Solutions of Exercises (MEA-INT)

$\mathbf{2}$

For every sequence (A_n) , define the sequence (B_n) by the following recipe: $B_1 = A_1, B_2 = A_2 \backslash A_1, B_3 = A_3 \backslash (A_1 \cup A_2), \dots, B_n = A_n \backslash \left(\bigcup_{i < n} A_i\right), \dots$ Prove that $\bigcup_n A_n = \sum_n B_n$. It is clear that the B_n are pairwise disjoint and

that $B_n \subset A_n, \forall n$. Then $\sum_{n=1}^{n} B_n \subset \bigcup_{n=1}^{n} A_n$.

Now we show that $\bigcup_{n}^{n} \subset \sum_{n}^{n} B_{n}$. Let $x \in \bigcup_{n}^{n} A_{n}$, so there is $n \geq 1$ such that

 $x \in A_n$. Put $n_1 = \inf \{n \ge 1, x \in A_n\}$ this means that $x \in A_{n_1}$ and $x \notin \bigcup_{i < n_1} A_i$, that is $x \in B_{n_1}$. Therefore for each $x \in \bigcup_n A_n$ there is n_1 such that $x \in B_{n_1}$ which means that $\bigcup_n A_n \subset \sum B_n$.

1

First we must add the missing condition: $A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}$. We have to prove that for every sequence $(A_n) \subset \mathcal{F}$ we have $\bigcup_n A_n \in \mathcal{F}$. By the solution above we have $\bigcup_{n} A_n = \sum_{n} B_n$ and by definition

$$B_n = A_n \setminus \left(\bigcup_{i < n} A_i \right) = A_n \cap A_1^c \cap A_2^c \cap \dots \cap A_{n-1}^c$$

so we have each $A_i^c \in \mathcal{F}$ and by condition (b) $B_n \in \mathcal{F}, \forall n$ moreover the sets B_n are paiwise disjoint and condition (c) implies $\sum_n B_n \in \mathcal{F}$

and since $\bigcup_{n} A_{n} = \sum_{n} B_{n}$ we deduce that $\bigcup_{n} A_{n} \in \mathcal{F}$.

3

Let \mathcal{A} be a family of subsets of a set X. If E is any subset in X, we define the trace of \mathcal{A} on E by the family $\mathcal{A} \cap E = \{A \cap E, A \in \mathcal{A}\}$. Prove that $\sigma(\mathcal{A} \cap E) = \sigma(\mathcal{A}) \cap E$.

solution.

First we prove that $\sigma(\mathcal{A}) \cap E$ is a σ -algebra on E: $\sigma(\mathcal{A}) \cap E = \{ F \subset X : \exists K \in \sigma(\mathcal{A}) \text{ with } F = K \cap E \}$ (1) $E \in \sigma(\mathcal{A}) \cap E$ since $E = X \cap E$ and $X \in \sigma(\mathcal{A})$ (2) let $H \in \sigma(\mathcal{A}) \cap E$ with $H = K \cap E$ and $K \in \sigma(\mathcal{A})$ we prove that the complement of H in E that is $E \setminus H$ is in $\sigma(\mathcal{A}) \cap E$ we have $E \setminus H = E \cap H^c = E \cap (K \cap E)^c = E \cap K^c$ and $K^c \in \sigma(\mathcal{A})$ so $E \setminus H \in \sigma(\mathcal{A}) \cap E$ (3) Let (H_n) , be a sequence in $\sigma(\mathcal{A}) \cap E$ with $H_n = K_n \cap E, K_n \in \sigma(\mathcal{A})$ then $\bigcup_{n} H_{n} = \left(\bigcup_{n} K_{n}\right) \cap E$, and $\bigcup_{n} K_{n} \in \sigma(\mathcal{A})$, since $\sigma(\mathcal{A})$ is a σ -algebra. 4. Let \mathcal{S} be a family of subsets of a set X. We say that \mathcal{S} is a semialgebra if it satisfies:

(a) ϕ , X are in S

(b) If A, B are in S then $A \cap B$ is in S

(c) If A is in \mathcal{S} then $A^c = \sum_{k=1}^{n} A_k$, where the sets A_k are pairwise disjoint in \mathcal{S} . Prove that the algebra $\mathcal{A}(\hat{\mathcal{S}})$ generated by the semialgebra \mathcal{S} is the family

 $\mathcal{A} = \left\{ A : A = \sum_{1}^{n} S_k, \text{ where the } S_k \text{ are pairwise disjoint in } \mathcal{S}. \right\}$ solution.

 $\mathcal{S} \subset \mathcal{A}$ since any $S \in \mathcal{S}$ can be written as $S = S + \phi$ and S, ϕ are in \mathcal{S} . now we prove that \mathcal{A} is an algebra:

Let $A \in \mathcal{A}$ with $A = \sum_{1}^{n} S_k$, then $A^c = \bigcap_{1}^{n} S_k^c$, we apply condition (c) to each S_k^c and obtain:

$$S_k^c = \sum_{1}^{n_k} A_{i_k}, \text{ so } A^c = \bigcap_{k=1}^n \sum_{1}^{n_k} A_{i_k} = \left(\sum_{1}^{n_1} A_{i_k}\right) \cap \left(\sum_{1}^{n_2} A_{i_k}\right) \cap \ldots \cap \left(\sum_{1}^{n_n} A_{i_k}\right) = \sum_{i_1=1}^{n_1} \sum_{i_2=1}^{n_2} \ldots \sum_{i_n=1}^{n_n} A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_n}, \text{ and since each } A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_n} \text{ is in } \mathcal{S}$$

^{*i*1=1*i*2=1} ^{*i*n=1} we deduce that A^c is in \mathcal{A} . Let $A = \sum_{1}^{n} S_k$ and $B = \sum_{1}^{m} T_j$ both in \mathcal{A} , then $A \cap B = \sum_{k} \sum_{j} S_k \cap T_j \in \mathcal{A}$, because $S_k \cap T_j \in \mathcal{S} \ \forall k, j$. So \mathcal{A} is an algebra, and since it contains \mathcal{S} it also contains the algebra $\mathcal{A}(\mathcal{S})$ generated by \mathcal{S} , that is $\mathcal{A}(\mathcal{S}) \subset \mathcal{A}$. On the other hand let $A = \sum_{1}^{n} S_k \in \mathcal{A}$, since each S_k is in \mathcal{S} , we have $A = \sum_{1}^{n} S_k \in \mathcal{A}(\mathcal{S})$ so $\mathcal{A}\subset\mathcal{A}\left(\mathcal{S}
ight)$.

5. Let \mathbb{R} the set of real numbers equiped with the usual topology, prove that the family of all intervals is a semialgebra.

solution. Straightforward and left to the reader.

- 8. Prove that for any sequence (A_n) in $\mathcal{P}(X)$ we have:
 - 1. $\liminf_n A_n \subset \limsup_n A_n$

2.
$$\left(\liminf_{n} A_n\right)^c = \limsup_{n} A_n^c$$

3.
$$\left(\limsup_{n} A_n\right)^c = \liminf_{n} A_n^c$$

solution,

Recall the frequently used **De Morgan's Laws:**

 $\left(\bigcup_{i}A_{i}\right)^{c} = \bigcap_{i}A_{i}^{c}, \quad \left(\bigcap_{i}A_{i}\right)^{c} = \bigcup_{i}A_{i}^{c}$ valid for any family $\{A_{i}, i \in I\}$, where A^{c} denotes the complement of the set A.

For any sequence (A_n) of sets, we defined the sets $\limsup_{n \to \infty} A_n$ and $\liminf_{n \to \infty} A_n$ by:

$$\begin{split} & \limsup_n A_n = \underset{n \ge 1}{\cap} \underset{k \ge n}{\cup} A_k \\ & \liminf_n A_n = \underset{n \ge 1}{\cup} \underset{k \ge n}{\cap} A_k \end{split}$$

solution of 1. we have $\forall n \geq 1$, $\bigcap_{k\geq n} A_k \subset \bigcup_{k\geq n} A_k \Longrightarrow$ whence $\bigcup_{n\geq 1} \bigcap_{k\geq n} A_k \subset \bigcap_{n\geq 1} \bigcup_{k\geq n} A_k$ we apply **De Morgan's Laws**

solution of 2. $\left(\liminf_{n} A_{n}\right)^{c} = \left(\bigcup_{n \ge 1} A_{k}\right)^{c} = \bigcap_{n \ge 1} \bigcup_{k \ge n} A_{k}^{c} = \limsup_{n} A_{n}^{c}$ solution of 3. $\left(\limsup_{n} A_{n}\right)^{c} = \left(\bigcap_{n \ge 1} \bigcup_{k \ge n} A_{k}\right)^{c} = \bigcup_{n \ge 1} \bigcap_{k \ge n} A_{k}^{c} = \liminf_{n} A_{n}^{c}$

9. Let I_A be the indicator function of the set A, i.e $I_A(x) = 1$ if $x \in A$ and $I_A(x) = 0$ if $x \notin A$.

Prove that for any sequence (A_n) in $\mathcal{P}(X)$ we have::

 $I_{\limsup_{n} A_n} = \limsup_{n} I_{A_n}$ and $I_{\liminf_{n} A_n} = \liminf_{n} I_{A_n}$

solution

we have to show that $I_{\limsup A_{n}}(x) = \limsup I_{A_{n}}(x), \forall x \in X$

 $I_{\limsup_{n} A_{n}}(x) = 1 \iff x \in \bigcap_{n \ge 1} \bigcup_{k \ge n} A_{k} \iff \forall n \ge 1, \exists k \ge n : x \in A_{k}$ so $I_{A_{k}}(x) = 1$ which is equivalent to $\limsup_{n \ge 1} I_{A_{n}}(x) = 1$

10. A family σ of subsets of X is σ -additive if:

(1) ϕ and X are in σ

(2) If (A_n) is an increasing sequence in σ then $\bigcup A_n \in \sigma$

(3) For any A, B in σ we have:

 $A \subset B \Longrightarrow B \cap A^c \in \sigma$

 $A \cap B = \phi \Longrightarrow A + B \in \sigma$

(a) prove that any σ -algebra is a σ -additive family

(b) let μ, λ be two measures on the same measurable space (X, \mathcal{F}) such that $\mu(X) = \lambda(X) < \infty$.

Prove that the family $\sigma = \{A \in \mathcal{F}: \mu(A) = \lambda(A)\}$ is σ -additive.

(c) Let C be a family of subsets of X then prove that there exists a smallest σ -additive family on X containing C called the σ -additive family generated by C.

solution

(a) any σ -algebra satisfies conditions (1), (2), (3), of a σ -additive family

- (b) let $\sigma = \{A \in \mathcal{F}: \ \mu(A) = \lambda(A)\}:$
- (1) is satisfied since $\mu(X) = \lambda(X)$ and $\mu(\phi) = \lambda(\phi)$ imply X, ϕ in σ

(2) is satisfied by the sequential continuity of measures

(3) is satisfied because μ, λ are finite: $A \subset B \Longrightarrow \mu(B \cap A^c) = \mu(B) - \mu(A)$ and $\lambda(B \cap A^c) = \lambda(B) - \lambda(A)$ so $B \cap A^c \in \sigma$

(c) It is not difficult to prove that the intersection $\bigcap_{i} \sigma_{i}$ of a family $\{\sigma_{i}, i \in I\}$

of σ -additive families is a σ -additive family. Now we take the intersection $\sigma(C)$ of all σ -additive families σ containing C, then it is clear that $\sigma(C)$ is the smallest σ -additive family on X containing C