## 8. Complete Measures

## Definition 8.1.

Let $(X, \mathcal{F}, \mu)$ be a measure space and let $N$ be a subset of $X$, we say that $N$ is a null set if there is $A \in \mathcal{F}$, with $\mu(A)=0$ such that $N \subset A$. Let $\mathcal{N}$ be the family of null subsets of $X$. The space $(X, \mathcal{F}, \mu)$ is said to be complete if $\mathcal{N} \subset \mathcal{F}$ i.e every null set is mesurable.

## Examples 8.2.

(a) The counting measure on any set $X$ is complete since in this case $\phi$ is the only null set.
(b) If $\mu_{s}$ is the Dirac measure at $s$ on $(X, \mathcal{F})$ (Example 7.2.(a)), every subset $N$ not containing $s$ is a null set
Lemma 8.3.
The family $\mathcal{N}$ is closed by countable union.
Proof. Let $\left(N_{k}\right)$ be a sequence in $\mathcal{N}$, then for each $k$ there is $A_{k} \in \mathcal{F}$, with $\mu\left(A_{k}\right)=0$ such that $N_{k} \subset A_{k}$. So $N=\cup_{k} N_{k} \subset \cup_{k} A_{k}$; by the sub $\sigma$ - additivity of $\mu$ we have $\mu\left(\cup_{n} A_{n}\right) \leq \sum_{n} \mu\left(A_{n}\right)=0$.

It is possible to complete any measure space $(X, \mathcal{F}, \mu)$ according to the following:
Theorem 8.4.
Let $(X, \mathcal{F}, \mu)$ be a measure space and let $\mathcal{N}$ be the family of null subsets of $X$. Let us put:
$\mathcal{F}_{0}=\{E \subset X: \quad E=F \cup N, F \in \mathcal{F}, N \in \mathcal{N}\}$
$\mu_{0}(E)=\mu_{0}(F \cup N)=\mu(F)$, if $E=F \cup N, F \in \mathcal{F}, N \in \mathcal{N}$
Then: $\mathcal{F}_{0}$ is a $\sigma$-field on $X$ containing $\mathcal{F}$, and $\mathcal{N}$
$\mu_{0}$ is a well defined measure on $\mathcal{F}_{0}$ that coincides with $\mu$ on $\mathcal{F}$.
The measure space $\left(X, \mathcal{F}_{0}, \mu_{0}\right)$ is complete.
Proof. First $\mathcal{F}_{0}$ is a $\sigma$-field
it is clear that $\phi$ and $X$ are in $\mathcal{F}_{0}$
let $E \in \mathcal{F}_{0}$ with $E=F \cup N, F \in \mathcal{F}, N \in \mathcal{N}$ and let $A \in \mathcal{F}$, such that $\mu(A)=$ $0, N \subset A$; then we have $E^{c}=F^{c} \cap N^{c}=\left(F^{c} \cap N^{c} \cap A\right)+\left(F^{c} \cap N^{c} \cap A^{c}\right)=$ $\left(F^{c} \cap N^{c} \cap A\right)+\left(F^{c} \cap A^{c}\right)$; since $F^{c} \cap N^{c} \cap A \in \mathcal{N}$ and $F^{c} \cap A^{c} \in \mathcal{F}$
we have $E^{c} \in \mathcal{F}_{0}$. Finally $\mathcal{F}_{0}$ is closed by countable union and this comes from the same property for the family $\mathcal{N}$ (Lemma 8.3).
To finish the proof, we consider the set function $\mu_{0}$. First it is well defined, indeed suppose the set $E \in \mathcal{F}_{0}$ can be written as $E=F_{1} \cup N_{1}=F_{2} \cup N_{2}$, then $F_{1} \cap F_{2}^{c} \subset N_{1} \cup N_{2}$ and $F_{2} \cap F_{1}^{c} \subset N_{1} \cup N_{2}$ which gives $\mu\left(F_{1} \cap F_{2}^{c}\right)=$ $\mu\left(F_{2} \cap F_{1}^{c}\right)=0$, so $\mu\left(F_{1}\right)=\mu\left(F_{2}\right)$ and $\mu_{0}(E)=\mu_{0}(F \cup N)=\mu(F)$ is well defined.
To prove the $\sigma$-additivity of $\mu_{0}$, let $\left(E_{n}\right)$ be a pairwise disjoint sequence in $\mathcal{F}_{0}$, and write $E_{k}=F_{k} \cup N_{k}, k \geq 1$, with $F_{k} \in \mathcal{F}, N_{k} \in \mathcal{N}$.
Then we have $\sum_{k} E_{k}=\sum_{k} F_{k} \cup \sum_{k} N_{k}$, with $\sum_{k} N_{k} \in \mathcal{N}$ (Lemma 8.3).
and $\mu_{0}\left(\sum_{k} E_{k}\right)=\mu\left(\sum_{k} F_{k}\right)=\sum_{k} \mu\left(F_{k}\right)=\sum_{k} \mu_{0}\left(E_{k}\right)$, since $\mu$ is $\sigma$-additive.
Finally we prove that $\left(X, \mathcal{F}_{0}, \mu_{0}\right)$ is complete. Let $M_{0}$ be a $\mu_{0}$ null set in $X$, so there is $E_{0} \in \mathcal{F}_{0}$ with $\mu_{0}\left(E_{0}\right)=0$ and $M_{0} \subset E_{0} ;$ write $E_{0}=F \cup N, F \in \mathcal{F}$, $N \in \mathcal{N}$ with $\mu_{0}\left(E_{0}\right)=\mu(F)=0$ and $N \subset A \in \mathcal{F}, \mu(A)=0$, so $M_{0} \subset F \cup A$, with $\mu(F \cup A)=0$; this proves that $M_{0} \in \mathcal{N} \subset \mathcal{F}_{0}$ and $M_{0}$ is $\mathcal{F}_{0}$ measurable.

## 9. Exercises

10. A family $\sigma$ of subsets of $X$ is $\sigma$-additive if:
(1) $\phi$ and $X$ are in $\sigma$
(2) If $\left(A_{n}\right)$ is an increasing sequence in $\sigma$ then $\cup_{n} A_{n} \in \sigma$
(3) For any $A, B$ in $\sigma$ we have:
$A \subset B \Longrightarrow B \cap A^{c} \in \sigma$
$A \cap B=\phi \Longrightarrow A+B \in \sigma$
(a) prove that any $\sigma$-field is a $\sigma$-additive family
(b) let $\mu, \lambda$ be two measures on the same measurable space $(X, \mathcal{F})$ such that $\mu(X)=\lambda(X)<\infty$.
Prove that the family $\sigma=\{A \in \mathcal{F}: \quad \mu(A)=\lambda(A)\}$ is $\sigma$-additive.

Let $\boldsymbol{C}$ be a family of subsets of $X$ then there exists a smallest $\sigma$-additive family on $X$ containing $\boldsymbol{C}$ called the $\sigma$-additive family generated by $\boldsymbol{C}$.
11. Let $\Im$ be a family of subsets of $X$ closed by finite intersection. Prove that the $\sigma$-field generated by $\Im$ coincides with the $\sigma$-additive family generated by $\Im$.

## Chapter 2

## Outer measures Extension of measures

## 1. Outer measures

## Definition 1.1.

An outer measure on a set $X$ is a set function
$\lambda: \mathcal{P}(X) \longrightarrow[0 \infty]$ such that:
(1) $\lambda(\phi)=0$
(2) if $A \subset B$ then $\lambda(A) \leq \lambda(B)$
(3) if $\left(E_{n}\right)$ is any sequence in $\mathcal{P}(X)$ then $\lambda\left(\cup_{n} E_{n}\right) \leq \sum_{n} \lambda\left(E_{n}\right)$

## Remark.1.2.

It is not difficult to see that if $\lambda$ is additive then $\lambda$ is a positive measure on $\mathcal{P}(X)$.
Example.1.3.
(a) Any positive measure on $\mathcal{P}(X)$ is an outer measure.
(b) Define $\lambda$ on $\mathcal{P}(X)$ by $\lambda(\phi)=0$ and $\lambda(E)=1$ if $E \neq \phi$; if $X$ has more than one point then $\lambda$ is an outer measure but not a measure.
We can say that the notion of outer measure is a natural generalization of that of positive measure. We will see below that an outer measure acts as a true measure on a some specific family of subsets of $X$. Let us start with the following:

## Definition 1.4.

Let $\lambda$ be an outer measure on $X$. A subset $E \subset X$ is said to be outer measurable or $\lambda$-measurable if we have:

$$
\text { for every } A \subset X, \quad \lambda(A)=\lambda(A \cap E)+\lambda\left(A \cap E^{c}\right)
$$

## Example.1.5.

(a) A subset $E \subset X$ with $\lambda(E)=0$ is $\lambda$-measurable.
(b) $X, \phi$ are $\lambda$-measurable for every outer measure $\lambda$.
(c). Let $\lambda$ be defined on $X$ by $\lambda(\phi)=0, \lambda(X)=2, \lambda(E)=1$ for $E \neq \phi, X$.

Then $\lambda$ is an outer measure and $\phi, X$ are the only $\lambda$-measurable sets.
Now we go to the important assertion:
Theorem.1.6.
Let $\lambda$ be an outer measure on $X$ and let $\mathcal{F}$ be the family of the $\lambda$-measurable sets.
Then $\mathcal{F}$ is a $\sigma$-field and the restriction of $\lambda$ to $\mathcal{F}$ is a positive measure.
Proof. see [7].

## 2. Exercises

12. Let $\lambda$ be an outer measure on $X$ and let $H$ be a $\lambda$-measurable set. Let $\lambda_{0}$ be the restriction of $\lambda$ to $\mathcal{P}(H)$, prove that:
(a) $\lambda_{0}$ is an outer measure on $\mathcal{P}(H)$.
(b) $A \subset H$ is $\lambda_{0}-$ measurable iff $A$ is $\lambda$-measurable.
13. Let $\lambda$ be an outer measure on $X$ and let $A$ be a $\lambda$-measurable set. If $B \subset X$ is a subset with $\lambda(B)<\infty$, prove that:

$$
\lambda(A \cup B)=\lambda(A)+\lambda(B)-\lambda(A \cap B)
$$

## 3. Extension of Measures

We start this section with the construction of an outer measure from a measure defined on an algebra of sets.

## Definition 3.1.

Let $\mathcal{A}$ be an algebra on $X$. A positive measure on $\mathcal{A}$ is a set function $\mu: \mathcal{A} \longrightarrow[0 \infty]$ such that:
(i) $\mu(\phi)=0$
(ii) For every pairwise disjoint sequence $\left(A_{n}\right)$ in $\mathcal{A}$ with $\cup_{n} A_{n} \in \mathcal{A}$ :

$$
\mu\left(\sum_{n} A_{n}\right)=\sum_{n} \mu\left(A_{n}\right) \quad(\sigma-\text { additivity of } \mu)
$$

Any measure on an algebra $\mathcal{A}$ gives rise toan outer measure according to:
Theorem.3.2.
Let $\mu$ be a measure on an algebra $\mathcal{A}$.
For each subset $E \subset X$ define $\lambda(E)$ by the recipe:

$$
\lambda(E)=\inf \left\{\sum_{n} \mu\left(A_{n}\right): E \subset \cup_{n} A_{n}, \quad\left(A_{n}\right) \subset \mathcal{A}\right\}
$$

the lower bound being taken over all sequences $\left(A_{n}\right) \subset \mathcal{A}$.
Then $\lambda$ is an outer measure whose restriction to $\mathcal{A}$ coincides with $\mu$.
Moreover the sets of $\mathcal{A}$ are $\lambda$-measurable.
Proof. see [7].
Definition 3.3. ( $\sigma$-finite measures)
Let $(X, \mathcal{F}, \mu)$ be a measure space. We say that the measure $\mu$ is $\sigma$-finite if there is a sequence $\left(A_{n}\right)$ in $\mathcal{F}$, such that $\cup_{n} A_{n}=X$ and $\mu\left(A_{n}\right)<\infty, \forall n$.
A measure $\mu$ on an algebra $\mathcal{A}$ is $\sigma$-finite if there is a sequence $\left(A_{n}\right)$ in $\mathcal{A}$ such that $\cup_{n} A_{n}=X$ and $\mu\left(A_{n}\right)<\infty, \forall n$.

## Example 3.4.

(a) Any finite measure $\mu$, i.e $\mu(X)<\infty$, is $\sigma$-finite
(b) The counting measure on $\mathbb{N}$ or on any infinite countable set is $\sigma$-finite but not finite.
(c) we will see later that the Lebesgue measure on $\mathbb{R}$ is a non trivial $\sigma$-finite measure.

Now we give the main extension theorem:

## Theorem 3.5.

Let $\mu$ be a measure on an algebra $\mathcal{A}$ of subsets of $X$.
Then $\mu$ can be extended to a measure $\bar{\mu}$ on the $\sigma$-field $\sigma(\mathcal{A})$ generated by $\mathcal{A}$. Moreover if $\mu$ is $\sigma$-finite on $\mathcal{A}$ the extension $\bar{\mu}$ is unique.

## Proof.

Let $\mu^{*}$ be the outer measure given by Theorem. 3.2 and let $\mathcal{F}$ be the $\sigma$-field of $\mu^{*}$-measurable sets. By the same theorem we have $\mathcal{A} \subset \mathcal{F}$ and $\mu^{*}$ coincides with $\mu$ on $\mathcal{A}$. So we have $\sigma(\mathcal{A}) \subset \mathcal{F}$. By Theorem. $1.6 \mu^{*}$ acts as a true measure on $\mathcal{F}$. Then it is enough to take $\bar{\mu}$ as the restriction of $\mu^{*}$ to $\sigma(\mathcal{A})$. We prove the uniqueness in the case $\mu$ finite. Suppose the existence of two extensions $\mu_{1}, \mu_{2}$ for $\mu$ and consider the family $\mathcal{M}=\left\{A \in \sigma(\mathcal{A}): \mu_{1}(A)=\mu_{2}(A)\right\}$. It is not difficult to prove that $\mathcal{M}$ is a monotone class which contains $\mathcal{A}$ (use the finiteness of the measures) So we have $\mathcal{A} \subset \mathcal{M} \subset \sigma(\mathcal{A})$ and since $\mathcal{A}$ is an algebra the monotone class generated by $\mathcal{A}$ is idendical to the $\sigma$-field generated by $\mathcal{A}$ (Theorem $\mathbf{3 . 1 0}$, Chap. 1) We deduce that $\mathcal{M}=\sigma(\mathcal{A})$. We leave the $\sigma$-finiteness case to the reader.

## Theorem 3.6.

Let $\mu$ be a $\sigma$-finite measure on an algebra $\mathcal{A}$ of subsets of $X$.
Let $\bar{\mu}$ be the unique extension of $\mu$ to the $\sigma$-field $\sigma(\mathcal{A})$ generated by $\mathcal{A}$. If $B \in \sigma(\mathcal{A})$ with $\bar{\mu}(B)<\infty$, then:
$\forall \epsilon>0$ there is $A_{\epsilon} \in \mathcal{A}$ such that $\bar{\mu}\left(B \triangle A_{\epsilon}\right)<\epsilon$
where $B \triangle A_{\epsilon}$ is the symmetric difference $\left(B \cap A_{\epsilon}^{c}\right) \cup\left(A_{\epsilon} \cap B^{c}\right)$.
Proof. By Theorems $\mathbf{3 . 2}$ and $\mathbf{3 . 5}$ the unique extension $\bar{\mu}$ has the form:

$$
\bar{\mu}(B)=\inf \left\{\sum_{n} \mu\left(A_{n}\right): B \subset \cup_{n} A_{n}, \quad\left(A_{n}\right) \subset \mathcal{A}\right\}
$$

If $B \in \sigma(\mathcal{A})$ with $\bar{\mu}(B)<\infty, \forall \epsilon>0 \exists\left(A_{n}\right) \subset \mathcal{A}$ such that $B \subset \cup_{n} A_{n}$ and $\sum_{n} \mu\left(A_{n}\right)<\bar{\mu}(B)+\frac{\epsilon}{2}$. then use the fact that $\cup_{n} A_{n}=\lim _{N} \bigcup_{1}^{N} A_{n}$ and $\bigcup_{1}^{N} A_{n} \in \mathcal{A}$; put $B_{N}=\bigcup_{1}^{N} A_{n}$ then $\bar{\mu}\left(\cup_{n} A_{n}\right)=\lim _{N} \bar{\mu}\left(B_{N}\right)=\lim _{N} \mu\left(B_{N}\right)$.
So for some $N_{0}$ we have $\bar{\mu}\left(\cup_{n} A_{n}\right)<\bar{\mu}\left(B_{N_{0}}\right)+\frac{\epsilon}{2}$, then the set $A_{\epsilon}=B_{N_{0}}$ is in $\mathcal{A}$ and works.

## 4. Exercises

14. An outer measure $\mu^{*}$ on $X$ is regular if for any $A \subset X$ there is a $\mu^{*}$-measurable set $E$ such that $A \subset E$ and $\mu^{*}(A)=\mu^{*}(E)$.
(a) If $\mu^{*}$ is regular then for any sequence $\left(A_{n}\right)$ of subsets of $X$ we have $\mu^{*}\left(\liminf _{n} A_{n}\right) \leq \liminf _{n} \mu^{*}\left(A_{n}\right)$.
(b) If moreover the sequence $\left(A_{n}\right)$ is increasing then $\mu^{*}\left(\lim _{n} A_{n}\right)=\lim _{n} \mu^{*}\left(A_{n}\right)$.
15. Let $(X, \mathcal{F}, \mu)$ be a measure space. Define $\mu^{*}$ on $\mathcal{P}(X)$ by the recipe: $\mu^{*}(E)=\inf \{\mu(A): A \in \mathcal{F} \quad E \subset A\}$
(a) Prove that $\mu^{*}$ is an outer measure.
(b) Prove that $\forall E \subset X \quad \exists A \in \mathcal{F}$ such that $E \subset A$ and $\mu^{*}(E)=\mu(A)$.
(c) Let us define $\mu^{*}$ on $\mathcal{P}(X)$ by the recipe: $\mu_{*}(E)=\sup \{\mu(A): A \in \mathcal{F} \quad E \subset A\}$
Prove that $\forall E \subset X$, in either case $\mu_{*}(E)<\infty$ or $\mu_{*}(E)=\infty$, there is $A \in \mathcal{F}$ such that $E \subset A$ and $\mu_{*}(E)=\mu(A)$.
(d) Prove that $\mu_{*}(E) \leq \mu^{*}(E), \forall E \subset X$ and if $E$ is $\mu^{*}-$ measurable then $\mu_{*}(E)=\mu^{*}(E)$.If $\mu_{*}(E)=\mu^{*}(E)<\infty$ then $E$ is $\mu^{*}$-measurable.

## 5. Lebesgue Measure on $\mathbb{R}$

Measure on the Algebra generated by the semialgebra of intervals
Let us recall that a family $\mathcal{S}$ of subsets of a set $X$ is a semialgebra if it satisfies:
(a) $\phi, X$ are in $\mathcal{S}$
(b) If $A, B$ are in $\mathcal{S}$ then $A \cap B$ is in $\mathcal{S}$
(c) If $A$ is in $\mathcal{S}$ then $A^{c}=\sum_{1}^{n} A_{k}$, where the sets $A_{k}$ are pairwise disjoint in $\mathcal{S}$ (see Chapter 1 exercise 4)
We recall also that the algebra generated by the semialgebra $\mathcal{S}$ is the family

$$
\left\{A: A=\sum_{1}^{n} S_{k}, \text { where the } S_{k} \text { are pairwise disjoint in } \mathcal{S} .\right\}
$$

It is easy to prove that the family $\mathcal{I}$ of all intervals of $\mathbb{R}$ is a semialgebra. Let $\mathcal{A}$ be the algebra generated by $\mathcal{I}$. It is well known that the borel $\sigma$-field $\mathcal{B}_{\mathbb{R}}$ of $\mathbb{R}$ is generated by $\mathcal{A}$ or simply by $\mathcal{I}$. Now if $A \in \mathcal{A}$ has the form $A=\sum_{1}^{n} I_{k}$, where the $I_{k}$ are pairwise disjoint in $\mathcal{I}$, put $\mu(A)=\sum_{1}^{n} \lambda\left(I_{k}\right)$, where $\lambda(I)$ is the lengh of the interval $I$. Then $\mu$ is unambiguously defined on $\mathcal{A}$. Moreover $\mu$ is a $\sigma$-finite measure on the algebra $\mathcal{A}$. By Theorems 3.2 and 3.5 the unique extension $\bar{\mu}$ of $\mu$ to the $\sigma$-field $\sigma(\mathcal{A})=\mathcal{B}_{\mathbb{R}}$ generated by $\mathcal{A}$ has the form:

$$
\bar{\mu}(B)=\inf \left\{\sum_{n} \mu\left(A_{n}\right): B \subset \cup_{n} A_{n}, \quad\left(A_{n}\right) \subset \mathcal{A}\right\}
$$

The completion of the measure space $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \bar{\mu}\right)$ is the Lebesgue space $\left(\mathbb{R}, \mathcal{L}_{\mathbb{R}}, \bar{\mu}^{*}\right)$ (see Theorem 8.4, Chap.1). In fact each set $E \in \mathcal{L}_{\mathbb{R}}$ has the form $E=B \cup N$, where $B \in \mathcal{B}_{\mathbb{R}}$ and $N$ is a $\bar{\mu}-$ null set. Let us note the following approximation result:

## Theorem 5.1.

Let $E \in \mathcal{L}_{\mathbb{R}}$, then we have:
$\forall \epsilon>0$ there is a closed set $F$ and an open set $G$ such that:
$F \subset E \subset G$ and $\bar{\mu}^{*}(G \backslash F)<\epsilon$

