Solutions of Exercises (MEA-INT)

2

For every sequence $\left(A_{n}\right)$, define the sequence $\left(B_{n}\right)$ by the following recipe: $B_{1}=A_{1}, B_{2}=A_{2} \backslash A_{1}, B_{3}=A_{3} \backslash\left(A_{1} \cup A_{2}\right), \ldots, B_{n}=A_{n} \backslash\left(\cup_{i<n} A_{i}\right), \ldots$
Prove that $\cup_{n} A_{n}=\sum_{n} B_{n}$. It is clear that the B_{n} are pairwise disjoint and that $B_{n} \subset A_{n}, \forall n$. Then $\sum_{n} B_{n} \subset \cup_{n} A_{n}$.

Now we show that $\cup_{n} A_{n} \subset \sum_{n} B_{n}$. Let $x \in \cup_{n} A_{n}$, so there is $n \geq 1$ such that $x \in A_{n}$. Put $n_{1}=\inf \left\{n \geq 1, x \in A_{n}\right\}$
this means that $x \in A_{n_{1}}$ and $x \notin \underset{i<n_{1}}{\cup} A_{i}$, that is $x \in B_{n_{1}}$. Therefore for each $x \in \cup_{n} A_{n}$ there is n_{1} such that $x \in B_{n_{1}}$ which means that $\cup_{n} A_{n} \subset \sum_{n} B_{n}$.

1

First we must add the missing condition: $A \in \mathcal{F} \Longrightarrow A^{c} \in \mathcal{F}$.
We have to prove that for every sequence $\left(A_{n}\right) \subset \mathcal{F}$ we have $\cup ._{n} \in \mathcal{F}$.
By the solution above we have $\cup_{n} A_{n}=\sum_{n} B_{n}$ and by definition
$B_{n}=A_{n} \backslash\left(\underset{i<n}{\cup} A_{i}\right)=A_{n} \cap A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{n-1}^{c}$
so we have each $A_{i}^{c} \in \mathcal{F}$ and by condition (b) $B_{n} \in \mathcal{F}, \forall n$
moreover the sets B_{n} are paiwise disjoint and condition (c) implies $\sum_{n} B_{n} \in \mathcal{F}$ and since $\cup_{n} A_{n}=\sum_{n} B_{n}$ we deduce that $\cup_{n} . A_{n} \in \mathcal{F}$.

3

Let \mathcal{A} be a family of subsets of a set X. If E is any subset in X, we define the trace of \mathcal{A} on E by the family $\mathcal{A} \cap E=\{A \cap E, A \in \mathcal{A}\}$.
Prove that $\sigma(\mathcal{A} \cap E)=\sigma(\mathcal{A}) \cap E$.

solution.

First we prove that $\sigma(\mathcal{A}) \cap E$ is a σ-algebra on E :
$\sigma(\mathcal{A}) \cap E=\{F \subset X: \exists K \in \sigma(\mathcal{A})$ with $F=K \cap E\}$
(1) $E \in \sigma(\mathcal{A}) \cap E$ since $E=X \cap E$ and $X \in \sigma(\mathcal{A})$
(2) let $H \in \sigma(\mathcal{A}) \cap E$ with $H=K \cap E$ and $K \in \sigma(\mathcal{A})$
we prove that the complement of H in E that is $E \backslash H$ is in $\sigma(\mathcal{A}) \cap E$
we have $E \backslash H=E \cap H^{c}=E \cap(K \cap E)^{c}=E \cap K^{c}$ and $K^{c} \in \sigma(\mathcal{A})$
so $E \backslash H \in \sigma(\mathcal{A}) \cap E$
(3) Let $\left(H_{n}\right)$, be a sequence in $\sigma(\mathcal{A}) \cap E$ with $H_{n}=K_{n} \cap E, K_{n} \in \sigma(\mathcal{A})$ then $\cup_{n} H_{n}=\left(\cup_{n} K_{n}\right) \cap E$, and $\cup_{n} K_{n} \in \sigma(\mathcal{A})$, since $\sigma(\mathcal{A})$ is a σ-algebra.
4. Let \mathcal{S} be a family of subsets of a set X. We say that \mathcal{S} is a semialgebra if it satisfies:
(a) ϕ, X are in \mathcal{S}
(b) If A, B are in \mathcal{S} then $A \cap B$ is in \mathcal{S}
(c) If A is in \mathcal{S} then $A^{c}=\sum_{1}^{n} A_{k}$, where the sets A_{k} are pairwise disjoint in \mathcal{S}.

Prove that the algebra $\mathcal{A}(\mathcal{S})$ generated by the semialgebra \mathcal{S} is the family $\mathcal{A}=\left\{A: A=\sum_{1}^{n} S_{k}\right.$, where the S_{k} are pairwise disjoint in $\left.\mathcal{S}.\right\}$

solution.

$\mathcal{S} \subset \mathcal{A}$ since any $S \in \mathcal{S}$ can be written as $S=S+\phi$ and S, ϕ are in \mathcal{S}. now we prove that \mathcal{A} is an algebra:
Let $A \in \mathcal{A}$ with $A=\sum_{1}^{n} S_{k}$, then $A^{c}=\bigcap_{1}^{n} . S_{k}^{c}$, we apply condition (c) to each S_{k}^{c} and obtain:
$S_{k}^{c}=\sum_{1}^{n_{k}} A_{i_{k}}$, so $A^{c}=\bigcap_{k=1}^{n} \cdot \sum_{1}^{n_{k}} A_{i_{k}}=\left(\sum_{1}^{n_{1}} A_{i_{k}}\right) \cap\left(\sum_{1}^{n_{2}} A_{i_{k}}\right) \cap \ldots \cap\left(\sum_{1}^{n_{n}} A_{i_{k}}\right)=$ $\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots . \sum_{i_{n}=1}^{n_{n}} . A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{n}}$, and since each $A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{n}}$ is in \mathcal{S} we deduce that A^{c} is in \mathcal{A}.

Let $A=\sum_{1}^{n} S_{k}$ and $B=\sum_{1}^{m} T_{j}$ both in \mathcal{A}, then $A \cap B=\sum_{k} \sum_{j} \cdot S_{k} \cap T_{j} \in \mathcal{A}$, because $S_{k} \cap T_{j} \in \mathcal{S} \forall k, j$. So \mathcal{A} is an algebra, and since it contains \mathcal{S} it also contains the algebra $\mathcal{A}(\mathcal{S})$ generated by \mathcal{S}, that is $\mathcal{A}(\mathcal{S}) \subset \mathcal{A}$. On the other hand let $A=\sum_{1}^{n} S_{k} \in \mathcal{A}$, since each S_{k} is in \mathcal{S}, we have $A=\sum_{1}^{n} S_{k} \in \mathcal{A}(\mathcal{S})$ so $\mathcal{A} \subset \mathcal{A}(\mathcal{S})$
5. Let \mathbb{R} the set of real numbers equiped with the usual topology, prove that the family of all intervals is a semialgebra.
solution. Straightforward and left to the reader.
8. Prove that for any sequence $\left(A_{n}\right)$ in $\mathcal{P}(X)$ we have:

1. $\liminf _{n} A_{n} \subset \limsup _{n} A_{n}$
2. $\left(\liminf _{n} A_{n}\right)^{c}=\limsup _{n} A_{n}^{c}$
3. $\left(\underset{n}{\limsup } A_{n}\right)^{c}=\liminf _{n} A_{n}^{c}$
solution,
Recall the frequently used De Morgan's Laws:
$\left(\cup_{i} A_{i}\right)^{c}=\cap_{i} A_{i}^{c}, \quad\left(\cap_{i} A_{i}\right)^{c}=\cup_{i} A_{i}^{c}$
valid for any family $\left\{A_{i}, i \in I\right\}$, where A^{c} denotes the complement of the set A.

For any sequence $\left(A_{n}\right)$ of sets, we defined the sets $\lim _{n} \sup _{n} A_{n}$ and $\liminf _{n} A_{n}$ by:

$$
\begin{aligned}
& \limsup _{n} A_{n}=\underset{n \geq 1}{\cap} \bigcup_{k \geq n} A_{k} \\
& \liminf _{n} A_{n}=\underset{n \geq 1}{\cup} \cap_{k \geq n} A_{k}
\end{aligned}
$$

solution of 1. we have $\forall n \geq 1, \bigcap_{k \geq n} A_{k} \subset \underset{k \geq n}{\cup} A_{k} \Longrightarrow$
whence $\underset{n \geq 1}{\cup} \cap_{k \geq n} A_{k} \subset \cap_{n \geq 1} \cup_{k \geq n}^{\cup} A_{k}$
we apply De Morgan's Laws
solution of 2. $\left(\liminf _{n} A_{n}\right)^{c}=\left(\bigcup_{n \geq 1}^{\cup} \cap_{k \geq n} A_{k}\right)^{c}=\cap_{n \geq 1}^{\cap} \cup_{k \geq n} A_{k}^{c}=\limsup _{n} A_{n}^{c}$
solution of 3. $\left(\underset{n}{\limsup } A_{n}\right)^{c}=\left(\underset{n \geq 1}{\cap} \cup_{k \geq n} A_{k}\right)^{c}=\underset{n \geq 1}{\cup} \cap_{k \geq n} A_{k}^{c}=\liminf _{n} A_{n}^{c}$
9. Let I_{A} be the indicator function of the set A, i.e $I_{A}(x)=1$ if $x \in A$ and $I_{A}(x)=0$ if $x \notin A$.
Prove that for any sequence $\left(A_{n}\right)$ in $\mathcal{P}(X)$ we have::
$I_{\limsup _{n}}=\limsup _{n} I_{A_{n}}$ and $I_{\liminf _{n}}=\liminf _{n} I_{A_{n}}$

solution

we have to show that $I_{\limsup A_{n}}(x)=\limsup _{n} I_{A_{n}}(x), \forall x \in X$
$I_{\limsup _{n} A_{n}}(x)=1 \Longleftrightarrow x \in \underset{n \geq 1}{\cap} \cup_{k \geq n} A_{k} \Longleftrightarrow \forall n \geq 1, \exists k \geq n: x \in A_{k}$
so $I_{A_{k}}(x)=1$ which is equivalent to $\limsup _{n} I_{A_{n}}(x)=1$
10. A family σ of subsets of X is σ-additive if:
(1) ϕ and X are in σ
(2) If $\left(A_{n}\right)$ is an increasing sequence in σ then $\cup_{n} A_{n} \in \sigma$
(3) For any A, B in σ we have:
$A \subset B \Longrightarrow B \cap A^{c} \in \sigma$
$A \cap B=\phi \Longrightarrow A+B \in \sigma$
(a) prove that any σ-algebra is a σ-additive family
(b) let μ, λ be two measures on the same measurable space (X, \mathcal{F}) such that $\mu(X)=\lambda(X)<\infty$.
Prove that the family $\sigma=\{A \in \mathcal{F}: \mu(A)=\lambda(A)\}$ is σ-additive.
(c) Let C be a family of subsets of X then prove that there exists a smallest σ-additive family on X containing C called the σ-additive family generated by C.

solution

(a) any σ-algebra satisfies conditions (1), (2), (3), of a σ-additive family
(b) let $\sigma=\{A \in \mathcal{F}: \quad \mu(A)=\lambda(A)\}$:
(1) is satisfied since $\mu(X)=\lambda(X)$ and $\mu(\phi)=\lambda(\phi)$ imply X, ϕ in σ
(2) is satisfied by the sequential continuity of measures
(3) is satisfied because μ, λ are finite: $A \subset B \Longrightarrow \mu\left(B \cap A^{c}\right)=\mu(B)-\mu(A)$ and $\lambda\left(B \cap A^{c}\right)=\lambda(B)-\lambda(A)$ so $B \cap A^{c} \in \sigma$
(c) It is not difficult to prove that the intersection $\cap_{i} . \sigma_{i}$ of a family $\left\{\sigma_{i}, \quad i \in I\right\}$ of σ-additive families is a σ-additive family. Now we take the intersection $\sigma(C)$ of all σ-additive families σ containing C, then it is clear that $\sigma(C)$ is the smallest σ-additive family on X containing C

