Cy semigroup of contractions

In all what follows X will be a Banach space on the field K = R or C.

1.Definition A one parameter family S, ¢ > 0 of linear bounded operators
from X into X is a semigroup if:

(1) So = I, the identity operator of X

(7i) Siys = S¢S, for every t,s >0
Six —

the linear operator A defined by A (z) = }111(1)

S _
D(A) = {x € X: }in})#, exists} is the infinitesimal generator of

, with domain

the semigroup S;.
2.Definition A Cj semigroup of linear bounded operators on X is a semigroup
satisfying:

}iH(l) Six = x for every x € X, that is tlin(l) Stz — z|| = 0.

3.Definition A Cj semigroup S;, t > 0 on X satisfying ||S¢]] < 1,Vt >0
is called a Cy semigroup of contractions.

The following Theorem gives some useful properties of a Cy semigroup of
contractions:

4. Theorem Let S, t > 0 be a Cy semigroup of linear bounded operators on
X then we have:
(1). For each z € X the function ¢ — Sz from [0, oo[ into X

is continuous on [0, col.
t+h

1
(2). For all x € X and all ¢t > 0, hlimoﬁ /Ssx.ds = Sz
t
t
(3). For all x € X and all ¢ > 0, /Ssx.ds € D(A) and
0

t
A /Ssm.ds =Six—=x

0
(4). For all x € X and all ¢t > 0, S,z € D (A) and the function t — Sy
d
is differentiable from |0, co[ into X and %Stx = A(Six) = SiA(x),VE >0
(5). For all x € X and all t > s > 0, we have:
¢ ¢

Six — Ssx = /A (Suz) .du = /SuA (z) .du

S S

Proof:
(1). By definition 2 it is clear that the function ¢ — S,z is continuous at ¢ = 0.



Now take any ¢ > 0 so that for h > 0 we can write Sy 2 — Stz = Si. (Spx — )
which implies ||Strpz — Sez|| < ISt - ||Shx — || < ||Shx — ||
since ||S¢]] < 1 by the contraction condition. But }lbin% |Spz — || = 0 by
definition 2. If h < 0 and t + h > 0 write Sy4pz — Six = Sip. (x — S_px), then
ISe+nz — Szl < ||St4nll - |z — S—pz|| < ||l — S_pz||, because || Sin|| < 1. Fi-
nally use the fact }limo |z — S—pz|| = 0 to get %in%) |St+naz — Stzx|| = 0.

11— —
So for both cases h > 0 and h < 0, S;1px — Six goes to 0 as h — 0.
(2). comes from the continuity of the function ¢ — Six, proved in (1), and
usual properties of Riemann integral for Banach space valued functions.

¢ ¢
(3). Fixz € X and h > 0, then we have Shh_ I/Ssx.ds = %/ (Ss+nr — Ssz) .ds

0
because the operator S — I X — Xis continuous So we write:
t

1
E/ (Ss4nx — Ssz) d /Ss+hx ds — /S x.ds and evaluate each integral

as follows making variable change s+ h= u we get
t+h t+h

/Ss+;Laxd5— /Sxdu— /Szdu+ /Smduand
t

t+h

1
E/ Sernx — Ssx) .d /Sxdu—i— /S:vdu— /Smds

0
t+h t+h

1
=7 /Su:c.du — E/Sux.du, letting h goes to 0 we get E/Sux.du — Six

t
1 Sy —1
and 7/5’ r.du — x then hh /Ssx.ds — Si;x — x so we deduce that

t t
/Ssx ds € D(A), and A /Ssx.ds = Sz — .
0

0
(4). Let x eD (A) and t, h > 0, then by the semigroup property:

Sy —1 St+n® — St
= St = h
By the deﬁmtlon of D (A) and the continuity of the semigroup we get:
-1 -1
lim S Six =S ( lim Shh x) = S A(x)

h——04 h——04

d+
This shows that S;z € D (A) and A (S;z) = SiA (x) = Esﬂ
d+
where — Sz is the right derivative of Syx at .

For the left derivative take 0 < h < t and write t =h +¢t—h



SO W — SiA(x) = Sin (S;Lxh—x — Ax | + Si_pAx — S; A (x)

since ||Si—p <thh - Ax)‘ < H thhi T _ Az|| because [1Si—n] <1
. . . th — X
thus making h — 0 gives . hn}) Si_n 3 — Az |+ S pAz—SA(z) =0
o,
finally hlirr(l) W — St A (z) = 0.s0 the function t — S, is differen-
0,

tiable from ]0, oo[ into X and gS,g:zc = A(Six) = St A(x),Vt > 0.

(5).For all z € X and allt > s > 0 we have to prove that:

Stwasx:/ (Sux) duf/SA

From point (4) we have —Stx = A(Six) = St A(x),Vt > 0 then

we get point (5) by 1ntegrat10n from stot:
t

%Stx.dt:StfoSx:/ (Syx) duf/SA ) .du.l

Corollary

If A is the generator of a Cy semigroup of contractions Sy, t > 0 then

A is a closed operator with a dense domain D (A).
Proof:

Let us start with some facts about closed operators.
Let XY be normed spaces and T : X — Y a linear operator. The graph of T'
is the subspace I" of X x Y defined by I' = {(z,T (z)) : z € X }.
We say that T is closed if its graph I is closed in the product space X x Y
endowed with the product topology.

Remark: Let (z,) be a sequence in X and consider the conditions:
(1) &y, — z,n —> 00
(i) y =T (x)

then it is easy to see that:

T is closed <= (7) and (i) = (i13).

T is continuous <= (i) = (i7) and (41) .

It is known that if T': X — Y is linear continuous then 7' is closed.
But the converse is not true in general
(see any standard book on functional analysis).

going back to the proof of the corollary, let z € X and ¢ > 0 then
t
1
put x; = g/Ssx.ds; by point (3) of Theorem 4, z, € D (A) and

0
, lir% x¢ = Sox = x this shows that D (A) is indeed dense in X.
04



Now we prove that A is closed: let x,, € D (A) be such that
2, — x and A (x,) — y when n — oo

we have to show that © € D (A) and A (z) = y.

By point (5) of Theorem 4, for any ¢ > 0 we have

t
SiTy — Ty = /S’uA () .du
0

but S, A (z,) — Syy for each u because S, is a bounded linear operator.
Let ¢ > 0 and € > 0 then IN.; > 1 such that n >IN, = ||A(z,) —y| < %

but S, is a contraction so
€
n23Nex = [|1SuA (@n) = Suyll < 15ull 1A (20) =yl < 5
then for n > 3N, ; we have

t t t

/SUA(xn) du — /Suy.du < /||SuA (zn) — Syl .du < t.g =

0 0 0

t t
so for each t > 0 /SuA (zp,) .du — /Suy.du — 0,m — oo and we get:
0 0
t
for each t >0 Sz, —x, — Siz —x = /Suy.du
0

t
1 1
whence n (Stx —x) = E/Suy.du for each ¢t > 0
10
letting t — 0 gives n (S;x —x) — Az and by point (2) of Theorem 4,

t

1

g/Suy.du — y so Az =y and A is closed.H
0



