Chapter 1

Positive Measures

1. Algebras of Sets

This section is intented to give the basic structures on sets, needed for the
definition and properties of measures. We start with the following:

Preliminaries:

Let X be a set, and let P (X) be the power set of X. If I is any nonempty
set, a function f : I — P (X) defines a family {4;, i € I} of subsets of X, with
A; = f (i) € P(X). For such family we perform the union and the intersection
by:

UAi:{.%‘ZEiEI,ZEEAi}

ﬂAzi{IEVZEI,IL‘GAI}

Let us recall the frequently used De Morgan’s Laws:

(UAi) =NA7, (Oz‘h‘) = UA}
valid for any family {A;, ¢ € I}, where A¢ denotes the complement of the set A.
Definition 1.1.

Let A be a family of subsets of X.

We say that A is an algebra on X if:

(1) X,¢ arein A

(2) For every subset A in A, the complement A° of A isin A

(3) For every subsets A,Be A, AUBec A

Example 1.2.

(a) For any X the power set P (X) is an algebra

(b) Let X be aset and let A be the family given by A = {4 C X : A or A° finite}.
It is not difficult to check that A is an algebra, using the De Morgan’s Laws
given in the Preliminaries

(c¢) If A is an algebra and if A,B € Athen ANBe A

(d) For any finite sequence Ay, ..., A, in A the union L?Ai and
the intersection 6Ai are in A.

Definition 1.3.
Let F be a family of subsets of X.
We say that F is a o—field or o—algebra on X if:
(1) X, ¢ are in F
(2) For every subset A in F, the complement A° of A is in F
(3) For every sequence (A,,) of subsets A,, € F, %An eF

The pair (X, F), where X is a set and F a o—field on X is called a measurable
space and sets A in F are called measurable sets.



Examples 1.4.
(a) For any X the power set P (X) is a o—field on X.
(b) Let X be an infinite set and let F be the family given by F = {A C X : A or A° countable}.
Then it is not difficult to prove that F is a o—field on X
(use the De Morgan’s Laws given in the Preliminaries).
(¢) Every o—field on X is an algebra, but the converse is not true as is shown
by the following:
take X = Z, the integers and the algebra A = {A C X : A or A° finite},
put A, = {n},n > 0; then A, € A¥n >0, but ngoA" ¢ A.

Remark 1.5.
(a) If F is a o—field on X, then for every sequence (A,) in F, N4, € F.
(b) For every sequence (A,) such that A; N A; = ¢, for i # j

we denote the set UA,, by > A,.

2. Exercises

1. Prove that the family F is a o—field on X, if and if the following
conditions are satisfied:
(a) 9 € F
(b) For any finite sequence A1, ..., A, in F, Fin eF

(¢) For every sequence (A,) such that A4; N A; = ¢, for i # j. we have
A, eF

n

2. For every sequence (4,), define the sequence (B,,) by the following recipe:
By = A17 By = AQ\Al, B3 = Ag\ (A1 U AQ) R Bn\ (zgnAl>
Prove that UA, =Y B,.

3. Generations

Lemma 3.1.
Let F;, i € I be an arbitrary family of oc—fields
(resp. algebras). Then the family NF; is a o—field (resp. algebra).

Proof. Straightforward.H
Corollary 3.2.
Let H be a family of subsets of a set X
Then there exist a smallest c—field on X containing H, denoted by o (H).
Smallest is taken in the sens of the inclusion ordering.
o (H).is called the o—field generated by H.
Proof. Let 3= {F: F o —field on X, with H C F}
then by Lemma 3.1, f@jf is a o—field on X and it is clear that:

o(H)= 0 Fm



Example 3.3.

(a) Let H be a family given by one subset A, H = {A}

then o (H) = {4, 4%, ¢, X}.

(b) If 7 is the family of one point sets given by Z = {{z} : =z € X}

then we have o (Z) = {A C X : A or A° countable}(see Example 1.4 (b))

Definition 3.4.(Product o—field)

Let (X1, F1), (X2,F2) be measurable spaces. Consider on the product set
X1 X X5 the family R = {A1 X Ag: Ay € F1,As € .7:2}
The product o—field on X; x X5 is defined by 1 @ Fo =0 (R) .
The measurable space (X7 x Xo, F1 ® Fa) is called the product of (Xi,71),
(Xa, F2).

Definition 3.5. (Borel o—field )

Let X be a topological space. The Borel o—field of X is the o—field gener-
ated by the family of all the open sets of X.
It is denoted by Bx. Sets in Bx are called Borel sets of X. One can see that
Bx is also generated by the closed sets of X.

Proposition 3.6.

The Borel o—field Brof R is generated by the open intervals of R.
In fact By is generated by the family {]—oo,t[,t € R}.

Proof. Every open set of R is the union of a sequence of open intervals.li

Definition 3.7. (Monotone family)
Let M be a family of subsets of a set X. M is said to be monotone if:
(¢) For any sequence (A,) with A1 C Ay C ... C 4,, C ..., we have UA,, € M

(#) For any sequence (A4,) with 41 D A3 D ... D 4,, D ..., we have N4,, € M

Example 3.8.
(a) Any o—field is a monotone family
(b) Let A be an algebra, then A is a o—field iff A is a monotone family.

Lemma 3.9.
Let M, i € I be an arbitrary class of monotone families
Then the family NM; is a monotone family.

K3

Proof. Straightforward.l

Corollary 3.10.

Let H be a family of subsets of a set X
Then there exist a smallest monotone family on X containing H, denoted by
M (H). Smallest is taken in the sens of the inclusion ordering.

M (H).is called the monotone family generated by H.

Proof. Let J = {M: M monotone family on X, with H C M}
then by Lemma 3.9, Mﬂ j./\/l is a monotone family on X and it is clear that:
€

MH)= 0 ME



Theorem 3.11.
Let A be an algebra on the set X. Then the o—field generated by A is identical
to the monotone family generated by A.

Proof. Put M = M (A), B=o0(A). Then M C B (Example 3.8. (a) ).

To show that B C M it is enough to prove that M is an algebra

(see Example 3.8. (b))

First we prove that B € M = B € M. Tothisendlet M' = {Be M: B¢ e M}
Then we have A € M’ C M. Moreover M’ is monotone and so M = M.

It remains to prove that M is stable by intersection. For each A € M, consider
the family Myq = {BeM: ANB e M}, then My is a monotone family
with M4 C M. Moreover if A € A, we have A C M4, so we deduce that
My = M. On the other hand it is clear that A € Mp iff B € M 4, therefore
A e Mp for every A € Aand B € M. Finally Mg = M, for all B € M. This
proves that M is an algebra.ll

4. Exercises

3. Let A be a family of subsets of a set X. If FE is any subset in X, we define
the trace of A on E by the family ANE = {ANE,Aec A}.
Prove that o (ANE) = o (A)NE.
4. Let S be a family of subsets of a set X. We say that S is a semialgebra if it
satisfies:

(a) ¢, X arein S

(b) If A,B arein S then ANBisin S

n
(¢) If Aisin S then A° = > Ay, where the sets Ay are pairwise disjoint in
1

S.
Prove that the algebra generated by the semialgebra S is the family

A= {A : A =55k, where the Si are pairwise disjoint in S.

1
5. Let R the set of real numbers equiped with the usual topology, prove that

the family of all intervals is a semialgebra.

6. Let 51,52 be semialgebras on the set X and consider the family & =

{Sl NSy, S1€81,5 € SQ} .

Prove that S is a semialgebra and that the algebra generated by S is identical

to the algebra generated by S; and Ss.

7. Let (X3, F1), (X2, F2) be measurable spaces. Prove that the family {A; x Ay : Ay € Fi, Ay € Fo}
is a semialgebra.on X7 x X, (see exercise 4.).



5. Limsup and Liminf

Let X be a set, and let P (X) be the power set of X. We assume that P (X)
is endowed with the inclusion ordering C. then:

Definition 5.1.
For any sequence (4,) in P (X), we define the sets limsupA,, and liminfA4,, by:
n n

limsup4, = N U A
" PAn n>1kSn " F

liminfA, = U N A
n n>1k>n

Similarly let R, < be the ordered real number system and:

Definition 5.2.

For any sequence (a,) in R, we define the numbers lim supa,, and lim infa,,
n n

in R = [~00, o] by:
lim supa,, = inf supay
n n2lp>np
liminfa,, = supinf a
n n>1k2>n

Definition 5.3.
If fn : X — R us a sequence of functions from a set X into R, we define
the functions limsupf,, and liminf f, from X into R by:
n n

<limnsupfn> (@) = limsup (o (2)

(lim inf f") (z) = liminf (f, (z))
6. Exercises

8. Prove that for any sequence (A,,) in P (X) we have:
liminfA, C limsup4,

<lim iann>c = limsup A¢,
limsupAn> = liminfA¢
9. Let I4 be the indicator function of the set A, i.e I4(x) =1if z € A and

Ip(z)=0ifz ¢ A.
Prove that for any sequence (A,) in P (X) we have:

Diim supa,, = limsupla, and liminta, = lint;’ianAn
n n n )



7. Positive Measures

Let (X,F) be a measurable space.

Definition 7.1.
A positive measure p on F is a set function
p: F — [0 oo] such that:

(1) p(¢) =0

(74) For every pairwise disjoint sequence (A,) in F:
L (ZAn) =Y pu(4,) (o—additivity of p).

The triple (X, F, u) is called measure space.
Let us observe that for a finite pairwise disjoint sequence

A, 1 <k <nin F, we have: u (ZAk> => p(Ag).
1 1

Example 7.2.

(a) Let X be a set and fix zy € X. Define 1 on P (X) by:

AeP(X), u(A) = 1Ia(zo) (see exercise 9 defining the function 14). Iy (z0)
is called Dirac measure at zg.
To prove the o—additivity of i, observe that Is~4, = > 14, for pairwise disjoint
sequences (A,,).

(b) For A C X put u(A) = oo if A is an infinite set and p (A) = n if A is a finite
set with n elements. This measure is called the cardinality measure on P (X).

Proposition 7.3.
Let (X, F, 1) be a measure space and let A, B be in F, then:
(a) ACB= pu(A) <u(B).
(b) ACBand p(A) <oo= pu(B\A) =u(B)—p(4).
(B\A is the difference set B N A°)

Proof. If A C B, then B = (B—A)UA and p(B) = u(B\A) + 1 (A), by
additivity; so p (B) > p (A) .If moreover p(A) < oo we deduce that:
p(B\A) = p(B) —p(A) .1

Proposition 7.4. Let (X,F,u) be a measure space. Then for any sequence
(A,) in F we have:

1] (%An) <> u(A,) (sub o—additivity of w).

Proof. Define the sequence (B,,) by the following recipe: B; = A, By =
AQ\Al, Bs = A3\ (Al U Ag) R Bn\ (g Al> , then UA,, = ZBn and B, C A,,

VYn. So p (UAn> =L (ZBn) = Y u(Bn);by Proposition 7.3(a) p(B,) <
1 (A,) ' '



Proposition 7.5. (sequential continuity of a measure)
Let (X, F,u) be a measure space. If (4,) is a sequence in F, then we have
(a)if Ay C A C...C A, C ... C A=UA, then pu(A4) = Limu (4,)

b)if Ay DAy D ... DA, D....DA=0nNA, and if u(A,,) < oo for some ngy
then p (A) = Limp (A4,)

Proof. (a) Define the sequence (B,,) by:
B1 = A17 BQ = AQ\Al, Bg = A3\A2, ,Bn = An\An—h so we have A = ZBn
n

and p (A) = > p (Bn) = 2 p (An\An 1) = Lim 3 pu (Ap\Ag 1) = Limp (Z Ak\Ak1>;
n n mog=1 n k=1
but > Ax\Ar_1 = A, by construction and we deduce that u(A) = Limu (4,) .
1 n

(b) We can assume ng = 1, so u(A,) < oo for all n. On the other hand we
have A1\A; C A1\As C ... C A1\A,, C ...UA;1\A,, = A;\A. By (a) we deduce
p(A1\A) = Limp (A1\A,,). Since u(A4,) < oo for all n we get, by Proposition

7.3(0), p(A\A) = p (A1) — p(A) and p(A1\A,) = p (A1) — p(A,), whence
w(A) = L%'lmu (A,) .1

Example 7.6. The condition (b) above is essential as is shown by taking p the

counting measure on N and taking 4, = {p: p > n}; indeed we have NA,, = ¢,
n
so i (¢) = 0 but p (A,) = oo, for all n, and then Limu (A4,) = co.l

Proposition 7.7. (Borel-Cantelli Lemma)
Let (X,F, ) be a measure space. Let (A,) be a sequence in F such that:

> (Ay) < oo, then: (lim supAn> =0
Proof. Put B,, = kg Ay, then B, is decreasing and limsupA,, = Qan. Since

w(B) = p (kL>J Ak) < S p(4y) <> p(A,) < oo for all n, we deduce, from
>n k>n n

Proposition 7.5 (b), that p (hm supAn> = Limu (By,) < Lim Y u(4,) =0,
n n nogpsn
because Y u(A,) is the remainder of a convergent series.ll
k>n



