Chapter 3

Measurable Functions

1. Preliminaries

Definition.1.1.

Let X, Y be non empty sets.

To each function $f: X \longrightarrow Y$ it corresponds the preimage function $f^{-1}: \mathcal{P}(Y) \longrightarrow \mathcal{P}(X)$ defined by: $B \in \mathcal{P}(Y), f^{-1}(B) = \{x \in X : f(x) \in B\}$. Also if \Im is any subfamily of $\mathcal{P}(Y)$ put $f^{-1}(\Im) = \{f^{-1}(B), B \in \Im\}$.

Proposition.1.2.

The preimage function has the following properties:

(a)
$$f^{-1}\left(\bigcup_{i} B_{i}\right) = \bigcup_{i} f^{-1}\left(B_{i}\right) \text{ and } f^{-1}\left(\bigcap_{i} B_{i}\right) = \bigcap_{i} f^{-1}\left(B_{i}\right)$$
 for any family $\left(B_{i}\right) \subset \mathcal{P}\left(Y\right)$

(b)
$$f^{-1}(B^c) = (f^{-1}(B))^c$$
, for any $B \in \mathcal{P}(Y)$

(b)
$$f^{-1}(B^c) = (f^{-1}(B))^c$$
, for any $B \in \mathcal{P}(Y)$
(c) $B \subset C \Longrightarrow f^{-1}(B) \subset f^{-1}(C)$ for any B, C in $\mathcal{P}(Y)$.

Proof. straightforward.■

Proposition.1.3.

Let $(X, \mathcal{F}), (Y, \mathcal{G})$ be measure spaces and $f: X \longrightarrow Y$ a function. Define the families:

$$\Re_{f} = \left\{ f^{-1}\left(G\right) : G \in \mathcal{G} \right\} = f^{-1}\left(\mathcal{G}\right)$$
$$\mathcal{B}_{f} = \left\{ B \subset Y : f^{-1}\left(B\right) \in \mathcal{F} \right\}$$

Then \Re_f is a σ -field on X and \mathcal{B}_f a σ -field on YMoreover we have $f^{-1}(\mathcal{B}_f) \subset \mathcal{F}$.

Proof. We prove first that \Re_f is a σ -field on X.

 $X \in \Re_f \text{ since } X = f^{-1}(Y) \text{ and } Y \in \mathcal{G}.$

Let $A \in \Re_f$ with $A = f^{-1}(G)$ for some $G \in \mathcal{G}$, then $A^c = f^{-1}(G^c)$ since $G^c \in \mathcal{G}$, we deduce that $A^c \in \Re_f$.

Let (A_n) be a sequence in \Re_f with $A_n = f^{-1}(G_n)$ for some $G_n \in \mathcal{G}$;

by Proposition. 1.2 (a) we have $\bigcup_{n} A_n = \bigcup_{n} f^{-1}(G_n) = f^{-1}\left(\bigcup_{n} G_n\right)$ since $\bigcup_{n} G_n \in \mathcal{G}$, we deduce that $\bigcup_{n} A_n \in \Re_f$. So \Re_f is a σ -field on X.

The reader can do the remains by the same way.

2. Measurable Functions Properties

Definition.2.1.

Let $(X, \mathcal{F}), (Y, \mathcal{G})$ be measure spaces and $f: X \longrightarrow Y$ a function. We say that f is measurable if $f^{-1}(\mathcal{G}) \subset \mathcal{F}$. This means that: $f^{-1}(G) \in \mathcal{F}$ for every $G \in \mathcal{G}$.

Theorem.2.2.

Let $f: X \longrightarrow Y$ be a function and \Im a family of subsets of Y.

Then we have $\sigma\left(f^{-1}\left(\Im\right)\right)=f^{-1}\left(\sigma\left(\Im\right)\right)$.

This means that: the σ -field $\sigma\left(f^{-1}\left(\Im\right)\right)$ generated by $f^{-1}\left(\Im\right)$ coincides with the preimage of the σ -field $\sigma\left(\Im\right)$.

Proof. $\Im \subset \sigma(\Im) \Longrightarrow f^{-1}(\Im) \subset f^{-1}(\sigma(\Im))$ and $f^{-1}(\sigma(\Im))$ is a σ -field, since the preimage of a σ -field is a σ -field by Proposition.1.3.

So we deduce that $\sigma\left(f^{-1}\left(\Im\right)\right)\subset f^{-1}\left(\sigma\left(\Im\right)\right)$. Now consider the σ -field

$$\mathcal{B}_f = \{B \subset Y : f^{-1}(B) \in \sigma(f^{-1}(\mathfrak{F}))\}. \text{ If } B \in \mathcal{B}_f, \text{ then } f^{-1}(B) \subset \sigma(f^{-1}(\mathfrak{F})),$$

so $f^{-1}(\mathcal{B}_f) \subset \sigma(f^{-1}(\mathfrak{F})). \text{ But } \mathfrak{F} \subset \mathcal{B}_f, \text{ and then } \sigma(\mathfrak{F}) \subset \mathcal{B}_f,$

so we get $f^{-1}(\sigma(\Im)) \subset f^{-1}(\mathcal{B}_f) \subset \sigma(f^{-1}(\Im))$.

Proposition.2.3.

Let $(X, \mathcal{F}), (Y, \mathcal{G})$ be measurable spaces and $f: X \longrightarrow Y$ a function. Suppose there is a family \Im of subsets of Y with $\sigma(\Im) = \mathcal{G}$ and satisfying $f^{-1}(\Im) \subset \mathcal{F}$. Then f is measurable with respect to $(X, \mathcal{F}), (Y, \mathcal{G})$.

Proof. Since $f^{-1}(\Im) \subset \mathcal{F}$ we have $\sigma(f^{-1}(\Im)) \subset \mathcal{F}$. By Theorem.**2.2** $\sigma(f^{-1}(\Im)) = f^{-1}(\sigma(\Im))$, but $\sigma(\Im) = \mathcal{G}$ and so $f^{-1}(\mathcal{G}) \subset \mathcal{F}$.

Examples.2.4.

- (a) Let $f: X \longrightarrow \mathbb{R}$ be a function from (X, \mathcal{F}) into $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. The Borel σ -field $\mathcal{B}_{\mathbb{R}}$ is defined in Proposition 3.6, chap.1. For f to be measurable it is enough that $f^{-1}(]-\infty,t[) \in \mathcal{F}$ (the intervals $]-\infty,t[$ generates $\mathcal{B}_{\mathbb{R}})$
- (b) Let X be a topological space with a countable base (U_n) , endowed with its Borel σ -field \mathcal{B}_Y . It is well known that \mathcal{B}_Y is generated by the family (U_n) and any open set is the union of a subfamily of (U_n) . So for a function from (X, \mathcal{F}) into (Y, \mathcal{B}_Y) to be measurable it is enough that $f^{-1}(U_n) \in \mathcal{F}$ for every n.
- (c) Let X,Y be topological spaces endowed with their Borel σ -fields $\mathcal{B}_X,\mathcal{B}_Y$. A function $f:X\longrightarrow Y$ is measurable with respect to $\mathcal{B}_X,\mathcal{B}_Y$ iff $f^{-1}(G)\in\mathcal{B}_X$ for every open set $G\subset Y$. In particular any continuous function is measurable.
- (d) Let $I_A: X \longrightarrow \mathbb{R}$ be the indicator function of the set A, i.e $I_A(x) = 1$ if $x \in A$ and $I_A(x) = 0$ if $x \notin A$. We have $I_A^{-1}(\mathcal{B}_{\mathbb{R}}) = \{A, A^c, X, \phi\}$, then I_A is measurable from (X, \mathcal{F}) into $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ iff $A \in \mathcal{F}$.

Now we state some important properties of measurable functions.

Proposition.2.5.

Let (X, \mathcal{F}) , (Y, \mathcal{G}) , (Z, \mathcal{H}) be measurable spaces and

 $f: X \longrightarrow Y, g: Y \longrightarrow Z$ measurable functions. Then the composition function $g \circ f: X \longrightarrow Z$ is measurable from (X, \mathcal{F}) into (Z, \mathcal{H}) .

Proof. We have $(g \circ f)^{-1}(\mathcal{H}) = (f^{-1} \circ g^{-1})(\mathcal{H}) = f^{-1}(g^{-1}(\mathcal{H}))$ Since g is measurable $g^{-1}(\mathcal{H}) \subset \mathcal{G}$, so $f^{-1}(g^{-1}(\mathcal{H})) \subset f^{-1}(\mathcal{G})$. But f is measurable then $f^{-1}(\mathcal{G}) \subset \mathcal{F}$. We deduce that $(g \circ f)^{-1}(\mathcal{H}) \subset \mathcal{F}$ and $g \circ f$ is measurable.

Proposition.2.6.

Let $(X \times Y, \mathcal{F} \otimes \mathcal{G})$ be the product of the measurable spaces $(X, \mathcal{F}), (Y, \mathcal{G})$ (see Definition **3.4.** Chap.**1**). Then the projection $\pi_1(x, y) = x$ is measurable from $(X \times Y, \mathcal{F} \otimes \mathcal{G})$ into (X, \mathcal{F}) . Similarly the projection $\pi_2(x, y) = y$ is measurable from $(X \times Y, \mathcal{F} \otimes \mathcal{G})$ into (Y, \mathcal{G}) .

Proof. By Definition 3.4 Chap.1 the σ -field $\mathcal{F} \otimes \mathcal{G}$ contains the family $\{A \times B : A \in \mathcal{F}, B \in \mathcal{G}\}$. We get $\pi_1^{-1}(A) = A \times Y \in \mathcal{F} \otimes \mathcal{G}$ for every $A \in \mathcal{F}$ and $\pi_2^{-1}(B) = X \times B \in \mathcal{F} \otimes \mathcal{G}$ for every $B \in \mathcal{G}$. So π_1 and π_2 are measurable. **Proposition.2.7.**

Let (Z, \mathcal{H}) be a measurable space and let $f: Z \longrightarrow X \times Y$ be a function with $f_1 = \pi_1 \circ f: Z \longrightarrow X$ and $f_2 = \pi_2 \circ f: Z \longrightarrow Y$. Then f is measurable from (Z, \mathcal{H}) into $(X \times Y, \mathcal{F} \otimes \mathcal{G})$ if and only if f_1 is measurable from (Z, \mathcal{H}) into (X, \mathcal{F}) and f_2 is measurable from (Z, \mathcal{H}) into (Y, \mathcal{G}) .

Proof. The $\langle \text{if} \rangle$ part comes from the measurability of π_1 and π_2 (Proposition **2.6**) and the measurability of the composition function (Proposition **2.5**).

We prove the $\langle \text{only if} \rangle$ part:. Since the family $\{A \times B : A \in \mathcal{F}, B \in \mathcal{G}\}$ generates the product σ -field $\mathcal{F} \otimes \mathcal{G}$ it is enough to prove that $f^{-1}(A \times B) \in \mathcal{H}$ (Proposition 2.3). Since f_1 and f_2 are measurable we have

$$f_1^{-1}(A) = (\pi_1 \circ f)^{-1}(A) = f^{-1}(A \times Y) \in \mathcal{H}$$
 and $f_2^{-1}(A) = (\pi_2 \circ f)^{-1}(B) = f^{-1}(X \times B) \in \mathcal{H}$
$$f^{-1}(A \times Y) \cap f^{-1}(X \times B) = f^{-1}((A \times Y) \cap (X \times B)) = f^{-1}(A \times B) \in \mathcal{H}.$$
 Remark. 2.8.

Let Let X be a topological space. Let us recall that the Borel σ -field of X is the σ -field generated by the family of all the open sets of X.

It is denoted by \mathcal{B}_X . Sets in \mathcal{B}_X are called Borel sets of X. If X,Y are topological spaces whose product $X \times Y$ is endowed with the product topology then on the space $X \times Y$ one may put two σ -fields that are $\mathcal{B}_X \otimes \mathcal{B}_Y$ and $\mathcal{B}_{X \otimes Y}$. An interesting question is when do we have $\mathcal{B}_{X \otimes Y} = \mathcal{B}_X \otimes \mathcal{B}_Y$. It is known that if X and Y are separable metric spaces then $\mathcal{B}_{X \otimes Y} = \mathcal{B}_X \otimes \mathcal{B}_Y$. This result is of particular importance when $X = Y = \mathbb{R}$:

Theorem.2.9.

The space \mathbb{R} is separable, since the countable set \mathbb{Q} of rational numbers is dense. So the set \mathbb{R}^2 with the product topology is separable and we have $\mathcal{B}_{\mathbb{R}^2} = \mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$.

As a consequence of this Theorem we have:

Proposition. 2.10.

Let $f, g: X \longrightarrow \mathbb{R}$ be measurable functions from (X, \mathcal{F}) into $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. Then the following functions f + g, f.g, $\sup (f, g)$, $\inf (f, g)$ are measurable.

Proof. Since the functions f, g are measurable, the function $\varphi : X \longrightarrow \mathbb{R}^2$ defined by $\varphi(x) = (f(x), g(x))$ is measurable with respect to \mathcal{F} and $\mathcal{B}_{\mathbb{R}^2}(\text{Proposition.2.7})$. On the other hand the functions $S, P, M, m : \mathbb{R}^2 \longrightarrow \mathbb{R}$ given by: S(u, v) = u + v, P(u, v) = uv, $M(u, v) = \sup(u, v)$, $m(u, v) = \inf(u, v)$ are continuous and so measurable with respect to $\mathcal{B}_{\mathbb{R}^2}$ and $\mathcal{B}_{\mathbb{R}}$. Now we have $S \circ \varphi = f + g$, $P \circ \varphi = fg$, $M \circ \varphi = \sup(f, g)$, $m \circ \varphi = \inf(f, g)$; the conclusion comes from Proposition.2.5.

Corollary. The family $\mathcal{M}(X,\mathbb{R})$ of measurable functions from (X,\mathcal{F}) into $(\mathbb{R},\mathcal{B}_{\mathbb{R}})$ is a vector space on the field \mathbb{R} and even an algebra of functions.

Definition.2.11.

Let $\{f_i, i \in I\}$ be a family of functions defined on a set X such that each $f_i: X \longrightarrow E_i$ sends X into the measurable space (E_i, \mathcal{F}_i) . The σ -field generated by the family $\{f_i, i \in I\}$ is defined as the smallest σ -field \mathcal{F} on X making each function f_i measurable from (X, \mathcal{F}) into the space (E_i, \mathcal{F}_i) . We denote this σ -field \mathcal{F} by $\sigma \{f_i, i \in I\}$; in other words $\sigma \{f_i, i \in I\}$ is the smallest σ -field \mathcal{F} on X containing all the families $f_i^{-1}(\mathcal{F}_i), i \in I$.

Examples.2.12.

- (a) Let X be a set and take $\{f_i, i \in I\} = \{I_A, A \in \mathcal{P}(X)\}$ where I_A is the indicator function, then $\sigma\{I_A, A \in \mathcal{P}(X)\} = \mathcal{P}(X)$.
- (b) Let X be a topological space. The Baire σ -field on X is defined as the σ -field $\mathcal{B}_0(X)$ generated by all continuous functions $f_i: X \longrightarrow \mathbb{R}$, that is the smallest σ -field on X making each continuous function $f_i: X \longrightarrow \mathbb{R}$ measurable with respect to $\mathcal{B}_0(X)$ and $\mathcal{B}_{\mathbb{R}}$.
- (c) If in Example (b) the space X is a metric space whose topology is defined by the distance d then $\mathcal{B}_0(X)$ coincides with the Borel σ -field \mathcal{B}_X on X. Indeed we have $\mathcal{B}_0(X) \subset \mathcal{B}_X$ since \mathcal{B}_X makes each continuous function measurable as easily may be seen. On the other hand let F be a closed set in X and consider the continuous function $f: X \longrightarrow \mathbb{R}$ given by f(x) = d(x, F). Then we have $F = \{x \in X : f(x) = 0\} = f^{-1}(0) \in \mathcal{B}_0(X)$; so $\mathcal{B}_0(X)$ contains all the closed sets of X and then $\mathcal{B}_X \subset \mathcal{B}_0(X)$ since \mathcal{B}_X is generated by the
- (d) Let $(X \times Y, \mathcal{F} \otimes \mathcal{G})$ be the product of the measurable spaces (X, \mathcal{F}) , (Y, \mathcal{G}) . Then the projection $\pi_1(x, y) = x$ and the projection $\pi_2(x, y) = y$ are measurable on $(X \times Y, \mathcal{F} \otimes \mathcal{G})$ (Proposition.2.6). Then $\pi_1^{-1}(A) = A \times Y \in \mathcal{F} \otimes \mathcal{G}$ for every $A \in \mathcal{F}$ and $\pi_2^{-1}(B) = X \times B \in \mathcal{F} \otimes \mathcal{G}$ for every $B \in \mathcal{G}$.

We deduce that $\sigma\{\pi_1, \pi_2\} \subset \mathcal{F} \otimes \mathcal{G}$. On the other hand we have:

family of closed sets in X (see Definition **3.5** Chap.**1**).

 $\pi_1^{-1}(A) \cap \pi_2^{-1}(B) = (A \times Y) \cap (X \times B) = A \times B \in \mathcal{F} \otimes \mathcal{G}$. So every set of the form $A \times B$ with $A \in \mathcal{F}$ and $B \in \mathcal{G}$ is in $\sigma \{\pi_1, \pi_2\}$. But $\sigma \{A \times B : A \in \mathcal{F}, B \in \mathcal{G}\} = \mathcal{F} \otimes \mathcal{G}$, finally $\mathcal{F} \otimes \mathcal{G} \subset \sigma \{\pi_1, \pi_2\}$. Then $\mathcal{F} \otimes \mathcal{G} = \sigma \{\pi_1, \pi_2\}$.

3. Exercises

- **20.** Let X be a non empty set. Determine the σ -field \mathcal{F} generated by the constant functions $f: X \longrightarrow \mathbb{R}$. Let \Im be the family of measurable functions from (X, \mathcal{F}) into $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, prove that \Im is isomorphic to \mathbb{R} .
- **21.** Let f be a measurable function from (X, \mathcal{F}) into $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, prove that |f| is measurable. Let E be a set not Lebesgue measurable (see section 5 for the definition of Lebesgue measurable sets). Consider the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = xI_{E^c} xI_E$, prove that f is not Lebesgue measurable but |f| is measurable.
- **22.** Let $\{(X_i, \mathcal{F}_i), 1 \leq i \leq n\}$ be a finite family of measurable spaces and form the product set $X = \prod_{i=1}^{n} X_i = X_1 \times X_2 \times \cdots \times X_n$. We denote by $p_i : X \longrightarrow X_i$ the projection from X onto X_i given by $p_i (x_1, x_2, \cdots, x_n) = x_i$. Consider the σ -field $\sigma \{p_i, 1 \leq i \leq n\}$ generated by the functions $\{p_i, 1 \leq i \leq n\}$ and denoted by $\mathcal{F}_1 \otimes \mathcal{F}_2 \otimes \cdots \otimes \mathcal{F}_n = \underset{1}{\overset{n}{\otimes}} \mathcal{F}_i$. The space $\left(X, \underset{1}{\overset{n}{\otimes}} \mathcal{F}_i\right)$ is called the product of the spaces $(X_i, \mathcal{F}_i), 1 \leq i \leq n$.
- (a) Prove that $\mathop{\otimes}_{1}^{n} \mathcal{F}_{i}$ is generated by the subsets of X of the form $A = A_{1} \times A_{2} \times \cdots \times A_{n}, A_{i} \in \mathcal{F}_{i} \ 1 \leq i \leq n.$
- (b) Let (Y, \mathcal{G}) be a measurable space and let $g: Y \longrightarrow \prod_{i=1}^{n} X_i$ be a function, prove that g is measurable with respect to (Y, \mathcal{G}) and $\left(X, \underset{i}{\otimes} \mathcal{F}_i\right)$ if and only if $p_i \circ g$ is measurable from (Y, \mathcal{G}) into (X_i, \mathcal{F}_i) for each $1 \leq i \leq n$.
- **23.** Let X be a non empty set and let $\{f_i, i \in I\}$ be a family of functions defined on X such that each $f_i: X \longrightarrow E_i$ sends X into the measurable space (E_i, \mathcal{B}_i) . Suppose that X is endowed with the σ -field $\sigma \{f_i, 1 \leq i \leq n\}$ generated by the functions $\{f_i, 1 \leq i \leq n\}$ (see Definition **2.11**). Let (Y, \mathcal{G}) be a measurable space and let $g: Y \longrightarrow X$, prove that g is measurable with respect to (Y, \mathcal{G}) and $(X, \sigma \{f_i, 1 \leq i \leq n\})$ if and only if $f_i \circ g$ is measurable from (Y, \mathcal{G}) into (E_i, \mathcal{B}_i) for each $1 \leq i \leq n$.

4. Measurable Functions with values in $\mathbb{R}, \overline{\mathbb{R}}, \mathbb{C}$

Definition.4.1

- (a) The set \mathbb{R} is the real numbers system endowed with the Borel σ -field $\mathcal{B}_{\mathbb{R}}$.
- (b) The set $\overline{\mathbb{R}}$ is defined as $\{\mathbb{R}, -\infty, +\infty\}$. The σ -field we need on $\overline{\mathbb{R}}$ is given by $\sigma\{\mathcal{B}_{\mathbb{R}}, -\infty, \infty\}$ and denoted by $\mathcal{B}_{\overline{\mathbb{R}}}$.
- (c) It is well known that the set \mathbb{C} of complex numbers can be identified with the product space $\mathbb{R} \times \mathbb{R}$; so we can identify the Borel σ -field $\mathcal{B}_{\mathbb{C}}$ with $\mathcal{B}_{\mathbb{R} \times \mathbb{R}}$, which is $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$ by Theorem.2.9.

Notations. 4.2.

Let (X, \mathcal{F}) be a measurable space. In the sequel. we will use the following notations: $\mathcal{M}(X,\mathbb{R})$ is the family of measurable functions f from (X,\mathcal{F}) into $(\mathbb{R},\mathcal{B}_{\mathbb{R}})$. $\mathcal{M}(X,\mathbb{C})$ is the family of measurable functions f from (X,\mathcal{F}) into $(\mathbb{C},\mathcal{B}_{\mathbb{C}})$

We already have seen that $\mathcal{M}(X,\mathbb{R})$ is a vector space on the field \mathbb{R} (see the Corollary of Proposition.2.10).

It is not difficult to prove the same for $\mathcal{M}(X,\mathbb{C})$

Arithmetic in $\overline{\mathbb{R}}$. 4.3.

We will agree with the following conventions in $\overline{\mathbb{R}} = \{\mathbb{R}, -\infty, +\infty\}$: $0 \cdot (\pm \infty) = (\pm \infty) \cdot 0 = 0$ $(+\infty) + (+\infty) = +\infty$

$$(+\infty) + (+\infty) = +\infty$$

$$(-\infty) + (-\infty) = -\infty$$

$$a \pm (\pm \infty) = \pm \infty, \forall a \in \mathbb{R}$$

 $(-1) \cdot (\pm \infty) = (\mp \infty)$

Definition. 4.4.

Let (X, \mathcal{F}) be a measurable space.

A function $f: X \longrightarrow \overline{\mathbb{R}}$ is measurable from (X, \mathcal{F}) into $(\overline{\mathbb{R}}, \mathcal{B}_{\overline{\mathbb{R}}})$ if:

 $f^{-1}(B) \in \mathcal{F}, \forall B \in \mathcal{B}_{\mathbb{R}}, \text{ and } f^{-1}(+\infty) \in \mathcal{F}, f^{-1}(-\infty) \in \mathcal{F}'$ this comes from the fact that $\mathcal{B}_{\overline{\mathbb{R}}} = \sigma\{\mathcal{B}_{\mathbb{R}}, -\infty, \infty\}$ and Proposition 2.3.

We denote by $\mathcal{M}(X,\overline{\mathbb{R}})$ the the family of measurable functions f from (X,\mathcal{F}) into $(\overline{\mathbb{R}}, \mathcal{B}_{\overline{\mathbb{R}}})$.

Proposition. 4.5.

The σ -field $\mathcal{B}_{\mathbb{R}}$ is generated by all the intervals of the form $[-\infty, t]$.

Proof. Use the fact that $\mathcal{B}_{\mathbb{R}}$ is generated by all the open intervals by Proposition **3.6.**Chap.**1**■

Corollary.

A function $f: X \longrightarrow \overline{\mathbb{R}}$ is measurable from (X, \mathcal{F}) into $(\overline{\mathbb{R}}, \mathcal{B}_{\overline{\mathbb{R}}})$ if: $f^{-1}([-\infty, t]) \in \mathcal{F}, \forall t \in \mathbb{R}.$

Definition. 4.6.

Let $(X, \mathcal{F}), (Y, \mathcal{G})$ be measurable spaces and $E \subset X$ a subset of X. If $f: X \longrightarrow Y$ is a function. We say that f is measurable on E if the restriction of f to E considered as a function from $(E, E \cap \mathcal{F})$ into (Y, \mathcal{G}) is measurable.

Example. 4.7.

If f,g are in $\mathcal{M}\left(X,\overline{\mathbb{R}}\right)$, then the function f+g is measurable on the set E with: $E^c = (\{f=\infty\} \cap \{g=-\infty\}) \cup (\{f=-\infty\} \cap \{g=\infty\})$ Let φ be the restriction of f+g to E then we have φ is well defined on E and $\{\varphi < t\} = \{f+g < t\} \cap E \in E \cap \mathcal{F}$.

5. Sequences of Measurable Functions

Definition. 5.1. (simple function)

Let $f: X \longrightarrow \mathbb{R}$ be a function from X into \mathbb{R} . The function f is simple if it takes a finite number of values, that is, f is simple if the set f(X) is a finite subset of \mathbb{R} . So if $f(X) = \{a_1, a_2, ..., a_n\}$ and $A_i = \{x : f(x) = a_i\}, i = 1, 2, ..., n$, then $\{A_1, A_2, ..., A_n\}$ is a partition of X and the function f can be written as $f(\cdot) = \sum_{i=1}^{n} a_i I_{A_i}(\cdot)$, where I_{A_i} is the indicateur function of the set $A_i, i = 1, 2, ..., n$.

Proposition. 5.2

A simple function $f(\cdot) = \sum_{i=1}^{n} a_i . I_{A_i}(\cdot)$ is measurable from (X, \mathcal{F}) into $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ iff $A_i \in \mathcal{F}, i = 1, 2, ..., n$.

Proof. We have $f^{-1}\{a_i\} = A_i \in \mathcal{F}, i = 1, 2, ..., n$; so if $B \in \mathcal{B}_{\mathbb{R}}$ and $n_B = \{i : a_i \in B\}$, we deduce that $f^{-1}(B) = \bigcup_{i \in n_B} A_i \in \mathcal{F}. \blacksquare$

Notation. 5.3. We denote by \mathcal{E} the family of measurable simple functions from (X, \mathcal{F}) into $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$

Proposition. 5.4.

Let s, t be in \mathcal{E} and $\lambda \in \mathbb{R}$, then:

the functions s + t, $s \cdot t$, $\lambda \cdot s$, $\sup(s, t)$, $\inf(s, t)$ are in \mathcal{E} .

Proof. Write $s(\cdot) = \sum_{1}^{n} a_i I_{A_i}(\cdot)$, $t(\cdot) = \sum_{1}^{m} b_j I_{B_j}(\cdot)$, then we have:

$$s + t = \sum_{i=1}^{n} \sum_{j=1}^{m} (a_i + b_j) . I_{A_i \cap B_j}$$

$$s \cdot t = \sum_{i=1}^{n} \sum_{j=1}^{m} (a_i b_j) . I_{A_i \cap B_j}, \ \lambda \cdot s = \sum_{i=1}^{n} (\lambda a_i) . I_{A_i}$$

(so the family \mathcal{E} is an algebra on \mathbb{R} .)

$$\sup(s,t) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sup(a_i, b_j) . I_{A_i \cap B_j}, \inf(s,t) = \sum_{i=1}^{n} \sum_{j=1}^{m} \inf(a_i, b_j) . I_{A_i \cap B_j}$$

Since $\{A_i \cap B_j, 1 \le i \le n, 1 \le j \le m\}$ is a partition of X we get the result.

Proposition. 5.5.

Let (f_n) be a sequence of functions in $\mathcal{M}(X, \mathbb{R})$ or either in $\mathcal{M}(X, \overline{\mathbb{R}})$ then: the functions $\sup_n f_n$ and $\inf_n f_n$ are in $\mathcal{M}(X, \overline{\mathbb{R}})$.

Proof. For any $t \in \mathbb{R}$ we have $\left\{ \sup_{n} f_{n} \leq t \right\} = \bigcap_{n} \left\{ f_{n} \leq t \right\}$ whence the mesurability of $\sup_{n} f_{n}$. Since $\inf_{n} f_{n} = -\sup_{n} -f_{n}$ we deduce the mesurability of $\inf_{n} f_{n}$.

Corollary. 1.

Let (f_n) be a sequence of functions in $\mathcal{M}(X,\mathbb{R})$ or either in $\mathcal{M}(X,\overline{\mathbb{R}})$ then: the functions $\limsup_n f_n$ and $\liminf_n f_n$ are measurable

Proof. Comes directly from the proposition above since $\limsup_{n} f_n = \inf_{n \geq 1} \sup_{k \geq n} f_k$ and $\liminf_{n} f_n = \sup_{n \geq 1} \inf_{k \geq n} f_k$.

Corollary. 2.

Let (f_n) be a sequence of functions in $\mathcal{M}(X,\mathbb{R})$ or either in $\mathcal{M}(X,\overline{\mathbb{R}})$ then: The set $C = \left\{ x : \limsup_n f_n(x) = \liminf_n f_n(x) \right\}$ belongs to \mathcal{F} .

Proof. Observe that C is the convergence set of the sequence (f_n) . Put:

$$C_{1} = \left(\left\{x : \limsup_{n} f_{n}\left(x\right) = \infty\right\} \cap \left\{x : \liminf_{n} f_{n}\left(x\right) = \infty\right\}\right)$$

$$C_{2} = \left(\left\{x : \limsup_{n} f_{n}\left(x\right) = -\infty\right\} \cap \left\{x : \liminf_{n} f_{n}\left(x\right) = -\infty\right\}\right)$$

$$C_{3} = \left\{x : \limsup_{n} f_{n}\left(x\right) \in \mathbb{R}\right\} \cap \left\{x : \limsup_{n} f_{n}\left(x\right) = \liminf_{n} f_{n}\left(x\right)\right\}$$
Then C_{1} and C_{2} and C_{3} are in \mathcal{F} and $C = C_{1} \cup C_{2} \cup C_{3}$.

Corollary. 3.

Let (f_n) be a sequence of functions in $\mathcal{M}(X, \mathbb{R})$ or either in $\mathcal{M}(X, \overline{\mathbb{R}})$ Suppose that: $\lim_n f_n(x) = f(x) \in \overline{\mathbb{R}}$ exists for each $x \in X$. Then $f \in \mathcal{M}(X, \overline{\mathbb{R}})$.

Proof. The convergence set $C = \left\{ x : \limsup_{n} f_n\left(x\right) = \liminf_{n} f_n\left(x\right) \right\}$ given in Corollary 2 is equal to X here.

So the function f(x) is equal to $\limsup_{n} f_n(x) = \liminf_{n} f_n(x), \forall x \in X$. Then f is measurable by Corollary 1.

The following theorem is fundamental and will be used in the construction of the integral of a measurable function.

Theorem. 5.6.

Let $f \in \mathcal{M}(X, \overline{\mathbb{R}})$ be such that $f(x) \in [0, \infty]$, $\forall x \in X$. Then: there exists a sequence (s_n) of positive measurable simple functions from (X, \mathcal{F}) into $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ with:

$$(i) \ 0 \le s_n \le s_{n+1}$$

$$(ii)$$
 $\lim_{n} s_n(x) = f(x), \forall x \in X.$

Proof. For each
$$n \ge 1$$
 and each $x \in X$, define s_n by: $s_n(x) = \frac{i-1}{2^n}$ if $\frac{i-1}{2^n} \le f(x) < \frac{i}{2^n}, i = 1, 2, ..., n2^n$

$$s_n(x) = n \text{ if } f(x) \ge n$$

we can use a consolidated form for s_n :

$$s_n(x) = \sum_{i=1}^{n2^n} \frac{i-1}{2^n} I_{\left\{\frac{i-1}{2^n} \le f(x) < \frac{i}{2^n}\right\}} + n I_{\left\{f(x) \ge n\right\}}$$

recall that I_A is the function defined by $I_A(x) = 1$ if $x \in A$ and $I_A(x) = 0$ if $x \notin A$.

Then (s_n) is an increasing sequence of positive simple functions (check it!). Let us prove that $\lim_{x \to \infty} s_n(x) = f(x), \forall x \in X$:

if $f(x) < \infty$ then for every n > f(x) we have $0 < f(x) - s_n(x) < \frac{1}{2^n}$, so $\lim s_n(x) = f(x)$

if $f(x) = \infty$ then $f(x) \ge n$ for every n and so we have $s_n(x) = n$ for all n whence $\lim_{n} s_n(x) = \infty$.

Definition. 5.7.

Let $f \in \mathcal{M}(X, \overline{\mathbb{R}})$. Define the positive measurable functions f^+, f^- by: $f^+ = \sup(f, 0), f^- = -\inf(f, 0)$

Remark. 5.8.

It is easy to check that:

$$f = f^+ - f^-$$

 $|f| = f^+ + f^-$

Proposition. 5.9.

Let $f \in \mathcal{M}(X, \mathbb{R})$. Then there exists a sequence (s_n) of measurable simple functions from (X, \mathcal{F}) into $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ with $\lim_{n \to \infty} s_n(x) = f(x), \forall x \in X$.

Proof. We have $f = f^+ - f^-$ where f^+, f^- are simple positives.

By Theorem. **5.6** there exist simple positive functions s_n, s_n'' such that: $\lim_n s_n'(x) = f^+(x), \forall x \in X$ and $\lim_n s_n''(x) = f^-(x), \forall x \in X$. Then $s_n = s_n' - s_n''$ is measurable simple and $\lim_n s_n(x) = f^+(x) - f^-(x) = f(x), \forall x \in X$.

Corollary.

Let $f \in \mathcal{M}(X,\mathbb{R})$ and suppose f bounded. Then there is a sequence (s_n) of measurable simple functions converging uniformly to f on X.

Proof. By the Proposition above it is enough to consider the case f positive. Since f is bounded there is n such that n > f(x) for every $x \in X$. So there exists a sequence (s_n) of positive measurable simple functions

with $0 \le f(x) - s_m(x) < \frac{1}{2^m}, \forall x \in X, \forall m > n$, from which we deduce the uniform convergence of s_n to f on X.

6. Convergence of Measurable Functions

Let us recall that if (X, \mathcal{F}, μ) is a measure space, a subset N of X is a null set if there is $A \in \mathcal{F}$, with $\mu(A) = 0$ such that $N \subset A$.

In this section we describe different type of convergence of measurable functions and the relations between them.

Definition. 6.1.

Let \mathcal{P} be a property depending on a variable $x \in X$, that is \mathcal{P} may be true or false according to x. We say that \mathcal{P} is true almost every where if there is a null subset N of X such that \mathcal{P} is true for any x outside N.

Examples. 6.2.

- (a) A function $f: X \longrightarrow \overline{\mathbb{R}}$ is said to be finite almost every where if there is a null subset N of X such that $f(x) \in \mathbb{R} \ \forall x \in X \backslash N$. If moreover $f \in \mathcal{M}(X, \overline{\mathbb{R}})$ then $\{f = \pm \infty\} \in \mathcal{F}$ and the condition of finiteness almost every where may be written simply as $\mu \{f = \pm \infty\} = 0$.
- (b) A function $f: X \longrightarrow \mathbb{R}$ is said to be bounded almost every where if there is a constant M > 0 and a null subset N such that $|f(x)| \le M, \forall x \in X \setminus N$. If moreover $f \in \mathcal{M}(X,\mathbb{R})$ then $\{|f| > M\} \in \mathcal{F}$ and the condition of boundedness almost every where may be written simply as $\mu\{|f| > M\} = 0$.
- (c). Let $f, g: X \longrightarrow \overline{\mathbb{R}}$ be functions. We say that f = g almost every where if there is a null subset N such that $f(x) = g(x), \forall x \in X \backslash N$. If moreover $f \in \mathcal{M}(X, \overline{\mathbb{R}})$, the condition may be written as $\mu \{f \neq g\} = 0$.

Abbreviation. almost every where with respect to μ is abbreviated to: $\mu - a.e$ **Definition. 6.3.**

Let $f_n: X \longrightarrow \mathbb{R}$ be a sequence of functions. We say that f_n converges $\mu - a.e$ if the set $N = \left\{ \limsup_n f_n \neq \liminf_n f_n \right\}$ is a null set. In other words f_n converges $\mu - a.e$ if for each $x \in X \setminus N$ the real sequence $f_n(x)$ converge to the real number f(x), that is: $\forall \epsilon > 0, \exists m (\epsilon, x) \geq 1$ such that $\forall n \geq m (\epsilon, x), |f_n(x) - f(x)| < \epsilon$.

Definition. 6.4.

Let $f_n: X \longrightarrow \mathbb{R}$ be a sequence of functions. We say that f_n is a Cauchy sequence $\mu - a.e$ if there is a null subset N such that for each $x \in X \setminus N$ the real sequence $f_n(x)$ is a Cauchy sequence in \mathbb{R} , that is satisfies the following condition:

 $\forall \epsilon > 0, \exists M (\epsilon, x) \geq 1 \text{ such that } \forall n, m \geq M (\epsilon, x), |f_n(x) - f_m(x)| < \epsilon$

Proposition. 6.5.

Let $f_n: X \longrightarrow \mathbb{R}$ be a sequence of functions. The following conditions are equivalent:

- (a) The sequence f_n converges to $\mu a.e$ to a function $f: X \longrightarrow \mathbb{R}$
- (b) f_n is a Cauchy sequence $\mu a.e$

Proof. For each x outside of a null set $f_n(x)$ is a Cauchy sequence in \mathbb{R} , so the Proposition results from the validity of the same properties in \mathbb{R} .

Now let us come to the convergence of measurable functions.

Proposition. 6.6.

Let f_n be a sequence of functions in $\mathcal{M}(X,\overline{\mathbb{R}})$ converging $\mu - a.e$ on X. Then there is $f \in \mathcal{M}(X,\overline{\mathbb{R}})$ such that f_n converges $\mu - a.e$ to f.

Conversely if there is $f: X \longrightarrow \overline{\mathbb{R}}$ such that f_n converges $\mu - a.e$ to f, then f is measurable on a set E with $\mu(E^c) = 0$.

Proof. Take
$$E = \left\{ x : \limsup_{n} f_n(x) = \liminf_{n} f_n(x) \right\}$$
 and take f defined by: $f(x) = \liminf_{n} f_n(x)$ for $x \in E$ and $f(x) = 0$ for $x \in E^c$

(see Definition 4.6 for the measurability of f on E).

Definition. 6.7. (uniform convergence $\mu - a.e$)

Let $f_n: X \longrightarrow \mathbb{R}$ be a sequence of functions. We say that f_n converges uniformly $\mu - a.e$ to the function $f: X \longrightarrow \mathbb{R}$ if there is a null set N such that f_n converges uniformly to f on $X \setminus N$, that is:

 $\forall \epsilon > 0, \exists M (\epsilon) \geq 1 \text{ such that } \forall n \geq M (\epsilon), |f_n(x) - f(x)| < \epsilon, \forall x \in X \backslash N$ We say that f_n is a Cauchy sequence for the uniform convergence $\mu - a.e$ if there is a null set N such that:

$$\forall \epsilon>0, \exists M\left(\epsilon\right)\geq1 \text{ such that } \forall n,m\geq M\left(\epsilon\right), \left|f_{n}\left(x\right)-f_{m}\left(x\right)\right|<\epsilon, \forall x\in X\backslash N$$

let us observe that the integer $M(\epsilon)$ does not depend on x.

Remark. 6.8.

In most of our discussion, especially in integration theory, we frequently use a complete measure space (X, \mathcal{F}, μ) as our basic space.

So in this case every null set is in \mathcal{F} and this avoids some cumbersome measurability character of functions.

The following Theorem localizes the points of the space X where the convergence of a sequence fails to be uniform. Let us start with an example:

Example. 6.9.

Consider the space X=[0,1] endowed with the Lebesgue measure μ and let $f_n:X\longrightarrow\mathbb{R}$ be the sequence of functions given by $f_n(x)=x^n, x\in[0,1]$. The sequence converges pointwise to the function f given by f(x)=0 for $0\leq x<1$, and f(x)=1 for x=1, but the convergence is not uniform (why?). However for $\epsilon>0$, we see that the sequence f_n converges uniformly on the interval $\left[0,1-\frac{\epsilon}{2}\right]$; intuitively the points where the uniform convergence fails are localized in the set $B=\left[1-\frac{\epsilon}{2},1\right]$ and $\mu(B)<\epsilon$.

Theorem. 6.10. (Egorov)

Let (X, \mathcal{F}, μ) be a measure space, with $\mu(X) < \infty$. Let $f_n, f \in \mathcal{M}(X, \overline{\mathbb{R}})$ be functions finite $\mu - a.e.$

Suppose that the sequence f_n converges $\mu - a.e$ to f on X. Then we have:

For every $\epsilon > 0$ there is $B \in \mathcal{F}$ such that $\mu(B) < \epsilon$ and f_n converges uniformly to f on $X \setminus B$.

Proof. Without losing general hypothesis, we can assume that: f_n , f take values in \mathbb{R} and f_n converges everywhere to f on X.

Let $E_n^m = \bigcap_{j \geq n} \left\{ |f_j - f| < \frac{1}{m} \right\}$, since f_n , f are measurable we get $E_n^m \in \mathcal{F}, \forall n, m$. Moreover it is clear that $E_n^m \subset E_{n+1}^m \subset \ldots \subset \bigcup_{n \geq 1} E_n^m$. Since f_n converges everywhere to f on X, we have $\bigcup_{n \geq 1} E_n^m = X, \forall m \geq 1$. So $X \setminus E_n^m \supset X \setminus E_{n+1}^m \supset \ldots \supset \bigcap_{n \geq 1} (X \setminus E_n^m) = \emptyset$ for each $m \geq 1$. Since $\mu(X) < \infty$ we deduce that $\lim_n \mu(X \setminus E_n^m) = 0$; so for each $m \geq 1$ there is $n(m) \geq 1$ such that $\mu\left(X \setminus E_{n(m)}^m\right) < \frac{\epsilon}{2^m}$. Now put $B = \bigcup_{m \geq 1} X \setminus E_{n(m)}^m$; then we have: $\mu(B) \leq \sum_{m \geq 1} \mu\left(X \setminus E_{n(m)}^m\right) < \sum_{m \geq 1} \frac{\epsilon}{2^m} = \epsilon$. So $\mu(B) < \epsilon$ and $X \setminus B = \bigcap_{m \geq 1} E_{n(m)}^m$, therefore $|f_n(x) - f(x)| < \frac{1}{m}, \forall x \in X \setminus B, \forall n > n(m)$ and then the uniform convergence of f_n to f on $X \setminus B$.

Remark. 6.11.

Egorov'Theorem is not valid in the case μ infinite as is shown by the following:

Take for (X, \mathcal{F}, μ) the space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ with μ the counting measure; if $f_n = I_{\{1,2,\ldots,n\}}$ then $f_n(k)$ converges to 1 for each $k \in \mathbb{N}$; nevertheless there is no $F \subset \mathbb{N}$ such that $\mu(F) < \epsilon$ and f_n converges uniformly to 1 on $X \setminus F$ (indeed take $0 < \epsilon < 1$).

Remark. 6.12.

It is not difficult to prove the equivalence of the following assertions:

- (a) f_n converges almost uniformly
- (b) f_n is a Cauchy sequence for the almost uniform convergence.

Definition. 6.13.

Let (X, \mathcal{F}, μ) be a measure space, and let $f_n, f \in \mathcal{M}(X, \overline{\mathbb{R}})$ be functions finite $\mu - a.e.$

- (a) the sequence f_n converges almost uniformly if:
- $\forall \epsilon > 0 \; \exists B \in \mathcal{F} \text{ such that } \mu(B) < \epsilon \text{ and } f_n \text{ converges uniformly to } f \text{ on } X \backslash B.$
- (b) the sequence f_n is a Cauchy sequence for the almost uniform convergence if: $\forall \epsilon > 0 \ \exists B \in \mathcal{F}$ such that $\mu(B) < \epsilon$ and f_n is a Cauchy sequence for the uniform convergence on $X \setminus B$.

Here is a specific type of convergence of measurable functions:

Definition. 6.14.

Let $f_n, f \in \mathcal{M}(X, \overline{\mathbb{R}})$ be functions finite $\mu - a.e.$. We say that the sequence (f_n) converges in measure to f if: $\forall \epsilon > 0$, $\lim_n \mu\{x : |f_n(x) - f(x)| > \epsilon\} = 0$

Notation: $f_n \stackrel{\mu}{\longrightarrow} f$

Proposition. 6.15.

The almost uniform convergence implies:

- (a) The convergence $\mu a.e$
- (b) The convergence in measure

Proof. By almost uniform convergence we have:

 $\forall k \geq 1, \exists F_k \in \mathcal{F}, \text{ with } \mu(F_k) < \frac{1}{k}, \text{ and } f_n \text{ converges uniformly on } X \setminus F_k.$ Take $F = \bigcap_{k} F_k$ then $F \in \mathcal{F}$, $\mu(F) = 0$. If $x \in X \setminus F$, there is k such that $x \in X \backslash F_k$, so $\lim f_n(x) = f(x)$ and proves (a).

By almost uniform convergence we have:

 $\forall \delta > 0, \exists F_{\delta} \in \mathcal{F}, \text{ with } \mu(F_{\delta}) < \delta, \text{ and } f_n \text{ converges uniformly on } X \setminus F_{\delta}.$

Put $E_n(\epsilon) = \{x : |f_n(x) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = E_n(\epsilon) \cap F_\delta + E_n(\epsilon) \cap F_\delta = \{x : |f_n(x) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(x) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| > \epsilon\}, \text{ then } E_n(\epsilon) = \{x : |f_n(\epsilon) - f(x)| >$ $X \setminus F_{\delta}$; we deduce that $\mu(E_n(\epsilon)) < \delta + \mu(E_n(\epsilon) \cap X \setminus F_{\delta})$. Now since f_n converges uniformly on $X \setminus F_{\delta}$ there is $N(\epsilon, \delta) \geq 1$ such that for $n \geq N(\epsilon, \delta)$, $\mu\left(E_{n}\left(\epsilon\right)\cap X\backslash F_{\delta}\right)=0.$ This proves that $\forall\epsilon>0,\lim_{n}\mu\left(E_{n}\left(\epsilon\right)\right)=0$ whence

$$f_n \xrightarrow{\mu} f. \blacksquare$$

Proposition. 6.16.

Let (X, \mathcal{F}, μ) be a measure space, with $\mu(X) < \infty$. Then:

The convergence $\mu - a.e$ implies the convergence in measure.

Proof. By Egorov Theorem (6.10) convergence $\mu - a.e$ implies almost uniform convergence from which the convergence in measure comes by Proposition. **6.15.**■

Proposition. 6.17.

If $f_n \stackrel{\mu}{\longrightarrow} f$ then f_n is a Cauchy sequence for the convergence in measure that

$$\forall \epsilon > 0, \lim_{n,m} \mu \left\{ x : \left| f_n \left(x \right) - f_m \left(x \right) \right| > \epsilon \right\} = 0$$

Moreover if also $f_n \xrightarrow{\mu} g$ then $f = g \mu - a.e.$

Proof. Since $|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)|$, we deduce that:

 $\{x: |f_n(x) - f_m(x)| > \epsilon\} \subset \{x: |f_n(x) - f(x)| > \frac{\epsilon}{2}\} \cup \{x: |f_m(x) - f(x)| > \frac{\epsilon}{2}\}$ and we have:

$$\mu \left\{ x : |f_{n}(x) - f_{m}(x)| > \epsilon \right\} \leq \mu \left\{ x : |f_{n}(x) - f(x)| > \frac{\epsilon}{2} \right\} + \mu \left\{ x : |f_{m}(x) - f(x)| > \frac{\epsilon}{2} \right\}$$
so $\lim_{n,m} \mu \left\{ x : |f_{n}(x) - f_{m}(x)| > \epsilon \right\} \leq$

$$\lim_{n} \mu \left\{ x : \left| f_{n}\left(x\right) - f\left(x\right) \right| > \frac{\epsilon}{2} \right\} + \lim_{m} \mu \left\{ x : \left| f_{m}\left(x\right) - f\left(x\right) \right| > \frac{\epsilon}{2} \right\} = 0$$

now suppose
$$f_n \xrightarrow{\mu} g$$
; it is clear that $\{x: |f(x) - g(x)| > 0\} = \bigcup_{n} \{x: |f(x) - g(x)| > \frac{1}{n}\}$

and
$$\{x: |f(x) - g(x)| > \frac{\pi}{n}\} \subset$$

and
$$\{x: |f(x) - g(x)| > \frac{1}{n}\} \subset \{x: |f(x) - f_k(x)| > \frac{1}{2n}\} \cup \{x: |f_k(x) - g(x)| > \frac{1}{2n}\}, \forall k, n; \text{ then } \mu\{x: |f(x) - g(x)| > \frac{1}{n}\} \leq \mu\{x: |f(x) - f_k(x)| > \frac{1}{2n}\} + \mu\{x: |f_k(x) - g(x)| > \frac{1}{2n}\}$$

$$\mu\left\{x:|f\left(x\right)-f_{k}\left(x\right)|>\frac{1}{2n}\right\}+\mu\left\{x:|f_{k}\left(x\right)-g\left(x\right)|>\frac{1}{2n}\right\}$$

the right side goes to 0 as $k \longrightarrow \infty$, for each n since $f_n \stackrel{\mu}{\longrightarrow} f$ and $f_n \stackrel{\mu}{\longrightarrow} g$, so $\mu \{x : |f(x) - g(x)| > \frac{1}{n} \} = 0$ for all n and then $\mu \{x : |f(x) - g(x)| > 0 \} = 0$ whence $f = g \mu - a.e.$

Lemma. 6.18.

Every Cauchy sequence in measure f_n contains a subsequence f_{n_k} satisfying Cauchy condition for the almost uniform convergence (Definition 6.13(b)).

Proof. Left to the reader.

Theorem. 6.19.

Every Cauchy sequence in measure f_n converges in measure to a measurable function f

Proof. By Lemma **6.18**, f_n contains a subsequence f_{n_k} satisfying the Cauchy condition for the almost uniform convergence. So from Remark.**6.12** the subsequence f_{n_k} converges almost uniformly to some measurable function f and then f_{n_k} converges in measure to f by Proposition. **6.15** (b). But f_n itself converges in measure to f, indeed we have:

$$\left\{ x : |f_{n}\left(x\right) - f\left(x\right)| > \epsilon \right\} \subset \left\{ x : |f_{n}\left(x\right) - f_{n_{k}}\left(x\right)| > \frac{\epsilon}{2} \right\} \cup \left\{ x : |f\left(x\right) - f_{n_{k}}\left(x\right)| > \frac{\epsilon}{2} \right\}$$
 and $\mu \left\{ x : |f_{n}\left(x\right) - f\left(x\right)| > \epsilon \right\} \le$
$$\mu \left\{ x : |f_{n}\left(x\right) - f_{n_{k}}\left(x\right)| > \frac{\epsilon}{2} \right\} + \mu \left\{ x : |f\left(x\right) - f_{n_{k}}\left(x\right)| > \frac{\epsilon}{2} \right\}$$

 $\mu\left\{x:|f_n\left(x\right)-f_{n_k}\left(x\right)|\geq \frac{\epsilon}{2}\right\}+\mu\left\{x:|f\left(x\right)-f_{n_k}\left(x\right)|\geq \frac{\epsilon}{2}\right\}$ so if $n,k\longrightarrow\infty, \mu\left\{x:|f_n\left(x\right)-f_{n_k}\left(x\right)|\geq \frac{\epsilon}{2}\right\}\longrightarrow 0$, since f_n is Cauchy sequence in measure and $\mu\left\{x:|f\left(x\right)-f_{n_k}\left(x\right)|\geq \frac{\epsilon}{2}\right\}\longrightarrow 0$ because f_{n_k} converges in measure to f.

7. Exercises

- **24.** (a) Prove that in any measure space the uniform convergence implies the convergence in measure.
- (b) In the counting measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ the uniform convergence is equivalent to the convergence in measure.
- **25.** In the space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ consider the sequence of indicator functions $f_n = I_{\{1,2,\ldots,n\}}$; prove that f_n converges $\mu a.e$ but does not converge in measure. What do we deduce about Proposition. **4.3.16.**
- **26.** Let $f_n, f \in \mathcal{M}(X, \mathbb{R})$ be functions finite $\mu a.e.$. Suppose f_n converges pointwise to f and there is a positive measurable function g satisfying $\lim_n \mu \{g > \epsilon_n\} = 0$ for some sequence of positive numbers ϵ_n with $\lim_n \epsilon_n = 0$. Then if $|f_n| \leq g, \forall n$, prove that f_n converges in measure to f.
- **27.** Let $f: X \longrightarrow \mathbb{R}$ be measurable in the space (X, \mathcal{F}, μ) and put: $M\left(f\right) = \inf\left\{\alpha \geq 0: \ \mu\left\{|f| > \alpha\right\} = 0\right\}$, Prove that $|f| \leq M\left(f\right) \ \mu a.e.$

Prove that $\lim_{n \to \infty} M(f_n - f) = 0$ iff $\lim_{n \to \infty} f_n = f$ uniformly $\mu - a.e.$

28 Let $f_n, f: X \longrightarrow \mathbb{R}$ be measurable functions in the space (X, \mathcal{F}, μ) and suppose that f_n converges in measure to f; if $g: \mathbb{R} \longrightarrow \mathbb{R}$ is a uniformly continuous function prove that the sequence $g \circ f_n$ converges in measure to $g \circ f$

.