I-Real numbers

1.1-Introduction. Numbers are a central element in mathematics. Among
the different types of numbers, the set N = {0,1,2,...} of natural numbers, the
set Z =NU (=N), [me (-N) < IneN; m = —n] of relative numbers and
the set Q = {Z, pE€Z, g N*and pAg=1; of rational numbers, (p Ag=1
means that p and ¢ are prime to each other). Starting from @Q, whose well-
known properties are assumed, namely, (Q, +, ., <) is a totally ordered set, the
total order relation <, defined on Q is compatible with the addition + and the
multiplication x, and that Q is Archimidean i.e., Vr € Q* there exists n € N*|
such that r» < n. The need to introduce a larger set than Q, is motivated by
the fact that v/2 ¢ Q. Indeed, if there exists p € Z and ¢ € N* with p A g =1,
such that p? = 2¢2, then 2 divides p?, as the square of an odd number is odd,
also 2 divides p, so there exists p’ € Z, such that p = 2p’, hence 2p? = ¢?
and therefore 2 divides ¢, which contradicts p A ¢ = 1. Also, the two numbers
e and 7 are not rational. In general, if p is a prime number, then ,/p is not
an rational number,...etc. Such numbers are called irrational numbers. The
union of rational numbers and irrational numbers, constitutes the set R of real
numbers. The object of the following section, is to define the set of real numbers
by a series of axioms, and to give a second motivation for the introduction of
this set.

1.2-Axiomatic definition of real numbers

Since, the set of real numbers, was introduced to complete the set Q of
rational numbers, then we say that x is a real number if either (z € Q), or
(z ¢ Q, z is said to be an irrational number). The intuition of their existence
is ancient (since Pythagoras and his proof of the irrationality of \/5) Their
rigorous construction, dating from the 19%™ century by Cantor and Dedekine.
Note that we can define a real number from its decimal development, i.e. a
real  can be seen as a relative integer constituting its integer part, separated
by a comma, followed by an infinity of digits constituting its decimal part for
example: m = 3.1415926536.... This definition called arithmetic representation
of a real number poses a certain number of problems. Also, a real number can
be defined as a limit of the so-called Cauchy sequences in Q (the density of Q
in R). One of the simplest definitions of R is the following axiomatic definition.

Definition 2.1. The set R of real numbers, provided with two internal laws:
the addition noted 4+, the multiplication noted x. and a comparison relation
noted < (lower or equal), satisfies the following axioms:

1— (R,+, x) is a commutative field.

x The addition is such that (R, +) is an Abelian group.

a1) Vr,y,z € R, (z+y) + 2 =2 + (y + z). The addition is associative.

a2) Vx,y € R, z +y = y + =. The addition is commutative.

a3) Vz € R, .+ 0 = z. 0 is a neutral element for addition.

aq) Vo € R, z + (—z) = 0. Each element z admits a symmetric for the
addition noted —z € R.

* The multiplication is such that (R*, x) is an Abelian group, (R* = R~ {0}).



as) V,y,z € R, (x X y) x z =2 x (y X z). Multiplication is associative.
ag) Vx,y € R, x X y = y x . Multiplication is commutative.

a7) Vx € R, x x 1 = . 1 is a neutral element for multiplication.

ag) Vo € R*, x x 71 = 1. Each element x admits the reverse for multipli-

1
cation, noted 7! € R, 27! is also noted —.

* Multiplication is distributive with re:gpect to addition:

ag) Vz,y,z € R,z X (y + 2) = (x X y) + (x X 2).

2 — (R, <) is completely ordered.

a1p) Yz € R, z < z. The comparison relationship is reflexive.

a11) Vo,y,z € R if (z < y and y < z) then < 2. The comparison
relationship is transitive.

a12) Vz,y € R, if (x < y and y < z) then = y. The comparison relationship
is antisymmetric.

a13) Vz,y € R, & < y or y < . The comparison relation is a total order
relation.

For every z,y € R, we write < y or equivalently y > x (y is upper than or
equal to z), and the relation (z < y; x # y) is written = < y (x less than y).

A real number zx is said to be positive if 0 < z, the set of positive real
numbers is denoted by R . z is said to be negative if z < 0, the set of negative
real numbers is denoted by R* . For every z,y € R, we write x — y instead of
x + (—y) and zy instead of = X y.

3—Compatibility of the relation < with addition and multiplication.

a14) Vo, y, 2,y € R, satisfying (x <y and 2’ <y'), we have x + a2’ < y+y'.
The relation < is compatible with addition.

a15) Vo, y, 2,y € R*, checking (x < y and 2’ < y’), we have zz’ < yy'. The
relation < is compatible with multiplication.

As a consequence, for every x,y in R, if z < y then —y < —x and for every
z,y in R*, if <y then y~! <z~ %

1.3. Intervals, absolute value, bounded parts

Definition 2.2. A non-empty part E in R is an interval if, Vx,y € E
satisfying = < y, there exists z € F such that z < z < y.

If a,b and x( are three real numbers such that: a < xg < b. The unbounded
open intervals of R are: |—o0, al, ]b, +00[, R =] —00, +00[, and the open bounded
interval of R is ]a, b[. The unbounded closed intervals of R are: | —o0, a], [b, +00],
R =] — 00, +o0[ and the closed bounded interval of R is [a,b]. Neither open
nor closed bounded intervals of R are ]a,b], [a,b]. In the case where a = b,
[a,a] = {a} and ]a,a[= ¢. The numbers a and b are called the limits of the
interval and b — a is its length. The total order relation makes it possible to
define the absolute value function in R.

Definition 2.3. The absolute value in R, is an application noted |.|, defined

z, if 0 < x; .
from R to R4 by: Vo € R, |z| = { —  Asadirect consequence we have:

—z, if z < 0.
Ve € R,z <|z|, if o € Ry (fixed), then for every z € R, |z| < aiff —a <z < a,
(iff means, if and only if).

Proposition 2.1. The following are true, for every x,y € R :



1)z eR, |z|=0iff z =0.

2) |yl = |« [yl

3) |z +y| < |z| + |y|, (triangular inequality).
4) [lz] = lyll < |z —yl.

Proof.

1) evident.

2) if  and y have the same sign, then |zy| = zy. In the case where 2,y € R,
|| = z and |y| = y, and in the case where z,y € R_, |z| = —x and |y| = —v,
so in both cases |z| |y| = zy. If x and y are of different signs, then |zy| = —zy.
In the case where for example © € Ry and y € R_, || = z and |y| = —y, then

|zl [yl = = (—y) = —zy.

3) Since, from, 2) Vz € R, \z|2 = 22, then for any z,y € R, we have |z + y|2 =
(@ +9)* = |2* + 2zy + |y[” < |2 + 22| |y] + [y|*

= (Jz[+ [yl)*, so |z +y| < |z| +[y].

4) We demonstrate in the same way that: Va,y € R, ||z| — |y|]| < |z + vy,
and by replacing y by —y in the last inequality, we get the result.

Definition 2.4. Let E be a non-empty part of R. We say that:

i) E is bounded above, if there is a real number M such that, Vo € FE,
x < M, in this case M is called an upper bound of E.

1) E is bounded below, if there is a real number m such that, Vo € E,
m < x, in this case m is called a lower bound of F.

i1i) E is bounded, if E is both bounded above and below. Equivalently E is
bounded, iff there exists & € Ry, such that Vz € E, |z| < a.

Remark 2.1

a) If M is an upper bound of E, any element greater than M is also an
upper bound of E. When E is bounded above, the least upper bound of E is
called the supremum of F, and denoted by supF, or max E if it belongs to E.
The supE when it exists, it is unique.

b) If m is a lower bound of E, any element less than m is also a lower bound
of E. When F is bounded below, the first lower bound of F is called the infimum
of F and denoted by inf E, or min F if it belongs to E. The inf E when it exists,
it is unique.

a) In the case where a non-empty part E of R is bounded, [inf F,sup F] is
the smallest closed interval containing F.

Let us end the axiomatic definition of R, by the following.

4)— Axiom of the upper bound

a16) Any non empty, bounded above (respectively bounded below) part of
R, has an supremum (respectively an infimum).

Remark 2.2. If z,y € R such that z < y 4+ €, Ve > 0, then x < y. Indeed,
suppose that = > y then for ¢ = z—y, we have ¢ < y+z—y = z, a contradiction.

Proposition 2.1. Let E be a bounded part of R, My and mgy two real
numbers, then:

o [1) Ve eR, x < My;
1) Mo = supE lﬁ{ i1) Ve > 0, there exists z. € E, such that My — e < z..



. o [1) Ve eR, mpy <
2)mo = inf B IH{ 1) Ve > 0, there exists z. € E, such that z. < mg + €.

Proof.

1) Since My is the an upper bound of FE, then i) Vx € E, © < M,. To
demonstrate 1), suppose that there exists ¢ > 0, such that Vo € F, © < My —¢,
that is My — € is an upper bound of F less than M, contradiction with the
definition of supE. Reciprocally i) implies that M is an upper bound of E.To
demonstrate that M is the least upper bound of F, suppose that there exists
M < My, such that M) = supE. According to ¢) and i) Ve > 0, there exists
xe € E, such that My —e < z. < M|, < My, so My < M|, + ¢, using the remark
2.2, we get M, = My. Property 2) is demonstrated in the same way.

Example 2.1.

a) If, E ={-1,0,1} then, inf F = min F = —1 and supE = mazE = 1.

b) If E =0, 1] then, inf E = min £ = 0 and supFE = mazE = 1.
¢) If E =10,1] then, inf £ = min F = 0 and supE = 1.
d) If E =10, 1] then, inf E = 0 and supE = 1.

e) If E=]0,1] then, inf F = 0 and supF = 1.

Let us demonstrate, for example that in e) supE = 1. Using property a) in
Proposition 2.2, it is clear that i) Vo € E, < 1. To demonstrate i), let £ > 0,
if e <1then 0<1-—¢€¢<1,asRisan interval, there exists z. € R such that
l—e<z.<l,s0zxz. € E.If,1<e,thenl —e<0<z, VxreE.

Example 2.2. Let £ = {r €Qy, r? < 2} be a part of Q, then F # ¢ and
Vr € E,0<r <2 <2, hence E is bounded in Q, and min E = 0 € Q... But
supF it isn’t in Q, which shows that the axiom aig of the upper bound is not
true in Q. Hence, once again the need to introduce R.

Let us prof that supFE ¢ Q. Suppose that, there exist p € Z, ¢ € N* with

p A q =1, such that supE = b_ r. In the case when 0 < 2 — 72, we have s =
q

2 _ 2
T e Q%, 505 < 1and (r+5)° =72 +2rs+s2 < 12+ 55 = 2, witch implies
that r + s € E, therefore s < 0 contradiction. In the case when 0 < r? — 2, we
2 _ 2
re—2 r°+8
> 2

it follows that » — s € Q7 and r — s is an upper bound of E, witch is less than
r, a contradiction.

1.4 Archimedes’ axiom, density of Q in R

In the sequel, S¢ denotes the complement of any set S C R.

Proposition 2.2 (Archimedes’ axiom). For every z,y € R satisfying z <y
there exists n € N*, such that y < nz, that is R an Archimedian.

Proof. Suppose that, there exists zg and yy in R, g < yo and for all
n € N* nzo < yo. Since a non empty part E = {nzo; n € N*} is bounded

have s =

€ Q%,s0s < 1and (r—s)?>r2—2rs>r2—4s =

M,
above by yg. For My =sup FE and € = 70 > 0, there exists ng € N* such that,

M,
My — 70 < ngxo, hence My < (2ng) xo, as 2ng € E, contradiction.
Remark 2.3.



a) The set N of natural numbers is unbounded above. That is for every
y € RY, there exists n € N*, such that y < n. It suffices to take z = 1 in the
proposition 2.2.

b) The set Z of relative numbers is both unbounded above and below, since
—N is unbounded below.

Definition 2.4 (dense part in R). A non-empty part in R, is said to be
dense in R if, for all z,y in R, z < y there exists z € E, such that x < z < y.

Proposition 2.3. Q is dense in R.

Proof. Let z,y be in R with < y. Let us prove that there exists r in

Q@ such that: =z < r < y. Since z = —— > 0, there exists n € N* such that

1
z=—— < n,ornx+1 < ny (x), likewise for nx € R, there exists k € N* such

y—z
that nz < k. Let E={keN*; ne <k} and F={nzx€R; z<n}, F and F
are non-empty, and F' is bounded above by the elements of E. Let p = sup F,
then p € F and for € = 1, there exists n € N* such that p — 1 < nz < p, witch

implies that nz < p < nz + 1, using (x) we obtain nx < p < ny or z < P Y,
n

(r= % c Q).

In the sequel, S denotes the complement of any set S C R.

Applications:

a) V2 is the supremum of E = {r € Q4, r? < 2}, indeed i) Vr € E, r < V2,
i1) For 0 < € < \/§, we have 0 < V2 — ¢ < \@, since Q is dense in R, there
exists r. € Q such that, 0 < vV2 —€ < 7. < V2 (rc € E). If, /2 < ¢, then
V2—e<0<r VreE.

b) The set QC, of the irrational numbers is dense in R. Note that, for every
a,BE€Q(B#0),a+Bv2 € Q. Thenif, z,y € R < y, there exists r € Q such

2
€ R?, there exists n € N*, such that V2
y—r y—r

that < r < y. Since <n,

1 1
thenx<7‘+gx/§<y (7“—1—%\/56@0).
Exercise series n°1

Exercise 1. Prof that
a) Ifr € Qand z ¢ Q, then r + 2 ¢ Q and if r # 0, then ra ¢ Q.
b) If z and y are irrational, then xy is not always an irrational.
1
c)Vex e RY, —r <0and 0 < —.
x
d) Vz,y € Ry, such that z < y, then: —y < —z and if z,y € R*, then
<

< | =
ISH

Exercise 2.

a) Prof that Va,y € R;

1) 2| =0< 2 =0;

2) |z <ae —a <z < awhere a € Ry,



3) Suppose that x1, z3, ..., T, are real numbers. Prove that |z14+2o+... 42, <
4) |lz+yl <le+yl+|z—y|.
5) maz(|z|,|yl) < /a2 +y? < V2maz(|z], |y|)

)
y ety el lyl
)

=2

Ltfo+yl = 1+[z[+]yl  1+[z[+ ][y
7) Prove that, |z — y| < € for every e > 0 iff z = y.
b) Solve in R; |z — 2| < 1 and |2% — 1| < 2.
Exercise 3. Let E be a non-empty part of R and m € R.
1) If E is bounded, then inf F and sup E are unique.
2) Prof that, E is bounded iff there exists k € R, such that, Vo € E; |z| < k.
3) Suppose that E is bounded below. Prof that:
) m
5)

4 infE@{ 1) Vo € B; m < g

i) Ve > 0; 3z, € F such that, z. <m +e.
—FE ={—=z; z € E} is bounded above and sup(—F) = —inf E.
6) Prof that if F' is a non-empty part of R included in a bounded part E of
R, then F'is bounded; and: inf £ < inf F'; sup F' < sup F.

1
7) Noting that Va,y € Ry; x4y > 2,/zy. Prof that if E = {x + - x € Rj_} ;
x

then F is bounded below and min F = 2.

Exercise 4. Let E, F' be two non-empty and bounded parts in R. We define
the sum and the product of F and F, by: E+ F={x+vy; x € E, y € F} and
EF ={xy; z € E, y € F}. Prof that:

1) E+ F is bounded; inf(E + F') = inf E + inf F and sup(E + F') = sup £ +
sup F.

2) In the case where E and F are positive terms, F'F is bounded, inf(EF) =
inf Finf F and sup(EF) = sup E sup F.

3) Calculate the min. and max of £+ F and E'F in the following two cases:

i) E={-1,0} and F = {-2,-1}.

i) E={-1,0} and F = {0,1}.

What can we deduce?

4) Let F = {1 - %;n € N* 5 . Determine minF and supF, justify.

Exercise 5. Let F, F' be two non-empty and bounded parts in R.

1) Prof that: E U F is bounded and that: sup(F U F') = max(sup F,sup F)
and inf(E U F) = min(inf E, inf F).

2) Suppose that F'N F is non-empty. Prof that: ENF is bounded, sup(E N
F) < min(sup E,sup F) and max(inf F,inf F) < inf(E N F).

Exercise 6. The integer part of x € R, is the largest element of Z, noted
[] such that: [z] < z. Prof that: Va,y € R

1) [z] exists and it is unique.

2) [z] <z <[z]+1and z — [z] € [0,1].

3)Vz€Z, [z]=zand [z 4+ ] = 2+ [z].

9 o + 5] < [o 9] < 2]+ [s] + 1, 2 < y then [2] < [y
5) Vn e N, nz] < [nzx].

Exercise 7. Let E = {7‘ €Q_; r’ < 2} .



1) Prof that E is bounded and determine infE and maxFE.
2) Prof that F = {r3; r € Q} is dense in R.



