
Chapter 1

Positive Measures

1. Algebras of Sets

This section is intented to give the basic structures on sets, needed for the
de�nition and properties of measures. We start with the following:

Preliminaries:
Let X be a set, and let P (X) be the power set of X. If I is any nonempty

set, a function f : I �! P (X) de�nes a family fAi, i 2 Ig of subsets of X, with
Ai = f (i) 2 P (X). For such family we perform the union and the intersection
by:
[
i
Ai = fx : 9i 2 I; x 2 Aig

\
i
Ai = fx : 8i 2 I; x 2 Aig

Let us recall the frequently used De Morgan�s Laws:�
[
i
Ai

�c
= \

i
Aci ,

�
\
i
Ai

�c
= [

i
Aci

valid for any family fAi, i 2 Ig, where Ac denotes the complement of the set A:
De�nition 1.1.
Let A be a family of subsets of X.

We say that A is an algebra on X if:
(1) X;� are in A
(2) For every subset A in A, the complement Ac of A is in A
(3) For every subsets A;B 2 A, A [B 2 A
Example 1.2.
(a) For any X the power set P (X) is an algebra
(b) LetX be a set and letA be the family given byA = fA � X : A or Ac �niteg.
It is not di¢ cult to check that A is an algebra, using the De Morgan�s Laws
given in the Preliminaries
(c) If A is an algebra and if A;B 2 A then A \B 2 A
(d) For any �nite sequence A1; :::; An in A the union

n
[
1
Ai and

the intersection
n
\
1
Ai are in A.

De�nition 1.3.
Let F be a family of subsets of X.

We say that F is a ���eld or ��algebra on X if:
(1) X;� are in F
(2) For every subset A in F , the complement Ac of A is in F
(3) For every sequence (An) of subsets An 2 F , [

n
An 2 F

The pair (X;F), where X is a set and F a ���eld on X is called a measurable
space and sets A in F are called measurable sets.
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Examples 1.4.
(a) For any X the power set P (X) is a ���eld on X.
(b) LetX be an in�nite set and let F be the family given by F = fA � X : A or Ac countableg.
Then it is not di¢ cult to prove that F is a ���eld on X
(use the De Morgan�s Laws given in the Preliminaries).

(c) Every ���eld on X is an algebra, but the converse is not true as is shown
by the following:
take X = Z, the integers and the algebra A = fA � X : A or Ac �niteg,
put An = fng ; n � 0; then An 2 A,8n � 0; but [

n�0
An =2 A:

Remark 1.5.
(a) If F is a ���eld on X, then for every sequence (An) in F , \

n
An 2 F :

(b) For every sequence (An) such that Ai \Aj = �; for i 6= j
we denote the set [

n
An by

P
n
An:

2. Exercises

1. Prove that the family F is a ���eld on X, if and if the following
conditions are satis�ed:
(a) � 2 F
(b) For any �nite sequence A1; :::; An in F ,

n
\
1
Ai 2 F

(c) For every sequence (An) such that Ai \ Aj = �; for i 6= j. we haveP
n
An 2 F

2. For every sequence (An), de�ne the sequence (Bn) by the following recipe:

B1 = A1; B2 = A2nA1; B3 = A3n (A1 [A2) ; ::::Bnn
�
[
i<n
Ai

�
Prove that [

n
An =

P
n
Bn:

3. Generations

Lemma 3.1.
Let Fi; i 2 I be an arbitrary family of ���elds
(resp. algebras). Then the family \

i
Fi is a ���eld (resp. algebra).

Proof. Straightforward.�
Corollary 3.2.
Let H be a family of subsets of a set X
Then there exist a smallest ���eld on X containing H, denoted by � (H).
Smallest is taken in the sens of the inclusion ordering.
� (H).is called the ���eld generated by H.

Proof. Let I = fF : F � � �eld on X; with H � Fg
then by Lemma 3.1, \

F2I
F is a ���eld on X and it is clear that:

� (H) = \
F2I

F .�
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Example 3.3.
(a) Let H be a family given by one subset A, H = fAg
then � (H) = fA;Ac; �;Xg :
(b) If I is the family of one point sets given by I = ffxg : x 2 Xg
then we have � (I) = fA � X : A or Ac countableg(see Example 1.4 (b))

De�nition 3.4.(Product ���eld)
Let (X1;F1), (X2;F2) be measurable spaces. Consider on the product set

X1 �X2 the family R = fA1 �A2 : A1 2 F1; A2 2 F2g :
The product ���eld on X1 �X2 is de�ned by F1 
F2 = � (R) :
The measurable space (X1 �X2;F1 
F2) is called the product of (X1;F1),
(X2;F2) :

De�nition 3.5. (Borel ���eld )
Let X be a topological space. The Borel ���eld of X is the ���eld gener-

ated by the family of all the open sets of X.
It is denoted by BX : Sets in BX are called Borel sets of X. One can see that
BX is also generated by the closed sets of X:

Proposition 3.6.
The Borel ���eld BRof R is generated by the open intervals of R:

In fact BR is generated by the family f]�1; t[ ; t 2 Rg :

Proof. Every open set of R is the union of a sequence of open intervals.�
De�nition 3.7. (Monotone family)
LetM be a family of subsets of a set X. M is said to be monotone if:
(i) For any sequence (An) with A1 � A2 � ::: � An � :::, we have [

n
An 2M

(ii) For any sequence (An) with A1 � A2 � ::: � An � :::, we have \
n
An 2M

Example 3.8.
(a) Any ���eld is a monotone family
(b) Let A be an algebra, then A is a ���eld i¤ A is a monotone family.

Lemma 3.9.
LetMi; i 2 I be an arbitrary class of monotone families
Then the family \

i
Mi is a monotone family.

Proof. Straightforward.�
Corollary 3.10.
Let H be a family of subsets of a set X

Then there exist a smallest monotone family on X containing H, denoted by
M (H). Smallest is taken in the sens of the inclusion ordering.
M (H).is called the monotone family generated by H.

Proof. Let I = fM: M monotone family on X; with H �Mg
then by Lemma 3.9, \

M2I
M is a monotone family on X and it is clear that:

M (H) = \
M2I

M.�
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Theorem 3.11.
Let A be an algebra on the set X. Then the ���eld generated by A is identical
to the monotone family generated by A.

Proof. PutM =M (A), B = � (A). ThenM� B (Example 3.8. (a) ).
To show that B �M it is enough to prove thatM is an algebra
(see Example 3.8. (b) )
First we prove thatB 2M =) Bc 2M. To this end letM0

= fB 2M : Bc 2Mg
Then we have A �M0 �M. MoreoverM0

is monotone and soM0
=M:

It remains to prove thatM is stable by intersection. For each A 2M, consider
the family MA = fB 2M : A \B 2Mg, then MA is a monotone family
with MA � M. Moreover if A 2 A, we have A � MA, so we deduce that
MA =M. On the other hand it is clear that A 2 MB i¤ B 2 MA, therefore
A 2MB for every A 2 A and B 2M. FinallyMB =M, for all B 2M. This
proves thatM is an algebra.�

4. Exercises

3. Let A be a family of subsets of a set X. If E is any subset in X, we de�ne
the trace of A on E by the family A\E = fA \ E;A 2 Ag :
Prove that � (A\E) = � (A)\E:
4. Let S be a family of subsets of a set X. We say that S is a semialgebra if it
satis�es:
(a) �, X are in S
(b) If A;B are in S then A \B is in S
(c) If A is in S then Ac =

nP
1
Ak, where the sets Ak are pairwise disjoint in

S.
Prove that the algebra generated by the semialgebra S is the family
A =

�
A : A =

nP
1
Sk; where the Sk are pairwise disjoint in S:

�
5. Let R the set of real numbers equiped with the usual topology, prove that
the family of all intervals is a semialgebra.
6. Let S1,S2 be semialgebras on the set X and consider the family S =
fS1 \ S2; S1 2 S1; S2 2 S2g :
Prove that S is a semialgebra and that the algebra generated by S is identical
to the algebra generated by S1 and S2:
7. Let (X1;F1), (X2;F2) be measurable spaces. Prove that the family fA1 �A2 : A1 2 F1; A2 2 F2g
is a semialgebra.on X1 �X2, (see exercise 4.).
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5. Limsup and Liminf

Let X be a set, and let P (X) be the power set of X. We assume that P (X)
is endowed with the inclusion ordering �. then:
De�nition 5.1.
For any sequence (An) in P (X), we de�ne the sets lim sup

n
An and lim inf

n
An by:

lim sup
n

An = \
n�1

[
k�n

Ak

lim inf
n

An = [
n�1

\
k�n

Ak

Similarly let R;� be the ordered real number system and:

De�nition 5.2.
For any sequence (an) in R, we de�ne the numbers lim sup

n
an and lim inf

n
an

in R = [�1;1] by:
lim sup

n
an = inf

n�1
sup
k�n

ak

lim inf
n

an = sup
n�1

inf
k�n

ak

De�nition 5.3.
If fn : X �! R us a sequence of functions from a set X into R, we de�ne

the functions lim sup
n

fn and lim inf
n

fn from X into R,by:�
lim sup

n
fn

�
(x) = lim sup

n
(fn (x))�

lim inf
n

fn

�
(x) = lim inf

n
(fn (x))

6. Exercises

8. Prove that for any sequence (An) in P (X) we have:
lim inf

n
An � lim sup

n
An�

lim inf
n

An

�c
= lim sup

n
Acn

�
lim sup

n
An

�c
= lim inf

n
Acn

9. Let IA be the indicator function of the set A, i.e IA (x) = 1 if x 2 A and
IA (x) = 0 if x =2 A.
Prove that for any sequence (An) in P (X) we have::

Ilim sup
n

An = lim sup
n

IAn and Ilim inf
n

An = lim infn
IAn
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7. Positive Measures

Let (X;F) be a measurable space.

De�nition 7.1.
A positive measure � on F is a set function
� : F �! [0 1] such that:

(i) � (�) = 0
(ii) For every pairwise disjoint sequence (An) in F :

�

�P
n
An

�
=
P
n
� (An) (��additivity of �).

The triple (X;F ; �) is called measure space.
Let us observe that for a �nite pairwise disjoint sequence

Ak; 1 � k � n in F , we have: �
�
nP
1
Ak

�
=

nP
1
� (Ak) :

Example 7.2.

(a) Let X be a set and �x x0 2 X. De�ne � on P (X) by:
A 2 P (X), � (A) = IA (x0) (see exercise 9 de�ning the function IA). I(�) (x0)

is called Dirac measure at x0:
To prove the ��additivity of �, observe that IP

n
An
=
P
n
IAn for pairwise disjoint

sequences (An).

(b) For A � X put � (A) =1 if A is an in�nite set and � (A) = n if A is a �nite
set with n elements. This measure is called the cardinality measure on P (X).

Proposition 7.3.
Let (X;F ; �) be a measure space and let A;B be in F , then:

(a) A � B =) � (A) � � (B) :
(b) A � B and � (A) <1 =) � (BnA) = � (B)� � (A) :
(BnA is the di¤erence set B \Ac)

Proof. If A � B, then B = (B �A) [ A and � (B) = � (BnA) + � (A), by
additivity; so � (B) � � (A) :If moreover � (A) <1 we deduce that:
� (BnA) = � (B)� � (A) :�
Proposition 7.4. Let (X;F ; �) be a measure space. Then for any sequence
(An) in F we have:

�
�
[
n
An

�
�
P
n
� (An) (sub ��additivity of �).

Proof. De�ne the sequence (Bn) by the following recipe: B1 = A1; B2 =

A2nA1; B3 = A3n (A1 [A2) ; ::::Bnn
�
[
i<n
Ai

�
, then [

n
An =

P
n
Bn and Bn � An,

8n. So �
�
[
n
An

�
= �

�P
n
Bn

�
=
P
n
� (Bn);by Proposition 7.3(a) � (Bn) �

� (An),8n:�
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Proposition 7.5. (sequential continuity of a measure)
Let (X;F ; �) be a measure space. If (An) is a sequence in F , then we have
(a) if A1 � A2 � ::: � An � :::: � A = [

n
An then � (A) = Lim

n
� (An)

(b) if A1 � A2 � ::: � An � :::: � A = \
n
An and if � (An0) < 1 for some n0

then � (A) = Lim
n
� (An)

Proof. (a) De�ne the sequence (Bn) by:
B1 = A1; B2 = A2nA1; B3 = A3nA2; :::; Bn = AnnAn�1, so we have A =

P
n
Bn

and � (A) =
P
n
� (Bn) =

P
n
� (AnnAn�1) = Lim

n

nP
k=1

� (AknAk�1) = Lim
n
�

�
nP
k=1

AknAk�1
�
;

but
nP
1
AknAk�1 = An by construction and we deduce that � (A) = Lim

n
� (An) :

(b) We can assume n0 = 1, so � (An) < 1 for all n. On the other hand we
have A1nA1 � A1nA2 � ::: � A1nAn � ::: [

n
A1nAn = A1nA. By (a) we deduce

� (A1nA) = Lim
n
� (A1nAn). Since � (An) <1 for all n we get, by Proposition

7.3(b), � (A1nA) = � (A1) � � (A) and � (A1nAn) = � (A1) � � (An), whence
� (A) = Lim

n
� (An) :�

Example 7.6. The condition (b) above is essential as is shown by taking � the
counting measure on N and taking An = fp : p � ng ; indeed we have \

n
An = �,

so � (�) = 0 but � (An) =1, for all n, and then Lim
n
� (An) =1:�

Proposition 7.7. (Borel-Cantelli Lemma)
Let (X;F ; �) be a measure space. Let (An) be a sequence in F such that:P
n
� (An) <1, then: �

�
lim sup

n
An

�
= 0

Proof. Put Bn = [
k�n

Ak, then Bn is decreasing and lim sup
n

An = \
n�1

Bn. Since

� (Bn) = �

�
[
k�n

Ak

�
�
P
k�n

� (An) �
P
n
� (An) < 1 for all n, we deduce, from

Proposition 7.5 (b), that �
�
lim sup

n
An

�
= Lim

n
� (Bn) � Lim

n

P
k�n

� (An) = 0,

because
P
k�n

� (An) is the remainder of a convergent series.�
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