
I-Real numbers

1.1-Introduction. Numbers are a central element in mathematics. Among
the di¤erent types of numbers, the set N = f0; 1; 2; :::g of natural numbers, the
set Z = N [ (�N) ; [m 2 (�N), 9n 2 N; m = �n] of relative numbers and

the set Q =
�
p

q
; p 2 Z; q 2 N� and p ^ q = 1

�
of rational numbers, (p ^ q = 1

means that p and q are prime to each other). Starting from Q, whose well-
known properties are assumed, namely, (Q;+; :;�) is a totally ordered set, the
total order relation �; de�ned on Q is compatible with the addition + and the
multiplication �, and that Q is Archimidean i.e., 8r 2 Q� there exists n 2 N�;
such that r < n. The need to introduce a larger set than Q; is motivated by
the fact that

p
2 =2 Q. Indeed, if there exists p 2 Z and q 2 N� with p ^ q = 1,

such that p2 = 2q2; then 2 divides p2, as the square of an odd number is odd,
also 2 divides p, so there exists p0 2 Z, such that p = 2p0, hence 2p02 = q2

and therefore 2 divides q, which contradicts p ^ q = 1. Also, the two numbers
e and � are not rational. In general, if p is a prime number, then

p
p is not

an rational number,...etc. Such numbers are called irrational numbers. The
union of rational numbers and irrational numbers, constitutes the set R of real
numbers. The object of the following section, is to de�ne the set of real numbers
by a series of axioms, and to give a second motivation for the introduction of
this set.
1.2-Axiomatic de�nition of real numbers
Since, the set of real numbers, was introduced to complete the set Q of

rational numbers, then we say that x is a real number if either (x 2 Q) ; or
(x =2 Q; x is said to be an irrational number). The intuition of their existence
is ancient (since Pythagoras and his proof of the irrationality of

p
2). Their

rigorous construction, dating from the 19iem century by Cantor and Dedekine.
Note that we can de�ne a real number from its decimal development, i.e. a
real x can be seen as a relative integer constituting its integer part, separated
by a comma, followed by an in�nity of digits constituting its decimal part for
example: � = 3:1415926536:::. This de�nition called arithmetic representation
of a real number poses a certain number of problems. Also, a real number can
be de�ned as a limit of the so-called Cauchy sequences in Q (the density of Q
in R). One of the simplest de�nitions of R is the following axiomatic de�nition.
De�nition 2.1. The set R of real numbers, provided with two internal laws:

the addition noted +, the multiplication noted �. and a comparison relation
noted � (lower or equal), satis�es the following axioms:
1� (R;+;�) is a commutative �eld.
� The addition is such that (R;+) is an Abelian group.
a1) 8x; y; z 2 R; (x+ y) + z = x+ (y + z). The addition is associative.
a2) 8x; y 2 R; x+ y = y + x. The addition is commutative.
a3) 8x 2 R; x+ 0 = x. 0 is a neutral element for addition.
a4) 8x 2 R; x + (�x) = 0. Each element x admits a symmetric for the

addition noted �x 2 R.
� The multiplication is such that (R�;�) is an Abelian group, (R� = Rrf0g).
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a5) 8x; y; z 2 R; (x� y)� z = x� (y � z). Multiplication is associative.
a6) 8x; y 2 R; x� y = y � x. Multiplication is commutative.
a7) 8x 2 R; x� 1 = x. 1 is a neutral element for multiplication.
a8) 8x 2 R�, x � x�1 = 1. Each element x admits the reverse for multipli-

cation, noted x�1 2 R, x�1 is also noted 1
x
.

� Multiplication is distributive with respect to addition:
a9) 8x; y; z 2 R; x� (y + z) = (x� y) + (x� z).
2� (R;�) is completely ordered.
a10) 8x 2 R; x � x. The comparison relationship is re�exive.
a11) 8x; y; z 2 R; if (x � y and y � z) then x � z. The comparison

relationship is transitive.
a12) 8x; y 2 R; if (x � y and y � x) then x = y. The comparison relationship

is antisymmetric.
a13) 8x; y 2 R; x � y or y � x. The comparison relation is a total order

relation.
For every x; y 2 R; we write x � y or equivalently y � x (y is upper than or

equal to x); and the relation (x � y; x 6= y) is written x < y (x less than y).
A real number x is said to be positive if 0 < x; the set of positive real

numbers is denoted by R�+. x is said to be negative if x < 0; the set of negative
real numbers is denoted by R��. For every x; y 2 R; we write x � y instead of
x+ (�y) and xy instead of x� y:
3�Compatibility of the relation � with addition and multiplication.
a14) 8x; y; x0; y0 2 R; satisfying (x � y and x0 � y0), we have x+x0 � y+ y0:

The relation � is compatible with addition.
a15) 8x; y; x0; y0 2 R�, checking (x � y and x0 � y0), we have xx0 � yy0: The

relation � is compatible with multiplication.
As a consequence, for every x; y in R; if x � y then �y � �x and for every

x; y in R�; if x � y then y�1 � x�1:
1.3. Intervals, absolute value, bounded parts
De�nition 2.2. A non-empty part E in R is an interval if, 8x; y 2 E

satisfying x < y, there exists z 2 E such that x < z < y:
If a; b and x0 are three real numbers such that: a < x0 < b. The unbounded

open intervals of R are: ]�1; a[; ]b;+1[; R =]�1;+1[; and the open bounded
interval of R is ]a; b[. The unbounded closed intervals of R are: ]�1; a]; [b;+1[,
R =] � 1;+1[ and the closed bounded interval of R is [a; b]. Neither open
nor closed bounded intervals of R are ]a; b]; [a; b[. In the case where a = b,
[a; a] = fag and ]a; a[= �. The numbers a and b are called the limits of the
interval and b � a is its length. The total order relation makes it possible to
de�ne the absolute value function in R:
De�nition 2.3. The absolute value in R; is an application noted j:j, de�ned

from R to R+ by: 8x 2 R; jxj =
�
x; if 0 � x;
�x; if x < 0:As a direct consequence we have:

8x 2 R; x � jxj ; if � 2 R+ (�xed), then for every x 2 R; jxj � � i¤�� � x � �,
(i¤ means, if and only if).
Proposition 2.1. The following are true, for every x; y 2 R :
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1) x 2 R; jxj = 0 i¤ x = 0.
2) jxyj = jxj jyj :
3) jx+ yj � jxj+ jyj ; (triangular inequality).
4) jjxj � jyjj � jx� yj :
Proof.
1) evident.
2) if x and y have the same sign, then jxyj = xy. In the case where x; y 2 R+;

jxj = x and jyj = y; and in the case where x; y 2 R�; jxj = �x and jyj = �y;
so in both cases jxj jyj = xy: If x and y are of di¤erent signs, then jxyj = �xy:
In the case where for example x 2 R+ and y 2 R�; jxj = x and jyj = �y; then
jxj jyj = x (�y) = �xy:
3) Since, from, 2) 8z 2 R; jzj2 = z2, then for any x; y 2 R; we have jx+ yj2 =

(x+ y)
2
= jxj2 + 2xy + jyj2 � jxj2 + 2 jxj jyj+ jyj2

= (jxj+ jyj)2 ; so jx+ yj � jxj+ jyj :
4) We demonstrate in the same way that: 8x; y 2 R; jjxj � jyjj � jx+ yj ;

and by replacing y by �y in the last inequality, we get the result.
De�nition 2.4. Let E be a non-empty part of R. We say that:
i) E is bounded above, if there is a real number M such that, 8x 2 E;

x �M; in this case M is called an upper bound of E:
ii) E is bounded below, if there is a real number m such that, 8x 2 E;

m � x; in this case m is called a lower bound of E:
iii) E is bounded, if E is both bounded above and below. Equivalently E is

bounded, i¤ there exists � 2 R+; such that 8x 2 E; jxj � �:
Remark 2.1
a) If M is an upper bound of E; any element greater than M is also an

upper bound of E: When E is bounded above, the least upper bound of E is
called the supremum of E; and denoted by supE; or maxE if it belongs to E.
The supE when it exists, it is unique.
b) If m is a lower bound of E; any element less than m is also a lower bound

of E:When E is bounded below, the �rst lower bound of E is called the in�mum
of E and denoted by inf E; or minE if it belongs to E. The inf E when it exists,
it is unique.
a) In the case where a non-empty part E of R is bounded, [inf E; supE] is

the smallest closed interval containing E:
Let us end the axiomatic de�nition of R, by the following.
4)�Axiom of the upper bound
a16) Any non empty, bounded above (respectively bounded below) part of

R; has an supremum (respectively an in�mum).
Remark 2.2. If x; y 2 R such that x < y + �; 8� > 0; then x � y. Indeed,

suppose that x > y then for " = x�y; we have x < y+x�y = x; a contradiction.
Proposition 2.1. Let E be a bounded part of R, M0 and m0 two real

numbers, then:

1)M0 = supE i¤
�
i) 8x 2 R; x �M0;

ii) 8" > 0; there exists x" 2 E; such that M0 � " < x":
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2)m0 = inf E i¤
�
i) 8x 2 R; m0 � x;

ii) 8" > 0; there exists x" 2 E; such that x" < m0 + ":
Proof.
1) Since M0 is the an upper bound of E; then i) 8x 2 E; x � M0: To

demonstrate ii); suppose that there exists " > 0; such that 8x 2 E; x �M0� ";
that is M0 � " is an upper bound of E less than M0; contradiction with the
de�nition of supE. Reciprocally i) implies that M0 is an upper bound of E:To
demonstrate that M0 is the least upper bound of E, suppose that there exists
M 0
0 < M0; such that M 0

0 = supE. According to i) and ii) 8" > 0; there exists
x" 2 E; such that M0 � " < x" �M 0

0 < M0; so M0 < M
0
0 + �; using the remark

2.2, we get M 0
0 =M0: Property 2) is demonstrated in the same way.

Example 2.1.
a) If, E = f�1; 0; 1g then, inf E = minE = �1 and supE = maxE = 1:
b) If E = [0; 1] then, inf E = minE = 0 and supE = maxE = 1:
c) If E = [0; 1[ then, inf E = minE = 0 and supE = 1:
d) If E = ]0; 1] then, inf E = 0 and supE = 1:
e) If E = ]0; 1[ then, inf E = 0 and supE = 1:
Let us demonstrate, for example that in e) supE = 1: Using property a) in

Proposition 2.2, it is clear that i) 8x 2 E; x < 1: To demonstrate ii), let " > 0;
if " � 1 then 0 � 1 � � < 1; as R is an interval, there exists x" 2 R such that
1� � < x" < 1; so x" 2 E: If, 1 < "; then 1� " < 0 < x; 8x 2 E:
Example 2.2. Let E =

�
r 2 Q+; r2 < 2

	
be a part of Q; then E 6= � and

8r 2 E; 0 � r <
p
2 < 2; hence E is bounded in Q; and minE = 0 2 Q+: But

supE it isn�t in Q; which shows that the axiom a16 of the upper bound is not
true in Q. Hence, once again the need to introduce R:
Let us prof that supE =2 Q: Suppose that, there exist p 2 Z; q 2 N� with

p ^ q = 1; such that supE = p

q
= r: In the case when 0 < 2 � r2; we have s =

2� r2
5

2 Q�+; so s < 1 and (r + s)
2
= r2+2rs+ s2 < r2+5s = 2; witch implies

that r + s 2 E; therefore s � 0 contradiction. In the case when 0 < r2 � 2; we

have s =
r2 � 2
5

2 Q�+; so s < 1 and (r � s)
2
> r2�2rs > r2�4s = r2 + 8

5
> 2;

it follows that r � s 2 Q�+ and r � s is an upper bound of E; witch is less than
r; a contradiction.
1.4 Archimedes�axiom, density of Q in R
In the sequel, SC denotes the complement of any set S � R:
Proposition 2.2 (Archimedes�axiom). For every x; y 2 R�+ satisfying x < y

there exists n 2 N�; such that y � nx, that is R an Archimedian:
Proof. Suppose that, there exists x0 and y0 in R; x0 < y0 and for all

n 2 N�; nx0 < y0: Since a non empty part E = fnx0; n 2 N�g is bounded
above by y0: For M0 = supE and � =

M0

2
> 0; there exists n0 2 N� such that,

M0 �
M0

2
< n0x0, hence M0 < (2n0)x0; as 2n0 2 E; contradiction.

Remark 2.3.
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a) The set N of natural numbers is unbounded above. That is for every
y 2 R�+; there exists n 2 N�; such that y � n. It su¢ ces to take x = 1 in the
proposition 2.2.
b) The set Z of relative numbers is both unbounded above and below, since

�N is unbounded below.
De�nition 2.4 (dense part in R): A non-empty part in R; is said to be

dense in R if, for all x; y in R; x < y there exists z 2 E; such that x < z < y:
Proposition 2.3. Q is dense in R:
Proof. Let x; y be in R with x < y. Let us prove that there exists r in

Q such that: x < r < y: Since z =
1

y � x > 0; there exists n 2 N� such that

z =
1

y � x < n; or nx+1 < ny (�), likewise for nx 2 R; there exists k 2 N
� such

that nx < k: Let E = fk 2 N�; nx < kg and F = fnx 2 R; z < ng ; E and F
are non-empty, and F is bounded above by the elements of E: Let p = supF;
then p 2 E and for " = 1; there exists n 2 N� such that p� 1 < nx < p; witch
implies that nx < p < nx+ 1; using (�) we obtain nx < p < ny or x < p

n
< y;

(r =
p

n
2 Q):

In the sequel, SC denotes the complement of any set S � R:
Applications:
a)
p
2 is the supremum of E =

�
r 2 Q+; r2 < 2

	
, indeed i) 8r 2 E; r <

p
2,

ii) For 0 < � �
p
2; we have 0 �

p
2 � � <

p
2; since Q is dense in R; there

exists r� 2 Q such that, 0 �
p
2 � � < r� <

p
2 (r� 2 E): If,

p
2 < �; thenp

2� � < 0 � r; 8r 2 E:
b) The set QC ; of the irrational numbers is dense in R: Note that, for every

�; � 2 Q (� 6= 0) ; �+�
p
2 2 QC : Then if, x; y 2 R x < y; there exists r 2 Q such

that x < r < y. Since

p
2

y � r 2 R
�
+; there exists n 2 N�; such that

p
2

y � r � n,

then x < r +
1

n

p
2 < y (r +

1

n

p
2 2 QC):

Exercise series no1

Exercise 1. Prof that
a) If r 2 Q and x =2 Q; then r + x =2 Q and if r 6= 0; then rx =2 Q:
b) If x and y are irrational, then xy is not always an irrational.

c) 8x 2 R�+; �x < 0 and 0 <
1

x
:

d) 8x; y 2 R+; such that x � y, then: �y � �x and if x; y 2 R�; then
1

y
� 1

x
:

Exercise 2.
a) Prof that 8x; y 2 R;
1) jxj = 0, x = 0;
2) jxj � �, �� � x � � where � 2 R+:
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3) Suppose that x1; x2; :::; xn are real numbers. Prove that jx1+x2+:::+xn �
jx1j+ jx2j+ :::+ jxnj
4) jx+ yj � jx+ yj+ jx� yj :
5) max(jxj ; jyj) �

p
x2 + y2 �

p
2max(jxj ; jyj)

6)
jx+ yj

1 + jx+ yj �
jxj

1 + jxj+ jyj +
jyj

1 + jxj+ jyj :

7) Prove that, jx� yj < � for every � > 0 i¤ x = y.
b) Solve in R; jx� 2j � 1 and

��x2 � 1�� � 2:
Exercise 3. Let E be a non-empty part of R and m 2 R.
1) If E is bounded, then inf E and supE are unique.
2) Prof that, E is bounded i¤ there exists k 2 R+ such that, 8x 2 E; jxj � k:
3) Suppose that E is bounded below. Prof that:

4) m = inf E ,
�
i) 8x 2 E; m � x;
ii) 8" > 0; 9x" 2 E such that, x" < m+ �:

5) �E = f�x; x 2 Eg is bounded above and sup(�E) = � inf E:
6) Prof that if F is a non-empty part of R included in a bounded part E of

R, then F is bounded; and: inf E � inf F ; supF � supE:
7)Noting that 8x; y 2 R+; x+y � 2

p
xy: Prof that if E =

�
x+

1

x
; x 2 R�+

�
;

then E is bounded below and minE = 2:
Exercise 4. Let E, F be two non-empty and bounded parts in R. We de�ne

the sum and the product of E and F , by: E +F = fx+ y; x 2 E; y 2 Fg and
EF = fxy; x 2 E; y 2 Fg : Prof that:
1) E+F is bounded; inf(E+F ) = inf E+ inf F and sup(E+F ) = supE+

supF:
2) In the case where E and F are positive terms, EF is bounded, inf(EF ) =

inf E inf F and sup(EF ) = supE supF:
3) Calculate the min. and max of E+F and EF in the following two cases:
i) E = f�1; 0g and F = f�2;�1g :
ii) E = f�1; 0g and F = f0; 1g :
What can we deduce?

4) Let E =
�
1� 1

n
;n 2 N�

�
: Determine minE and supE, justify:

Exercise 5. Let E, F be two non-empty and bounded parts in R:
1) Prof that: E [ F is bounded and that: sup(E [ F ) = max(supE; supF )

and inf(E [ F ) = min(inf E; inf F ):
2) Suppose that E \F is non-empty. Prof that: E \F is bounded, sup(E \

F ) � min(supE; supF ) and max(inf E; inf F ) � inf(E \ F ):
Exercise 6. The integer part of x 2 R, is the largest element of Z, noted

[x] such that: [x] � x. Prof that: 8x; y 2 R
1) [x] exists and it is unique.
2) [x] � x < [x] + 1 and x� [x] 2 [0; 1[ :
3) 8z 2 Z; [z] = z and [z + x] = z + [x] :
4) [x] + [y] � [x+ y] < [x] + [y] + 1; if x � y then [x] � [y] .
5) 8n 2 N; n [x] � [nx] :
Exercise 7. Let E =

�
r 2 Q�; r2 < 2

	
::
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1) Prof that E is bounded and determine infE and maxE.
2) Prof that E =

�
r3; r 2 Q

	
is dense in R:
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