I-Real numbers

1.1-Introduction. Numbers are a central element in mathematics. Among the different types of numbers, the set $\mathbb{N}=\{0,1,2, \ldots\}$ of natural numbers, the set $\mathbb{Z}=\mathbb{N} \cup(-\mathbb{N}),[m \in(-\mathbb{N}) \Leftrightarrow \exists n \in \mathbb{N} ; m=-n]$ of relative numbers and the set $\mathbb{Q}=\left\{\frac{p}{q} ; p \in \mathbb{Z}, q \in \mathbb{N}^{*}\right.$ and $\left.p \wedge q=1\right\}$ of rational numbers, $(p \wedge q=1$ means that p and q are prime to each other). Starting from \mathbb{Q}, whose wellknown properties are assumed, namely, $(\mathbb{Q},+, ., \leq)$ is a totally ordered set, the total order relation \leq, defined on \mathbb{Q} is compatible with the addition + and the multiplication \times, and that \mathbb{Q} is Archimidean i.e., $\forall r \in \mathbb{Q}^{*}$ there exists $n \in \mathbb{N}^{*}$, such that $r<n$. The need to introduce a larger set than \mathbb{Q}, is motivated by the fact that $\sqrt{2} \notin \mathbb{Q}$. Indeed, if there exists $p \in \mathbb{Z}$ and $q \in \mathbb{N}^{*}$ with $p \wedge q=1$, such that $p^{2}=2 q^{2}$, then 2 divides p^{2}, as the square of an odd number is odd, also 2 divides p, so there exists $p^{\prime} \in \mathbb{Z}$, such that $p=2 p^{\prime}$, hence $2 p^{\prime 2}=q^{2}$ and therefore 2 divides q, which contradicts $p \wedge q=1$. Also, the two numbers e and π are not rational. In general, if p is a prime number, then \sqrt{p} is not an rational number,...etc. Such numbers are called irrational numbers. The union of rational numbers and irrational numbers, constitutes the set \mathbb{R} of real numbers. The object of the following section, is to define the set of real numbers by a series of axioms, and to give a second motivation for the introduction of this set.

1.2-Axiomatic definition of real numbers

Since, the set of real numbers, was introduced to complete the set \mathbb{Q} of rational numbers, then we say that x is a real number if either $(x \in \mathbb{Q})$, or $(x \notin \mathbb{Q}, x$ is said to be an irrational number). The intuition of their existence is ancient (since Pythagoras and his proof of the irrationality of $\sqrt{2}$). Their rigorous construction, dating from the $19^{i e m}$ century by Cantor and Dedekine. Note that we can define a real number from its decimal development, i.e. a real x can be seen as a relative integer constituting its integer part, separated by a comma, followed by an infinity of digits constituting its decimal part for example: $\pi=3.1415926536 \ldots$. This definition called arithmetic representation of a real number poses a certain number of problems. Also, a real number can be defined as a limit of the so-called Cauchy sequences in \mathbb{Q} (the density of \mathbb{Q} in \mathbb{R}). One of the simplest definitions of \mathbb{R} is the following axiomatic definition.

Definition 2.1. The set \mathbb{R} of real numbers, provided with two internal laws: the addition noted + , the multiplication noted \times. and a comparison relation noted \leq (lower or equal), satisfies the following axioms:
$1-(\mathbb{R},+, \times)$ is a commutative field.

* The addition is such that $(\mathbb{R},+)$ is an Abelian group.
$\left.a_{1}\right) \forall x, y, z \in \mathbb{R},(x+y)+z=x+(y+z)$. The addition is associative.
$\left.a_{2}\right) \forall x, y \in \mathbb{R}, x+y=y+x$. The addition is commutative.
$\left.a_{3}\right) \forall x \in \mathbb{R}, x+0=x .0$ is a neutral element for addition.
$\left.a_{4}\right) \forall x \in \mathbb{R}, x+(-x)=0$. Each element x admits a symmetric for the addition noted $-x \in \mathbb{R}$.
$*$ The multiplication is such that $\left(\mathbb{R}^{*}, \times\right)$ is an Abelian group, $\left(\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}\right)$.
$\left.a_{5}\right) \forall x, y, z \in \mathbb{R},(x \times y) \times z=x \times(y \times z)$. Multiplication is associative.
$\left.a_{6}\right) \forall x, y \in \mathbb{R}, x \times y=y \times x$. Multiplication is commutative.
$\left.a_{7}\right) \forall x \in \mathbb{R}, x \times 1=x .1$ is a neutral element for multiplication.
as) $\forall x \in \mathbb{R}^{*}, x \times x^{-1}=1$. Each element x admits the reverse for multiplication, noted $x^{-1} \in \mathbb{R}, x^{-1}$ is also noted $\frac{1}{x}$.
* Multiplication is distributive with respect to addition:
$\left.a_{9}\right) \forall x, y, z \in \mathbb{R}, x \times(y+z)=(x \times y)+(x \times z)$.
$2-(\mathbb{R}, \leq)$ is completely ordered.
$\left.a_{10}\right) \forall x \in \mathbb{R}, x \leq x$. The comparison relationship is reflexive.
$\left.a_{11}\right) \forall x, y, z \in \mathbb{R}$, if $(x \leq y$ and $y \leq z)$ then $x \leq z$. The comparison relationship is transitive.
$\left.a_{12}\right) \forall x, y \in \mathbb{R}$, if $(x \leq y$ and $y \leq x)$ then $x=y$. The comparison relationship is antisymmetric.
$\left.a_{13}\right) \forall x, y \in \mathbb{R}, x \leq y$ or $y \leq x$. The comparison relation is a total order relation.

For every $x, y \in \mathbb{R}$, we write $x \leq y$ or equivalently $y \geq x$ (y is upper than or equal to x), and the relation ($x \leq y ; x \neq y$) is written $x<y$ (x less than y).

A real number x is said to be positive if $0<x$, the set of positive real numbers is denoted by $\mathbb{R}_{+}^{*} . x$ is said to be negative if $x<0$, the set of negative real numbers is denoted by \mathbb{R}_{-}^{*}. For every $x, y \in \mathbb{R}$, we write $x-y$ instead of $x+(-y)$ and $x y$ instead of $x \times y$.

3 -Compatibility of the relation \leq with addition and multiplication.
$\left.a_{14}\right) \forall x, y, x^{\prime}, y^{\prime} \in \mathbb{R}$, satisfying $\left(x \leq y\right.$ and $\left.x^{\prime} \leq y^{\prime}\right)$, we have $x+x^{\prime} \leq y+y^{\prime}$. The relation \leq is compatible with addition.
$\left.a_{15}\right) \forall x, y, x^{\prime}, y^{\prime} \in \mathbb{R}^{*}$, checking ($x \leq y$ and $x^{\prime} \leq y^{\prime}$), we have $x x^{\prime} \leq y y^{\prime}$. The relation \leq is compatible with multiplication.

As a consequence, for every x, y in \mathbb{R}, if $x \leq y$ then $-y \leq-x$ and for every x, y in \mathbb{R}^{*}, if $x \leq y$ then $y^{-1} \leq x^{-1}$.
1.3. Intervals, absolute value, bounded parts

Definition 2.2. A non-empty part E in \mathbb{R} is an interval if, $\forall x, y \in E$ satisfying $x<y$, there exists $z \in E$ such that $x<z<y$.

If a, b and x_{0} are three real numbers such that: $a<x_{0}<b$. The unbounded open intervals of \mathbb{R} are: $]-\infty, a[] b,,+\infty[, \mathbb{R}=]-\infty,+\infty[$, and the open bounded interval of \mathbb{R} is $] a, b[$. The unbounded closed intervals of \mathbb{R} are: $]-\infty, a],[b,+\infty[$, $\mathbb{R}=]-\infty,+\infty[$ and the closed bounded interval of \mathbb{R} is $[a, b]$. Neither open nor closed bounded intervals of \mathbb{R} are $] a, b],[a, b[$. In the case where $a=b$, $[a, a]=\{a\}$ and $] a, a[=\phi$. The numbers a and b are called the limits of the interval and $b-a$ is its length. The total order relation makes it possible to define the absolute value function in \mathbb{R}.

Definition 2.3. The absolute value in \mathbb{R}, is an application noted $|$.$| , defined$ from \mathbb{R} to \mathbb{R}_{+}by: $\forall x \in \mathbb{R},|x|=\left\{\begin{array}{c}x, \text { if } 0 \leq x ; \\ -x, \text { if } x<0 .\end{array}\right.$ As a direct consequence we have: $\forall x \in \mathbb{R}, x \leq|x|$, if $\alpha \in \mathbb{R}_{+}$(fixed), then for every $x \in \mathbb{R},|x| \leq \alpha$ iff $-\alpha \leq x \leq \alpha$, (iff means, if and only if).

Proposition 2.1. The following are true, for every $x, y \in \mathbb{R}$:

1) $x \in \mathbb{R},|x|=0$ iff $x=0$.
2) $|x y|=|x||y|$.
3) $|x+y| \leq|x|+|y|$, (triangular inequality).
4) $||x|-|y|| \leq|x-y|$.

Proof.

1) evident.
2) if x and y have the same sign, then $|x y|=x y$. In the case where $x, y \in \mathbb{R}_{+}$, $|x|=x$ and $|y|=y$, and in the case where $x, y \in \mathbb{R}_{-},|x|=-x$ and $|y|=-y$, so in both cases $|x||y|=x y$. If x and y are of different signs, then $|x y|=-x y$. In the case where for example $x \in \mathbb{R}_{+}$and $y \in \mathbb{R}_{-},|x|=x$ and $|y|=-y$, then $|x||y|=x(-y)=-x y$.
3) Since, from, 2) $\forall z \in \mathbb{R},|z|^{2}=z^{2}$, then for any $x, y \in \mathbb{R}$, we have $|x+y|^{2}=$ $(x+y)^{2}=|x|^{2}+2 x y+|y|^{2} \leq|x|^{2}+2|x||y|+|y|^{2}$
$=(|x|+|y|)^{2}$, so $|x+y| \leq|x|+|y|$.
4) We demonstrate in the same way that: $\forall x, y \in \mathbb{R}, \| x|-|y|| \leq|x+y|$, and by replacing y by $-y$ in the last inequality, we get the result.

Definition 2.4. Let E be a non-empty part of \mathbb{R}. We say that:
i) E is bounded above, if there is a real number M such that, $\forall x \in E$, $x \leq M$, in this case M is called an upper bound of E.
ii) E is bounded below, if there is a real number m such that, $\forall x \in E$, $m \leq x$, in this case m is called a lower bound of E.
iii) E is bounded, if E is both bounded above and below. Equivalently E is bounded, iff there exists $\alpha \in \mathbb{R}_{+}$, such that $\forall x \in E,|x| \leq \alpha$.

Remark 2.1
a) If M is an upper bound of E, any element greater than M is also an upper bound of E. When E is bounded above, the least upper bound of E is called the supremum of E, and denoted by $\sup E$, or $\max E$ if it belongs to E. The $\sup E$ when it exists, it is unique.
b) If m is a lower bound of E, any element less than m is also a lower bound of E. When E is bounded below, the first lower bound of E is called the infimum of E and denoted by $\inf E$, or $\min E$ if it belongs to E. The inf E when it exists, it is unique.
a) In the case where a non-empty part E of \mathbb{R} is bounded, $[\inf E, \sup E]$ is the smallest closed interval containing E.

Let us end the axiomatic definition of \mathbb{R}, by the following.
4)-Axiom of the upper bound
a_{16}) Any non empty, bounded above (respectively bounded below) part of \mathbb{R}, has an supremum (respectively an infimum).

Remark 2.2. If $x, y \in \mathbb{R}$ such that $x<y+\epsilon, \forall \epsilon>0$, then $x \leq y$. Indeed, suppose that $x>y$ then for $\varepsilon=x-y$, we have $x<y+x-y=x$, a contradiction.

Proposition 2.1. Let E be a bounded part of \mathbb{R}, M_{0} and m_{0} two real numbers, then:

1) $M_{0}=\sup E$ iff $\left\{\begin{array}{r}\text { i) } \forall x \in \mathbb{R}, x \leq M_{0} ; \\ \text { ii) } \forall \varepsilon>0, \text { there exists } x_{\varepsilon} \in E \text {, such that } M_{0}-\varepsilon<x_{\varepsilon} .\end{array}\right.$
2) $m_{0}=\inf E$ iff $\left\{\begin{array}{r}i) \forall x \in \mathbb{R}, m_{0} \leq x ; \\ \text { ii) } \forall \varepsilon>0 \text {, there }\end{array}\right.$

Proof.

1) Since M_{0} is the an upper bound of E, then $\left.i\right) \forall x \in E, x \leq M_{0}$. To demonstrate $i i$), suppose that there exists $\varepsilon>0$, such that $\forall x \in E, x \leq M_{0}-\varepsilon$, that is $M_{0}-\varepsilon$ is an upper bound of E less than M_{0}, contradiction with the definition of $\sup E$. Reciprocally i) implies that M_{0} is an upper bound of E.To demonstrate that M_{0} is the least upper bound of E, suppose that there exists $M_{0}^{\prime}<M_{0}$, such that $M_{0}^{\prime}=\sup E$. According to i) and $\left.i i\right) \forall \varepsilon>0$, there exists $x_{\varepsilon} \in E$, such that $M_{0}-\varepsilon<x_{\varepsilon} \leq M_{0}^{\prime}<M_{0}$, so $M_{0}<M_{0}^{\prime}+\epsilon$, using the remark 2.2 , we get $M_{0}^{\prime}=M_{0}$. Property 2) is demonstrated in the same way.

Example 2.1.

a) If, $E=\{-1,0,1\}$ then, $\inf E=\min E=-1$ and $\sup E=\max E=1$.
b) If $E=[0,1]$ then, $\inf E=\min E=0$ and $\sup E=\max E=1$.
c) If $E=[0,1[$ then, $\inf E=\min E=0$ and $\sup E=1$.
d) If $E=[0,1]$ then, $\inf E=0$ and $\sup E=1$.
e) If $E=] 0,1[$ then, $\inf E=0$ and $\sup E=1$.

Let us demonstrate, for example that in $e) \sup E=1$. Using property a) in Proposition 2.2, it is clear that $i) \forall x \in E, x<1$. To demonstrate $i i)$, let $\varepsilon>0$, if $\varepsilon \leq 1$ then $0 \leq 1-\epsilon<1$, as \mathbb{R} is an interval, there exists $x_{\varepsilon} \in \mathbb{R}$ such that $1-\epsilon<x_{\varepsilon}<1$, so $x_{\varepsilon} \in E$. If, $1<\varepsilon$, then $1-\varepsilon<0<x, \forall x \in E$.

Example 2.2. Let $E=\left\{r \in \mathbb{Q}_{+}, r^{2}<2\right\}$ be a part of \mathbb{Q}, then $E \neq \phi$ and $\forall r \in E, 0 \leq r<\sqrt{2}<2$, hence E is bounded in \mathbb{Q}, and $\min E=0 \in \mathbb{Q}_{+}$. But $\sup E$ it isn't in \mathbb{Q}, which shows that the axiom a_{16} of the upper bound is not true in \mathbb{Q}. Hence, once again the need to introduce \mathbb{R}.

Let us prof that $\sup E \notin \mathbb{Q}$. Suppose that, there exist $p \in \mathbb{Z}, q \in \mathbb{N}^{*}$ with $p \wedge q=1$, such that $\sup E=\frac{p}{q}=r$. In the case when $0<2-r^{2}$, we have $s=$ $\frac{2-r^{2}}{5} \in \mathbb{Q}_{+}^{*}$, so $s<1$ and $(r+s)^{2}=r^{2}+2 r s+s^{2}<r^{2}+5 s=2$, witch implies that $r+s \in E$, therefore $s \leq 0$ contradiction. In the case when $0<r^{2}-2$, we have $s=\frac{r^{2}-2}{5} \in \mathbb{Q}_{+}^{*}$, so $s<1$ and $(r-s)^{2}>r^{2}-2 r s>r^{2}-4 s=\frac{r^{2}+8}{5}>2$, it follows that $r-s \in \mathbb{Q}_{+}^{*}$ and $r-s$ is an upper bound of E, witch is less than r, a contradiction.

1.4 Archimedes' axiom, density of \mathbb{Q} in \mathbb{R}

In the sequel, S^{C} denotes the complement of any set $S \subset \mathbb{R}$.
Proposition 2.2 (Archimedes' axiom). For every $x, y \in \mathbb{R}_{+}^{*}$ satisfying $x<y$ there exists $n \in \mathbb{N}^{*}$, such that $y \leq n x$, that is \mathbb{R} an Archimedian.

Proof. Suppose that, there exists x_{0} and y_{0} in $\mathbb{R}, x_{0}<y_{0}$ and for all $n \in \mathbb{N}^{*}, n x_{0}<y_{0}$. Since a non empty part $E=\left\{n x_{0} ; n \in \mathbb{N}^{*}\right\}$ is bounded above by y_{0}. For $M_{0}=\sup E$ and $\epsilon=\frac{M_{0}}{2}>0$, there exists $n_{0} \in \mathbb{N}^{*}$ such that, $M_{0}-\frac{M_{0}}{2}<n_{0} x_{0}$, hence $M_{0}<\left(2 n_{0}\right) x_{0}$, as $2 n_{0} \in E$, contradiction.

Remark 2.3.

a) The set \mathbb{N} of natural numbers is unbounded above. That is for every $y \in \mathbb{R}_{+}^{*}$, there exists $n \in \mathbb{N}^{*}$, such that $y \leq n$. It suffices to take $x=1$ in the proposition 2.2.
b) The set \mathbb{Z} of relative numbers is both unbounded above and below, since $-\mathbb{N}$ is unbounded below.

Definition 2.4 (dense part in \mathbb{R}). A non-empty part in \mathbb{R}, is said to be dense in \mathbb{R} if, for all x, y in $\mathbb{R}, x<y$ there exists $z \in E$, such that $x<z<y$.

Proposition 2.3. \mathbb{Q} is dense in \mathbb{R}.
Proof. Let x, y be in \mathbb{R} with $x<y$. Let us prove that there exists r in \mathbb{Q} such that: $x<r<y$. Since $z=\frac{1}{y-x}>0$, there exists $n \in \mathbb{N}^{*}$ such that $z=\frac{1}{y-x}<n$, or $n x+1<n y(*)$, likewise for $n x \in \mathbb{R}$, there exists $k \in \mathbb{N}^{*}$ such that $n x<k$. Let $E=\left\{k \in \mathbb{N}^{*} ; n x<k\right\}$ and $F=\{n x \in \mathbb{R} ; z<n\}, E$ and F are non-empty, and F is bounded above by the elements of E. Let $p=\sup F$, then $p \in E$ and for $\varepsilon=1$, there exists $n \in \mathbb{N}^{*}$ such that $p-1<n x<p$, witch implies that $n x<p<n x+1$, using $(*)$ we obtain $n x<p<n y$ or $x<\frac{p}{n}<y$, $\left(r=\frac{p}{n} \in \mathbb{Q}\right)$.

In the sequel, S^{C} denotes the complement of any set $S \subset \mathbb{R}$.

Applications:

a) $\sqrt{2}$ is the supremum of $E=\left\{r \in \mathbb{Q}_{+}, r^{2}<2\right\}$, indeed $\left.i\right) \forall r \in E, r<\sqrt{2}$, ii) For $0<\epsilon \leq \sqrt{2}$, we have $0 \leq \sqrt{2}-\epsilon<\sqrt{2}$, since \mathbb{Q} is dense in \mathbb{R}, there exists $r_{\epsilon} \in \mathbb{Q}$ such that, $0 \leq \sqrt{2}-\epsilon<r_{\epsilon}<\sqrt{2}\left(r_{\epsilon} \in E\right)$. If, $\sqrt{2}<\epsilon$, then $\sqrt{2}-\epsilon<0 \leq r, \forall r \in E$.
b) The set \mathbb{Q}^{C}, of the irrational numbers is dense in \mathbb{R}. Note that, for every $\alpha, \beta \in \mathbb{Q}(\beta \neq 0), \alpha+\beta \sqrt{2} \in \mathbb{Q}^{C}$. Then if, $x, y \in \mathbb{R} x<y$, there exists $r \in \mathbb{Q}$ such that $x<r<y$. Since $\frac{\sqrt{2}}{y-r} \in \mathbb{R}_{+}^{*}$, there exists $n \in \mathbb{N}^{*}$, such that $\frac{\sqrt{2}}{y-r} \leq n$, then $x<r+\frac{1}{n} \sqrt{2}<y\left(r+\frac{1}{n} \sqrt{2} \in \mathbb{Q}^{C}\right)$.

Exercise series $\mathbf{n}^{o} 1$

Exercise 1. Prof that

a) If $r \in \mathbb{Q}$ and $x \notin \mathbb{Q}$, then $r+x \notin \mathbb{Q}$ and if $r \neq 0$, then $r x \notin \mathbb{Q}$.
b) If x and y are irrational, then $x y$ is not always an irrational.
c) $\forall x \in \mathbb{R}_{+}^{*},-x<0$ and $0<\frac{1}{x}$.
d) $\forall x, y \in \mathbb{R}_{+}$, such that $x \leq y$, then: $-y \leq-x$ and if $x, y \in \mathbb{R}^{*}$, then $\frac{1}{y} \leq \frac{1}{x}$.

Exercise 2.
a) Prof that $\forall x, y \in \mathbb{R}$;

1) $|x|=0 \Leftrightarrow x=0$;
2) $|x| \leq \alpha \Leftrightarrow-\alpha \leq x \leq \alpha$ where $\alpha \in \mathbb{R}_{+}$.
3) Suppose that $x_{1}, x_{2}, \ldots, x_{n}$ are real numbers. Prove that $\mid x_{1}+x_{2}+\ldots+x_{n} \leq$ $\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|$
4) $|x+y| \leq|x+y|+|x-y|$.
5) $\max (|x|,|y|) \leq \sqrt{x^{2}+y^{2}} \leq \sqrt{2} \max (|x|,|y|)$
6) $\frac{|x+y|}{1+|x+y|} \leq \frac{|x|}{1+|x|+|y|}+\frac{|y|}{1+|x|+|y|}$.
7) Prove that, $|x-y|<\epsilon$ for every $\epsilon>0$ iff $x=y$.
b) Solve in $\mathbb{R} ;|x-2| \leq 1$ and $\left|x^{2}-1\right| \leq 2$.

Exercise 3. Let E be a non-empty part of \mathbb{R} and $m \in \mathbb{R}$.

1) If E is bounded, then $\inf E$ and $\sup E$ are unique.
2) Prof that, E is bounded iff there exists $k \in \mathbb{R}_{+}$such that, $\forall x \in E ;|x| \leq k$.
3) Suppose that E is bounded below. Prof that:
4) $m=\inf E \Leftrightarrow\left\{\begin{array}{l}\text { i) } \forall x \in E ; m \leq x ; \\ \text { ii) } \forall \varepsilon>0 ; \exists x_{\varepsilon} \in E \text { such that, } x_{\varepsilon}<m+\epsilon \text {. }\end{array}\right.$
5) $-E=\{-x ; x \in E\}$ is bounded above and $\sup (-E)=-\inf E$.
6) Prof that if F is a non-empty part of \mathbb{R} included in a bounded part E of \mathbb{R}, then F is bounded; and: $\inf E \leq \inf F ; \sup F \leq \sup E$.
7) Noting that $\forall x, y \in \mathbb{R}_{+} ; x+y \geq 2 \sqrt{x y}$. Prof that if $E=\left\{x+\frac{1}{x} ; x \in \mathbb{R}_{+}^{*}\right\}$; then E is bounded below and $\min E=2$.

Exercise 4. Let E, F be two non-empty and bounded parts in \mathbb{R}. We define the sum and the product of E and F, by: $E+F=\{x+y ; x \in E, y \in F\}$ and $E F=\{x y ; x \in E, y \in F\}$. Prof that:

1) $E+F$ is bounded; $\inf (E+F)=\inf E+\inf F$ and $\sup (E+F)=\sup E+$ $\sup F$.
2) In the case where E and F are positive terms, $E F$ is bounded, $\inf (E F)=$ $\inf E \inf F$ and $\sup (E F)=\sup E \sup F$.
3) Calculate the min. and max of $E+F$ and $E F$ in the following two cases:
i) $E=\{-1,0\}$ and $F=\{-2,-1\}$.
ii) $E=\{-1,0\}$ and $F=\{0,1\}$.

What can we deduce?
4) Let $E=\left\{1-\frac{1}{n} ; n \in \mathbb{N}^{*}\right\}$. Determine $\min E$ and $\sup E$, justify.

Exercise 5. Let E, F be two non-empty and bounded parts in \mathbb{R}.

1) Prof that: $E \cup F$ is bounded and that: $\sup (E \cup F)=\max (\sup E, \sup F)$ and $\inf (E \cup F)=\min (\inf E, \inf F)$.
2) Suppose that $E \cap F$ is non-empty. Prof that: $E \cap F$ is bounded, $\sup (E \cap$ $F) \leq \min (\sup E, \sup F)$ and $\max (\inf E, \inf F) \leq \inf (E \cap F)$.

Exercise 6. The integer part of $x \in \mathbb{R}$, is the largest element of \mathbb{Z}, noted $[x]$ such that: $[x] \leq x$. Prof that: $\forall x, y \in \mathbb{R}$

1) $[x]$ exists and it is unique.
2) $[x] \leq x<[x]+1$ and $x-[x] \in[0,1[$.
3) $\forall z \in \mathbb{Z},[z]=z$ and $[z+x]=z+[x]$.
4) $[x]+[y] \leq[x+y]<[x]+[y]+1$, if $x \leq y$ then $[x] \leq[y]$.
5) $\forall n \in \mathbb{N}, n[x] \leq[n x]$.

Exercise 7. Let $E=\left\{r \in \mathbb{Q}_{-} ; r^{2}<2\right\}$..

1) Prof that E is bounded and determine $\inf E$ and $\max E$.
2) Prof that $E=\left\{r^{3} ; r \in \mathbb{Q}\right\}$ is dense in \mathbb{R}.
