infty} \lambda_n \langle x, f_n \rangle e_n$.

- (1) Montrer que $A \in B(H)$ si et seulement si $(\lambda_n)_n$ est borné. Dans tout ce qui suit $(\lambda_n)_n$ est une suite bornée.
- (2) Trouver ||A||, A^* , AA^* et A^*A .
- (3) On suppose que $(e_n)_n = (f_n)_n$
 - (a) En déduire que A est normal
 - (b) Montrer que A est auto-adjoint si et seulement si $(\lambda_n)_n \subset \mathbb{R}$.
 - (c) Montrer A est un opérateur positif si et seulement si $\lambda_n \geq 0$, pour tout n.
- (4) On suppose que H est séparable et $(e_n)_n$ et $(f_n)_n$ deux bases orthonormales de H.
 - (d) Montrer que A est inversible si et seulement si $\inf_{n} |\lambda_n| > 0$.
 - (e) Montrer que si $(e_n)_n = (f_n)_n$, alors A est unitaire si et seulement si $|\lambda_n| = 1$, pour tout n.

Indication. Théorème Riesz-Fisher : $Si(v_n)_n$ une suite orthonormale de H, la série $\sum_{n=1}^{\infty} c_n v_n$ converge dans H si et seulement si $\sum_{n=1}^{\infty} |c_n|^2$ converge dans \mathbb{R} .

Inégalité de Bessel : Pour tout $x \in H$, $\sum_{n=1}^{\infty} |\langle x, v_n \rangle|^2 \le ||x||^2$.

Exercice 2. $\lambda = (\lambda_n)_{n \in \mathbb{N}^*}$ une suite bornée dans \mathbb{C} . On considère l'opérateur $M_{\lambda} : l^2(\mathbb{C}) \to l^2(\mathbb{C})$ défini par

$$M_{\lambda}x = \lambda \circ x.$$

- (1) Trouver l'adjoint de M_{λ} .
- (2) Montrer que M_{λ} est auto-adjoint si et seulement si $(\lambda_n)_n \subset \mathbb{R}$.
- (3) Montrer que M_{λ} est positif si et seulement si $\lambda_n \geq 0$, pour tout $n \in \mathbb{N}^*$.
- (4) Montrer que M_{λ} est unitaire si et seulement si $|\lambda_n| = 1$, pour tout $n \in \mathbb{N}^*$.
- (5) Montrer que M_{λ} est normal.