C_0 semigroup of contractions

In all what follows X will be a Banach space on the field $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

1.Definition A one parameter family S_t , $t \ge 0$ of linear bounded operators from X into X is a semigroup if:

(i) $S_0 = I$, the identity operator of X

(*ii*) $S_{t+s} = S_t S_s$, for every $t, s \ge 0$

the linear operator A defined by $A(x) = \lim_{t \to 0} \frac{S_t x - x}{t}$, with domain

 $D(A) = \left\{ x \in X : \lim_{t \to 0} \frac{S_t(x) - x}{t}, \text{ exists} \right\} \text{ is the infinitesimal generator of the semigroup } S_t.$

2.Definition A C_0 semigroup of linear bounded operators on X is a semigroup satisfying:

 $\lim_{t \to 0} S_t x = x \text{ for every } x \in X, \text{ that is } \lim_{t \to 0} ||S_t x - x|| = 0.$

3.Definition A C_0 semigroup S_t , $t \ge 0$ on X satisfying $||S_t|| \le 1, \forall t \ge 0$ is called a C_0 semigroup of contractions.

The following Theorem gives some useful properties of a C_0 semigroup of contractions:

4.Theorem Let S_t , $t \ge 0$ be a C_0 semigroup of linear bounded operators on X then we have:

(1). For each $x \in X$ the function $t \longrightarrow S_t x$ from $[0, \infty[$ into X is continuous on $[0, \infty]$.

(2). For all
$$x \in X$$
 and all $t \ge 0$, $\lim_{h \to 0} \frac{1}{h} \int_{t}^{t+h} S_s x.ds = S_t x$
(3). For all $x \in X$ and all $t \ge 0$, $\int_{0}^{t} S_s x.ds \in D(A)$ and

$$A\left(\int\limits_{0}^{t} S_{s} x.ds\right) = S_{t} x - x$$

(4). For all $x \in X$ and all t > 0, $S_t x \in D(A)$ and the function $t \longrightarrow S_t x$ is differentiable from $]0, \infty[$ into X and $\frac{d}{dt}S_t x = A(S_t x) = S_t A(x), \forall t > 0$ (5). For all $x \in X$ and all $t > s \ge 0$, we have:

$$S_{t}x - S_{s}x = \int_{s} A(S_{u}x) . du = \int_{s} S_{u}A(x) . du$$

Proof:

(1). By definition 2 it is clear that the function $t \longrightarrow S_t x$ is continuous at t = 0.

Now take any t > 0 so that for $h \ge 0$ we can write $S_{t+h}x - S_tx = S_t$. $(S_hx - x)$ which implies $||S_{t+h}x - S_tx|| \le ||S_t|| \cdot ||S_hx - x|| \le ||S_hx - x||$ since $||S_t|| \le 1$ by the contraction condition. But $\lim_{h \to 0} ||S_hx - x|| = 0$ by definition 2. If h < 0 and t + h > 0 write $S_{t+h}x - S_tx = S_{t+h}$. $(x - S_{-h}x)$, then $||S_{t+h}x - S_tx|| \le ||S_{t+h}|| \cdot ||x - S_{-h}x|| \le ||x - S_{-h}x||$, because $||S_{t+h}|| \le 1$. Finally use the fact $\lim_{h \to 0} ||x - S_{-h}x|| = 0$ to get $\lim_{h \to 0} ||S_{t+h}x - S_tx|| = 0$. So for both cases $h \ge 0$ and h < 0, $S_{t+h}x - S_tx$ goes to 0 as $h \longrightarrow 0$. (2). comes from the continuity of the function $t \longrightarrow S_t x$, proved in (1), and usual properties of Riemann integral for Banach space valued functions. (3). Fix $x \in X$ and h > 0, then we have $\frac{S_h - I}{h} \int_{O} S_s x ds = \frac{1}{h} \int_{O} (S_{s+h}x - S_s x) ds$ because the operator $S_h - I : X \longrightarrow X$ is continuous. So we write: $\frac{1}{h} \int_{0} \left(S_{s+h}x - S_{s}x \right) . ds = \frac{1}{h} \int_{0}^{t} S_{s+h}x . ds - \frac{1}{h} \int_{0}^{t} S_{s}x . ds \text{ and evaluate each integral}$ as follows: making variable change s + h = u we get $\frac{1}{h} \int S_{s+h} x.ds = \frac{1}{h} \int S_u x.du = \frac{1}{h} \int S_u x.du + \frac{1}{h} \int S_u x.du \text{ and}$ $\frac{1}{h} \int^{t} (S_{s+h}x - S_sx) \, ds = \frac{1}{h} \int^{t} S_u x \, du + \frac{1}{h} \int^{t+h} S_u x \, du - \frac{1}{h} \int^{t} S_s x \, ds$ $=\frac{1}{h}\int_{-\infty}^{n}S_{u}x.du-\frac{1}{h}\int_{-\infty}^{n}S_{u}x.du, \text{ letting } h \text{ goes to } 0 \text{ we get } \frac{1}{h}\int_{-\infty}^{n}S_{u}x.du \longrightarrow S_{t}x$ and $\frac{1}{h}\int S_u x.du \longrightarrow x$ then $\frac{S_h - I}{h}\int S_s x.ds \longrightarrow S_t x - x$ so we deduce that $\int S_s x.ds \in D(A), \text{ and } A\left(\int S_s x.ds\right) = S_t x - x.$ (4). Let $x \in D(A)$ and t, h > 0, then by the semigroup property: $\frac{S_h - I}{h} S_t x = S_t \frac{S_h - I}{h} x = \frac{S_{t+h} x - S_t x}{h}$ By the definition of D(A) and the continuity of the semigroup we get: $\lim_{h \longrightarrow 0_{+}} \frac{S_{h} - I}{h} S_{t} x = S_{t} \left(\lim_{h \longrightarrow 0_{+}} \frac{S_{h} - I}{h} x \right) = S_{t} A(x)$

This shows that $S_t x \in D(A)$ and $A(S_t x) = S_t A(x) = \frac{d^+}{dt} S_t x$ where $\frac{d^+}{dt} S_t x$ is the right derivative of $S_t x$ at t. For the left derivative take 0 < h < t and write t = h + t - h

so
$$\frac{S_t x - S_{t-h} x}{h} - S_t A(x) = S_{t-h} \left(\frac{S_h x - x}{h} - A x \right) + S_{t-h} A x - S_t A(x)$$

since $\left\| S_{t-h} \left(\frac{S_h x - x}{h} - A x \right) \right\| \le \left\| \frac{S_h x - x}{h} - A x \right\|$ because $\|S_{t-h}\| \le 1$

thus making $h \longrightarrow 0$ gives $\lim_{h \longrightarrow 0_+} S_{t-h} \left(\frac{S_h x - x}{h} - Ax \right) + S_{t-h} Ax - S_t A(x) = 0$

finally $\lim_{h \to 0_+} \frac{S_t x - S_{t-h} x}{h} - S_t A(x) = 0$ so the function $t \longrightarrow S_t x$ is differen-tiable from $]0, \infty[$ into X and $\frac{d}{dt} S_t x = A(S_t x) = S_t A(x), \forall t > 0.$ (5). For all $x \in X$ and all $t > s \ge 0$, we have to prove that:

5).For all
$$x \in X$$
 and all $t > s \ge 0$, we have to prove that

$$S_{t}x - S_{s}x = \int_{s} A(S_{u}x) . du = \int_{s} S_{u}A(x) . du$$

From point (4) we have $\frac{d}{dt}S_t x = A(S_t x) = S_t A(x), \forall t > 0$ then we get point (5) by integration from s to t:

$$\int_{s}^{t} \frac{d}{dt} S_{t} x.dt = S_{t} x - S_{s} x = \int_{s}^{t} A\left(S_{u} x\right).du = \int_{s}^{t} S_{u} A\left(x\right).du.$$

Corollary

If A is the generator of a C_0 semigroup of contractions S_t , $t \ge 0$ then

A is a closed operator with a dense domain D(A).

Proof:

Let us start with some facts about closed operators.

Let X, Y be normed spaces and $T: X \longrightarrow Y$ a linear operator. The graph of T is the subspace Γ of $X \times Y$ defined by $\Gamma = \{(x, T(x)) : x \in X\}.$

We say that T is closed if its graph Γ is closed in the product space $X \times Y$ endowed with the product topology.

Remark: Let (x_n) be a sequence in X and consider the conditions:

(i) $x_n \longrightarrow x, n \longrightarrow \infty$ (*ii*) $T(x_n) \longrightarrow y$ $(iii) \ y = T(x)$ then it is easy to see that: T is closed \iff (i) and (ii) \implies (iii).

T is continuous \iff $(i) \implies$ (ii) and (iii).

It is known that if $T: X \longrightarrow Y$ is linear continuous then T is closed. But the converse is not true in general

(see any standard book on functional analysis).

going back to the proof of the corollary, let $x \in X$ and t > 0 then put $x_t = \frac{1}{t} \int_{\alpha} S_s x.ds$; by point (3) of Theorem 4, $x_t \in D(A)$ and $\lim_{t \to 0_+} x_t = S_0 x = x \text{ this shows that } D(A) \text{ is indeed dense in } X.$

Now we prove that A is closed: let $x_n \in D(A)$ be such that

 $x_n \longrightarrow x$ and $A(x_n) \longrightarrow y$ when $n \longrightarrow \infty$ we have to show that $x \in D(A)$ and A(x) = y. By point (5) of Theorem 4, for any t > 0 we have

$$S_t x_n - x_n = \int_0^t S_u A(x_n) \, . du$$

but $S_u A(x_n) \longrightarrow S_u y$ for each u because S_u is a bounded linear operator. Let t > 0 and $\epsilon > 0$ then $\exists N_{\epsilon,t} \ge 1$ such that $n \ge \exists N_{\epsilon,t} \implies ||A(x_n) - y|| < \frac{\epsilon}{t}$ but S_u is a contraction so

 $n \ge \exists N_{\epsilon,t} \implies \|S_u A(x_n) - S_u y\| \le \|S_u\| \|A(x_n) - y\| < \frac{\epsilon}{t}$ then for $n \ge \exists N_{\epsilon,t}$ we have

$$\left\| \int_{0}^{t} S_{u}A(x_{n}) . du - \int_{0}^{t} S_{u}y . du \right\| \leq \int_{0}^{t} \left\| S_{u}A(x_{n}) - S_{u}y \right\| . du < t . \frac{\epsilon}{t} = \epsilon$$

so for each t > 0 $\int_{0} S_u A(x_n) . du - \int_{0} S_u y . du \longrightarrow 0, n \longrightarrow \infty$ and we get:

for each
$$t > 0$$
 $S_t x_n - x_n \longrightarrow S_t x - x = \int_0^{\infty} S_u y. du$

whence $\frac{1}{t}(S_t x - x) = \frac{1}{t} \int_0^t S_u y \, du$ for each t > 0letting $t \longrightarrow 0$ gives $\frac{1}{t}(S_t x - x) \longrightarrow Ax$ and by point (2) of Theorem 4, $\frac{1}{t} \int_0^t S_u y \, du \longrightarrow y$ so Ax = y and A is closed.