
Chapter 3
Node.js

• Introduction
• File System Package
• Blocking vs Non-Blocking I/O
• Http Package

111



Introduction to Node.js

What is Node.js?
• JavaScript runtime environment
• Single-threaded, based on event-driven non-blocking I/O 

model
• Open source and cross-platform

112



Introduction to Node.js

What can Node.js used for?
• Server-side applications
• Microservices and API
• Generate dynamic page content
• Read and write files on the file system
• Read and write on the database

Don’t use Node.js for apps with heavy server-side processing

113



Introduction to Node.js

Node.js is
• Single-threaded
• Event-driven
• non-blocking I/O

Node.js = can handle large numbers of simultaneous 
connections without blocking or slowing down.

114



Introduction to Node.js

Blocking I/O model: a server will wait for a request to be 
completed before moving on to the next request.

Non-blocking I/O model: Node.js uses an event-driven 
approach where each request is treated as an event, and the 
server responds to each event as it occurs.

Node.js = When a request is received, it registers a callback 
function to be executed when the request is complete. The 

server then continues processing other.

115



Introduction to Node.js

• Node.js also has a vast library of modules that can be easily 
installed and integrated into Node.js applications using the 
npm (Node Package Manager) tool.

• This makes it easy for developers to quickly build powerful 
applications without having to write everything from 
scratch.

116



File System Package

• Read data from a file

117



File System Package

• Writing data from a file

118



Blocking vs non-blocking

Synchronous code
• fs.readFileSync is a synchronous function
• In a synchronous code, each statement is processed line by 

line
• Each line waits for the results of the previous line
• Cons: slow operations will cause the processing to be 

blocked

Synchronous code = blocking code
Node.js is designed to be non-blocking

119



Blocking vs non-blocking

Asynchronous code/non-blocking
• fs.readFile is an asynchronous function
• In a asynchronous code, we don’t wait for the asynchronous 

statement to finish
• Instead, we register a callback to be called once the 

asynchronous statement is finished
• The callback function handle any result of the asynchronous 

statement
• Pros: slow operations won’t block the code

120



Blocking vs non-blocking

Asynchronous code/non-blocking

121



Blocking vs non-blocking

Asynchronous programming is a programming technique that 
allows a program to perform tasks in the background without 

blocking the main thread.

JavaScript uses a callback-based model for asynchronous 
programming

Asynchronous functions will typically take a callback function 
as a parameter that will be called once the operation is 

complete.

122



Http Package

HTTP package provides functionality for working with the 
Hypertext Transfer Protocol (HTTP)

It allows developers to create HTTP servers, and provides a 
range of features for handling requests and responses.

123



Http Package

How to create a server using HTTP?

124



HTTP Response

HTTP response Once the server receives a request, it 
responds with a response that contains:

• Status code
• Headers
• Body

125



HTTP Response

Status Code: 

The status Code is a three-digit number that the HTTP server 
sends in the response to indicate the status of the request.

The status code is included in the HTTP response header and 
is used by the client to determine how to interpret the 
response.

126



HTTP Response

Status Code: examples
• 200 OK: The request was successful and the server is returning the 

requested data.
• 201 Created: The request was successful and a new resource has been 

created on the server.
• 204 No Content: The request was successful but there is no data to 

return in the response.
• 400 Bad Request: The request was malformed or invalid.
• 401 Unauthorized: The request requires authentication, but the client 

has not provided valid credentials.
• 403 Forbidden: The request is valid, but the server is refusing to fulfill it.
• 404 Not Found: The requested resource could not be found on the 

server.
• 500 Internal Server Error: An error occurred on the server while 

processing the request.
• 503 Service Unavailable: The server is currently unable to handle the 

request due to maintenance or overload.

127



HTTP Response

Status Code: Syntax

128



HTTP Response

Headers:
HTTP headers are pieces of additional information that can be sent 
along with an HTTP request or response.

They provide metadata about the request or response and help the 
client and server communicate with each other more effectively.

Examples:
• Content-Type (res/req)
• Accept (req)
• User-Agent (req)
• Authorization (req)
• Cookie (req)
• Set-Cookie (res)
• Date (res)

129



HTTP Response

Headers/Content-Type: is used to specify the type of the 
content being sent in a response or in a request.

• text/plain: Plain text content
• text/html: HTML content
• text/css: Cascading Style Sheets (CSS) content
• text/javascript: JavaScript content
• application/json: JSON content
• application/pdf: Portable Document Format (PDF) content
• image/jpeg: JPEG image content
• image/png: PNG image content
• audio/mpeg: MP3 audio content
• video/mp4: MP4 video content

130



HTTP Response

HTTP Request/Headers/Accept: is used to specify the type of 
the content the client can handle in the response.

• Accept: text/html: indicates that the client can handle HTML-
formatted content in the response.

• Accept: application/json: indicates that the client can handle JSON-
formatted content in the response.

• Accept: text/*: indicates that the client can handle any type of text-
based content in the response.

• Accept: */*: indicates that the client can handle any type of content 
in the response.

131



Http Package

HTTP Response/Headers

132



HTTP Response

Body: refers to the main content of the message being sent.

• In an HTTP request, the body is typically used to send data 
from the client to the server.
• In an HTTP response, the body is used to send data from the 

server back to the client.

133



HTTP Response

HTTP Response/Body

134



Handle HTTP requests

In a Node.js HTTP server, the req object represents the 
incoming HTTP request sent by the client.
The req object contains a lot of information about the 
request, including:
• req.headers
• req.url
• req.method
• req.params
• req.body
• req.query

135



Handle HTTP requests

req.headers: any additional information attached to the 
request

136



Handle HTTP requests

req.url: the requested URL (including any query string 
parameters)

137



Handle HTTP requests

req.method: the HTTP method used in the request (e.g. GET, 
POST, etc.)

138



Handle HTTP requests

req.body: the request body

139


