8. Complete Measures

Definition 8.1.

Let (X, \mathcal{F}, μ) be a measure space and let N be a subset of X, we say that N is a null set if there is $A \in \mathcal{F}$, with $\mu(A) = 0$ such that $N \subset A$. Let \mathcal{N} be the family of null subsets of X. The space (X, \mathcal{F}, μ) is said to be complete if $\mathcal{N} \subset \mathcal{F}$ i.e every null set is mesurable.

Examples 8.2.

- (a) The counting measure on any set X is complete since in this case ϕ is the only null set.
- (b) If μ_s is the Dirac measure at s on (X, \mathcal{F}) (Example 7.2.(a)), every subset N not containing s is a null set

Lemma 8.3.

The family \mathcal{N} is closed by countable union.

Proof. Let (N_k) be a sequence in \mathcal{N} , then for each k there is $A_k \in \mathcal{F}$, with $\mu\left(A_k\right) = 0$ such that $N_k \subset A_k$. So $N = \bigcup\limits_k N_k \subset \bigcup\limits_k A_k$; by the sub $\sigma-$ additivity of μ we have $\mu\left(\bigcup\limits_n A_n\right) \leq \sum\limits_n \mu\left(A_n\right) = 0. \blacksquare$

It is possible to complete any measure space (X, \mathcal{F}, μ) according to the following:

Theorem 8.4.

Let (X, \mathcal{F}, μ) be a measure space and let \mathcal{N} be the family of null subsets of X. Let us put:

$$\mathcal{F}_0 = \{ E \subset X \colon E = F \cup N, F \in \mathcal{F}, N \in \mathcal{N} \}$$

$$\mu_0\left(E\right) = \mu_0\left(F \cup N\right) = \mu\left(F\right), \text{ if } E = F \cup N, F \in \mathcal{F}, N \in \mathcal{N}$$

Then: \mathcal{F}_0 is a σ -field on X containing \mathcal{F} , and \mathcal{N}

 μ_0 is a well defined measure on \mathcal{F}_0 that coincides with μ on \mathcal{F} .

The measure space $(X, \mathcal{F}_0, \mu_0)$ is complete.

Proof. First \mathcal{F}_0 is a σ -field

it is clear that ϕ and X are in \mathcal{F}_0

let $E \in \mathcal{F}_0$ with $E = F \cup N$, $F \in \mathcal{F}$, $N \in \mathcal{N}$ and let $A \in \mathcal{F}$, such that $\mu(A) = 0$, $N \subset A$; then we have $E^c = F^c \cap N^c = (F^c \cap N^c \cap A) + (F^c \cap N^c \cap A^c) = (F^c \cap N^c \cap A) + (F^c \cap A^c)$; since $F^c \cap N^c \cap A \in \mathcal{N}$ and $F^c \cap A^c \in \mathcal{F}$

we have $E^c \in \mathcal{F}_0$. Finally \mathcal{F}_0 is closed by countable union and this comes from the same property for the family \mathcal{N} (**Lemma 8.3**).

To finish the proof, we consider the set function μ_0 . First it is well defined, indeed suppose the set $E \in \mathcal{F}_0$ can be written as $E = F_1 \cup N_1 = F_2 \cup N_2$, then $F_1 \cap F_2^c \subset N_1 \cup N_2$ and $F_2 \cap F_1^c \subset N_1 \cup N_2$ which gives $\mu(F_1 \cap F_2^c) = \mu(F_2 \cap F_1^c) = 0$, so $\mu(F_1) = \mu(F_2)$ and $\mu_0(E) = \mu_0(F \cup N) = \mu(F)$ is well defined.

To prove the σ -additivity of μ_0 , let (E_n) be a pairwise disjoint sequence in \mathcal{F}_0 , and write $E_k = F_k \cup N_k$, $k \geq 1$, with $F_k \in \mathcal{F}$, $N_k \in \mathcal{N}$.

Then we have $\sum_{k} E_k = \sum_{k} F_k \cup \sum_{k} N_k$, with $\sum_{k} N_k \in \mathcal{N}$ (**Lemma 8.3**).

and
$$\mu_0 \left(\sum_k E_k\right)^k = \mu \left(\sum_k^k F_k\right)^k = \sum_k \mu(F_k)^k = \sum_k \mu_0(E_k)$$
, since μ is σ -additive.

Finally we prove that $(X, \mathcal{F}_0, \mu_0)$ is complete. Let M_0 be a μ_0 null set in X, so there is $E_0 \in \mathcal{F}_0$ with $\mu_0(E_0) = 0$ and $M_0 \subset E_0$; write $E_0 = F \cup N$, $F \in \mathcal{F}$, $N \in \mathcal{N}$ with $\mu_0(E_0) = \mu(F) = 0$ and $N \subset A \in \mathcal{F}, \mu(A) = 0$, so $M_0 \subset F \cup A$, with $\mu(F \cup A) = 0$; this proves that $M_0 \in \mathcal{N} \subset \mathcal{F}_0$ and M_0 is \mathcal{F}_0 measurable.

9. Exercises

10. A family σ of subsets of X is σ -additive if:

- (1) ϕ and X are in σ
- (2) If (A_n) is an increasing sequence in σ then $\cup A_n \in \sigma$
- (3) For any A, B in σ we have:

$$A \subset B \Longrightarrow B \cap A^c \in \sigma$$

$$A \cap B = \phi \Longrightarrow A + B \in \sigma$$

- (a) prove that any σ -field is a σ -additive family
- (b) let μ, λ be two measures on the same measurable space (X, \mathcal{F}) such that $\mu(X) = \lambda(X) < \infty$.

Prove that the family $\sigma = \{A \in \mathcal{F}: \ \mu(A) = \lambda(A)\}\ \text{is } \sigma\text{-additive}.$

Let C be a family of subsets of X then there exists a smallest σ -additive family on X containing C called the σ -additive family generated by C.

11. Let \Im be a family of subsets of X closed by finite intersection. Prove that the σ -field generated by \Im coincides with the σ -additive family generated by \Im .

Chapter 2

Outer measures Extension of measures 1. Outer measures

Definition 1.1.

An outer measure on a set X is a set function

 $\lambda: \mathcal{P}(X) \longrightarrow [0 \infty]$ such that:

- $(1) \lambda (\phi) = 0$
- (2) if $A \subset B$ then $\lambda(A) \leq \lambda(B)$
- (3) if (E_n) is any sequence in $\mathcal{P}(X)$ then $\lambda\left(\bigcup_{n}E_n\right) \leq \sum_{n}\lambda\left(E_n\right)$

Remark.1.2.

It is not difficult to see that if λ is additive then λ is a positive measure on $\mathcal{P}(X)$.

Example.1.3.

- (a) Any positive measure on $\mathcal{P}(X)$ is an outer measure.
- (b) Define λ on $\mathcal{P}(X)$ by $\lambda(\phi) = 0$ and $\lambda(E) = 1$ if $E \neq \phi$; if X has more than one point then λ is an outer measure but not a measure.

We can say that the notion of outer measure is a natural generalization of that of positive measure. We will see below that an outer measure acts as a true measure on a some specific family of subsets of X. Let us start with the following:

Definition 1.4.

Let λ be an outer measure on X. A subset $E \subset X$ is said to be outer measurable or λ -measurable if we have:

for every
$$A \subset X$$
, $\lambda(A) = \lambda(A \cap E) + \lambda(A \cap E^c)$

Example.1.5.

- (a) A subset $E \subset X$ with $\lambda(E) = 0$ is λ -measurable.
- (b) X, ϕ are λ -measurable for every outer measure λ .
- (c) Let λ be defined on X by $\lambda(\phi) = 0$, $\lambda(X) = 2$, $\lambda(E) = 1$ for $E \neq \phi, X$.

Then λ is an outer measure and ϕ , X are the only λ -measurable sets.

Now we go to the important assertion:

Theorem.1.6.

Let λ be an outer measure on X

and let $\mathcal F$ be the family of the $\lambda-$ measurable sets.

Then \mathcal{F} is a σ -field and the restriction of λ to \mathcal{F} is a positive measure.

Proof. see [7].

2. Exercises

12. Let λ be an outer measure on X and let H be a λ -measurable set. Let λ_0 be the restriction of λ to $\mathcal{P}(H)$, prove that:

- (a) λ_0 is an outer measure on $\mathcal{P}(H)$.
- (b) $A \subset H$ is λ_0 -measurable iff A is λ -measurable.

13.Let λ be an outer measure on X and let A be a λ -measurable set. If $B \subset X$ is a subset with $\lambda(B) < \infty$, prove that:

$$\lambda (A \cup B) = \lambda (A) + \lambda (B) - \lambda (A \cap B)$$

3. Extension of Measures

We start this section with the construction of an outer measure from a measure defined on an algebra of sets.

Definition 3.1.

Let \mathcal{A} be an algebra on X. A positive measure on \mathcal{A} is a set function $\mu: \mathcal{A} \longrightarrow [0 \infty]$ such that:

- (i) $\mu(\phi) = 0$
- (ii) For every pairwise disjoint sequence (A_n) in \mathcal{A} with $\bigcup_n A_n \in \mathcal{A}$:

$$\mu\left(\sum_{n}A_{n}\right)=\sum_{n}\mu\left(A_{n}\right)\quad\left(\sigma-\text{additivity of }\mu\right).$$
 Any measure on an algebra \mathcal{A} gives rise to outer measure according to:

Theorem.3.2.

Let μ be a measure on an algebra \mathcal{A} .

For each subset $E \subset X$ define $\lambda(E)$ by the recipe:

$$\lambda\left(E\right)=\inf\left\{ \sum_{n}\mu\left(A_{n}\right):E\subset\bigcup_{n}A_{n},\quad\left(A_{n}\right)\subset\mathcal{A}\right\}$$
 the lower bound being taken over all sequences $(A_{n})\subset\mathcal{A}$.

Then λ is an outer measure whose restriction to \mathcal{A} coincides with μ .

Moreover the sets of \mathcal{A} are λ -measurable.

Proof. see [7].

Definition 3.3. (σ -finite measures)

Let (X, \mathcal{F}, μ) be a measure space. We say that the measure μ is σ -finite if there is a sequence (A_n) in \mathcal{F} , such that $\bigcup A_n = X$ and $\mu(A_n) < \infty$, $\forall n$.

A measure μ on an algebra \mathcal{A} is σ -finite if there is a sequence (A_n) in \mathcal{A} such that $\bigcup_{n} A_n = X$ and $\mu(A_n) < \infty, \forall n$.

Example 3.4.

- (a) Any finite measure μ , i.e $\mu(X) < \infty$, is σ -finite
- (b) The counting measure on \mathbb{N} or on any infinite countable set is σ -finite but not finite.
- (c) we will see later that the Lebesgue measure on \mathbb{R} is a non trivial σ -finite measure.

Now we give the main extension theorem:

Theorem 3.5.

Let μ be a measure on an algebra \mathcal{A} of subsets of X.

Then μ can be extended to a measure $\overline{\mu}$ on the σ -field $\sigma(\mathcal{A})$ generated by \mathcal{A} . Moreover if μ is σ -finite on \mathcal{A} the extension $\overline{\mu}$ is unique.

Proof.

Let μ^* be the outer measure given by Theorem. 3.2 and let \mathcal{F} be the σ -field of μ^* -measurable sets. By the same theorem we have $\mathcal{A} \subset \mathcal{F}$ and μ^* coincides with μ on \mathcal{A} . So we have $\sigma(\mathcal{A}) \subset \mathcal{F}$. By Theorem. 1.6 μ^* acts as a true measure on \mathcal{F} . Then it is enough to take $\overline{\mu}$ as the restriction of μ^* to $\sigma(\mathcal{A})$. We prove the uniqueness in the case μ finite. Suppose the existence of two extensions μ_1, μ_2 for μ and consider the family $\mathcal{M} = \{A \in \sigma(A) : \mu_1(A) = \mu_2(A)\}$. It is not difficult to prove that \mathcal{M} is a monotone class which contains \mathcal{A} (use the finiteness of the measures) So we have $\mathcal{A} \subset \mathcal{M} \subset \sigma(\mathcal{A})$ and since \mathcal{A} is an algebra the monotone class generated by \mathcal{A} is identical to the σ -field generated by \mathcal{A} (Theorem 3.10, Chap. 1) We deduce that $\mathcal{M} = \sigma(\mathcal{A})$. We leave the σ -finiteness case to the reader.

Theorem 3.6.

Let μ be a σ -finite measure on an algebra \mathcal{A} of subsets of X.

Let $\overline{\mu}$ be the unique extension of μ to the σ -field $\sigma(\mathcal{A})$ generated by \mathcal{A} . If $B \in \sigma(\mathcal{A})$ with $\overline{\mu}(B) < \infty$, then:

 $\forall \epsilon > 0 \text{ there is } A_{\epsilon} \in \mathcal{A} \text{ such that } \overline{\mu} (B \triangle A_{\epsilon}) < \epsilon$ where $B \triangle A_{\epsilon}$ is the symmetric difference $(B \cap A_{\epsilon}^c) \cup (A_{\epsilon} \cap B^c)$.

Proof. By Theorems **3.2** and **3.5** the unique extension
$$\overline{\mu}$$
 has the form: $\overline{\mu}(B) = \inf \left\{ \sum_{n} \mu(A_n) : B \subset \bigcup_{n} A_n, \quad (A_n) \subset \mathcal{A} \right\}$
If $B \in \sigma(\mathcal{A})$ with $\overline{\mu}(B) < \infty$, $\forall \epsilon > 0 \ \exists (A_n) \subset \mathcal{A}$ such that $B \subset \bigcup_{n} A_n$ and $\sum_{n} \mu(A_n) < \overline{\mu}(B) + \frac{\epsilon}{2}$. then use the fact that $\bigcup_{n} A_n = \lim_{N \to \infty} \bigcup_{n}^{N} A_n$ and $\bigcup_{n}^{N} A_n \in \mathcal{A}$; put $B_N = \bigcup_{n=1}^{N} A_n$ then $\overline{\mu}(\bigcup_{n} A_n) = \lim_{N} \overline{\mu}(B_N) = \lim_{N} \mu(B_N)$.

So for some N_0 we have $\overline{\mu}\left(\bigcup_n A_n\right) < \overline{\mu}\left(B_{N_0}\right) + \frac{\epsilon}{2}$, then the set $A_{\epsilon} = B_{N_0}$ is in \mathcal{A} and works.

4. Exercises

- 14. An outer measure μ^* on X is regular if for any $A \subset X$ there is a μ^* -measurable set E such that $A \subset E$ and $\mu^*(A) = \mu^*(E)$.
- (a) If μ^* is regular then for any sequence (A_n) of subsets of X we have $\mu^* \left(\liminf_n A_n \right) \le \liminf_n \mu^* \left(A_n \right).$
- (b) If moreover the sequence (A_n) is increasing then $\mu^* \left(\lim_{n \to \infty} A_n \right) = \lim_{n \to \infty} \mu^* \left(A_n \right)$.

- **15.** Let (X, \mathcal{F}, μ) be a measure space. Define μ^* on $\mathcal{P}(X)$ by the recipe: $\mu^*(E) = \inf \{ \mu(A) : A \in \mathcal{F} \mid E \subset A \}$
- (a) Prove that μ^* is an outer measure.
- (b) Prove that $\forall E \subset X \quad \exists A \in \mathcal{F} \text{ such that } E \subset A \text{ and } \mu^*(E) = \mu(A)$.
- (c) Let us define μ^* on $\mathcal{P}(X)$ by the recipe:

$$\mu_*(E) = \sup \{ \mu(A) : A \in \mathcal{F} \mid E \subset A \}$$

Prove that $\forall E \subset X$, in either case $\mu_*(E) < \infty$ or $\mu_*(E) = \infty$, there is $A \in \mathcal{F}$ such that $E \subset A$ and $\mu_*(E) = \mu(A)$.

(d) Prove that $\mu_*\left(E\right) \leq \mu^*\left(E\right), \forall E \subset X$ and if E is μ^* -measurable then $\mu_*\left(E\right) = \mu^*\left(E\right)$. If $\mu_*\left(E\right) = \mu^*\left(E\right) < \infty$ then E is μ^* -measurable.

5. Lebesgue Measure on \mathbb{R}

Measure on the Algebra generated by the semialgebra of intervals Let us recall that a family S of subsets of a set X is a semialgebra if it satisfies:

- (a) ϕ , X are in \mathcal{S}
- (b) If A, B are in S then $A \cap B$ is in S
- (c) If A is in S then $A^c = \sum_{1}^{n} A_k$, where the sets A_k are pairwise disjoint in S (see Chapter 1 exercise 4)

We recall also that the algebra generated by the semialgebra $\mathcal S$ is the family

$$\left\{A: A = \sum_{1}^{n} S_{k}, \text{ where the } S_{k} \text{ are pairwise disjoint in } \mathcal{S}.\right\}$$

It is easy to prove that the family \mathcal{I} of all intervals of \mathbb{R} is a semialgebra. Let \mathcal{A} be the algebra generated by \mathcal{I} . It is well known that the borel σ -field $\mathcal{B}_{\mathbb{R}}$ of \mathbb{R} is generated by \mathcal{A} or simply by \mathcal{I} . Now if $A \in \mathcal{A}$ has the form $A = \sum_{1}^{n} I_{k}$,

where the I_k are pairwise disjoint in \mathcal{I} , put $\mu(A) = \sum_{1}^{n} \lambda(I_k)$, where $\lambda(I)$ is the length of the interval I. Then μ is unambiguously defined on \mathcal{A} . Moreover μ is a σ -finite measure on the algebra \mathcal{A} . By Theorems **3.2** and **3.5** the unique extension $\overline{\mu}$ of μ to the σ -field $\sigma(\mathcal{A}) = \mathcal{B}_{\mathbb{R}}$ generated by \mathcal{A} has the form:

$$\overline{\mu}(B) = \inf \left\{ \sum_{n} \mu(A_n) : B \subset \bigcup_{n} A_n, \quad (A_n) \subset \mathcal{A} \right\}$$

The completion of the measure space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \overline{\mu})$ is the Lebesgue space $(\mathbb{R}, \mathcal{L}_{\mathbb{R}}, \overline{\mu}^*)$ (see Theorem 8.4, Chap.1). In fact each set $E \in \mathcal{L}_{\mathbb{R}}$ has the form $E = B \cup N$, where $B \in \mathcal{B}_{\mathbb{R}}$ and N is a $\overline{\mu}$ -null set. Let us note the following approximation result:

Theorem 5.1.

Let $E \in \mathcal{L}_{\mathbb{R}}$, then we have:

 $\forall \epsilon > 0$ there is a closed set F and an open set G such that:

$$F \subset E \subset G \text{ and } \overline{\mu}^* (G \setminus F) < \epsilon$$