
Chapter 3

Measurable Functions

1. Preliminaries

De�nition.1.1.
Let X;Y be non empty sets.

To each function f : X �! Y it corresponds the preimage function
f�1 : P (Y ) �! P (X) de�ned by: B 2 P (Y ), f�1 (B) = fx 2 X : f (x) 2 Bg :
Also if = is any subfamily of P (Y ) put f�1 (=) =

�
f�1 (B) ; B 2 =

	
:

Proposition.1.2.
The preimage function has the following properties:

(a) f�1
�
[
i
Bi

�
= [

i
f�1 (Bi) and f�1

�
\
i
Bi

�
= \

i
f�1 (Bi)

for any family (Bi) � P (Y )
(b) f�1 (Bc) =

�
f�1 (B)

�c
; for any B 2 P (Y )

(c) B � C =) f�1 (B) � f�1 (C) for any B;C in P (Y ) :
Proof. straightforward.�
Proposition.1.3.
Let (X;F) ; (Y;G) be measure spaces and f : X �! Y a function. De�ne

the families:
<f =

�
f�1 (G) : G 2 G

	
= f�1 (G)

Bf =
�
B � Y : f�1 (B) 2 F

	
Then <f is a ���eld on X and Bf a ���eld on Y
Moreover we have f�1 (Bf ) � F :
Proof. We prove �rst that <f is a ���eld on X:
X 2 <f since X = f�1 (Y ) and Y 2 G.
Let A 2 <f with A = f�1 (G) for some G 2 G, then Ac = f�1 (Gc)
since Gc 2 G, we deduce that Ac 2 <f .
Let (An) be a sequence in <f with An = f�1 (Gn) for some Gn 2 G;
by Proposition. 1.2 (a) we have [

n
An = [

n
f�1 (Gn) = f

�1
�
[
n
Gn

�
since [

n
Gn 2 G, we deduce that [

n
An 2 <f . So <f is a ���eld on X:

The reader can do the remains by the same way.�

2. Measurable Functions Properties

De�nition.2.1.
Let (X;F) ; (Y;G) be measure spaces and f : X �! Y a function. We say that
f is measurable if f�1 (G) � F :This means that:
f�1 (G) 2 F for every G 2 G:
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Theorem.2.2.
Let f : X �! Y be a function and = a family of subsets of Y:
Then we have �

�
f�1 (=)

�
= f�1 (� (=)) :

This means that: the ���eld �
�
f�1 (=)

�
generated by f�1 (=) coincides with

the preimage of the ���eld � (=) :
Proof. = � � (=) =) f�1 (=) � f�1 (� (=)) and f�1 (� (=)) is a ���eld,
since the preimage of a ���eld is a ���eld by Proposition.1.3.
So we deduce that �

�
f�1 (=)

�
� f�1 (� (=)). Now consider the ���eld

Bf =
�
B � Y : f�1 (B) 2 �

�
f�1 (=)

�	
. IfB 2 Bf , then f�1 (B) � �

�
f�1 (=)

�
,

so f�1 (Bf ) � �
�
f�1 (=)

�
. But = � Bf , and then � (=) � Bf ,

so we get f�1 (� (=)) � f�1 (Bf ) � �
�
f�1 (=)

�
.�

Proposition.2.3.
Let (X;F) ; (Y;G) be measurable spaces and f : X �! Y a function.

Suppose there is a family = of subsets of Y with � (=) = G and satsfying
f�1 (=) � F :Then f is measurable with respect to (X;F) ; (Y;G) :
Proof. Since f�1 (=) � F we have �

�
f�1 (=)

�
� F :

By Theorem.2.2 �
�
f�1 (=)

�
= f�1 (� (=)), but � (=) = G

and so f�1 (G) � F :�
Examples.2.4.
(a) Let f : X �! R be a function from (X;F) into (R;BR) :The Borel ���eld
BR is de�ned in Proposition 3.6, chap.1. For f to be measurable it is enough
that f�1 (]�1,t[) 2 F (the intervals ]�1,t[ generates BR)
(b) Let X be a topological space with a countable base (Un) ; endowed with its
Borel ���eld BY . It is well known that BY is generated by the family (Un) and
any open set is the union of a subfamily of (Un). So for a function from (X;F)
into (Y;BY ) to be measurable it is enough that f�1 (Un) 2 F for every n.

(c) Let X,Y be topological spaces endowed with their Borel ���elds BX ;BY .
A function f : X �! Y is measurable with respect to BX ;BY i¤ f�1 (G) 2 BX
for every open set G � Y: In particular any continuous function is measurable.
(d) Let IA : X �! R be the indicator function of the set A, i.e IA (x) = 1 if
x 2 A and IA (x) = 0 if x =2 A. We have I�1A (BR) = fA;Ac; X; �g, then IA is
measurable from (X;F) into (R;BR) i¤ A 2 F .

Now we state some important properties of measurable functions.

Proposition.2.5.
Let (X;F) ; (Y;G) ; (Z;H) be measurable spaces and

f : X �! Y , g : Y �! Z measurable functions. Then the composition function
g � f : X �! Z is measurable from (X;F) into (Z;H) :
Proof. We have (g � f)�1 (H) =

�
f�1 � g�1

�
(H) = f�1

�
g�1 (H)

�
Since g is measurable g�1 (H) � G, so f�1

�
g�1 (H)

�
� f�1 (G). But f is

measurable then f�1 (G) � F . We deduce that (g � f)�1 (H) � F and g � f is
measurable.�
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Proposition.2.6.
Let (X � Y;F 
 G) be the product of the measurable spaces (X;F) ; (Y;G)

(see De�nition 3.4. Chap.1). Then the projection �1 (x; y) = x is measur-
able from (X � Y;F 
 G) into (X;F). Similarly the projection �2 (x; y) = y is
measurable from (X � Y;F 
 G) into (Y;G).
Proof. By De�nition 3.4 Chap.1 the ���eld F 
 G contains the family
fA�B : A 2 F ; B 2 Gg. We get ��11 (A) = A� Y 2 F 
 G for every A 2 F
and ��12 (B) = X�B 2 F 
G for every B 2 G. So �1 and �2 are measurable.�
Proposition.2.7.
Let (Z;H) be a measurable space and let f : Z �! X � Y be a function

with f1 = �1 � f : Z �! X and f2 = �2 � f : Z �! Y . Then f is measurable
from (Z;H) into (X � Y;F 
 G) if and only if f1 is measurable from (Z;H) into
(X;F) and f2 is measurable from (Z;H) into (Y;G) :
Proof. The <if> part comes from the measurability of �1 and �2 (Proposition
2.6) and the measurability of the composition function (Proposition 2.5).
We prove the <only if> part:. Since the family fA�B : A 2 F ; B 2 Gg gen-
erates the product ���eld F 
 G it is enough to prove that f�1 (A�B) 2 H
(Proposition 2.3). Since f1 and f2 are measurable we have
f�11 (A) = (�1 � f)�1 (A) = f�1 (A� Y ) 2 H
and f�12 (A) = (�2 � f)�1 (B) = f�1 (X �B) 2 H

f�1 (A� Y ) \ f�1 (X �B) = f�1 ((A� Y ) \ (X �B)) = f�1 (A�B) 2 H:�
Remark. 2.8.
Let Let X be a topological space. Let us recall that the Borel ���eld of X

is the ���eld generated by the family of all the open sets of X.
It is denoted by BX : Sets in BX are called Borel sets ofX. IfX;Y are topological
spaces whose product X �Y is endowed with the product topology then on the
space X � Y one may put two ���elds that are BX 
 BY and BX
Y . An
interesting question is when do we have BX
Y = BX 
 BY . It is known that if
X and Y are separable metric spaces then BX
Y = BX 
 BY . This result is of
particular importance when X = Y = R :
Theorem.2.9.
The space R is separable, since the countable set Q of rational numbers

is dense. So the set R2 with the product topology is separable and we have
BR2 = BR 
 BR.
As a consequence of this Theorem we have:
Proposition. 2.10.
Let f; g : X �! R be measurable functions from (X;F) into (R;BR). Then

the following functions f + g, f:g, sup (f; g), inf (f; g) are measurable.

Proof. Since the functions f; g are measurable, the function ' : X �! R2 de-
�ned by ' (x) = (f (x) ; g (x)) is measurable with respect to F and BR2(Proposition.2.7).
On the other hand the functions S; P;M;m : R2 �! R given by: S (u; v) = u+v,
P (u; v) = uv, M (u; v) = sup (u; v), m (u; v) = inf (u; v) are continuous and so
measurable with respect to BR2 and BR. Now we have S �' = f+g, P �' = fg,
M � ' = sup (f; g), m � ' = inf (f; g); the conclusion comes from Proposi-
tion.2.5.�
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Corollary. The family M (X;R) of measurable functions from (X;F) into
(R;BR) is a vector space on the �eld R and even an algebra of functions.
De�nition.2.11.
Let ffi; i 2 Ig be a family of functions de�ned on a set X such that each fi :

X �! Ei sends X into the measurable space (Ei;Fi) : The ���eld generated
by the family ffi; i 2 Ig is de�ned as the smallest ���eld F on X making each
function fi measurable from (X;F) into the space (Ei;Fi). We denote this
���eld F by � ffi; i 2 Ig; in other words � ffi; i 2 Ig is the smallest ���eld F
on X containing all the families f�1i (Fi) ; i 2 I:
Examples.2.12.
(a) Let X be a set and take ffi; i 2 Ig = fIA; A 2 P (X)g where IA is the
indicator function, then � fIA; A 2 P (X)g = P (X) :
(b) Let X be a topological space. The Baire ���eld on X is de�ned as the
���eld B0 (X) generated by all continuous functions fi : X �! R, that is the
smallest ���eld onX making each continuous function fi : X �! Rmeasurable
with respect to B0 (X) and BR:
(c) If in Example (b) the space X is a metric space whose topology is de�ned
by the distance d then B0 (X) coincides with the Borel ���eld BX on X.
Indeed we have B0 (X) � BX since BX makes each continuous function measur-
able as easily may be seen. On the other hand let F be a closed set in X and
consider the continuous function f : X �! R given by f (x) = d (x; F ). Then
we have F = fx 2 X : f (x) = 0g = f�1 (0) 2 B0 (X); so B0 (X) contains
all the closed sets of X and then BX � B0 (X) since BX is generated by the
family of closed sets in X (see De�nition 3.5 Chap.1).
(d) Let (X � Y;F 
 G) be the product of the measurable spaces (X;F) ; (Y;G).
Then the projection �1 (x; y) = x and the projection �2 (x; y) = y are measur-
able on (X � Y;F 
 G) (Proposition.2.6). Then ��11 (A) = A� Y 2 F 
 G for
every A 2 F and ��12 (B) = X �B 2 F 
 G for every B 2 G.
We deduce that � f�1; �2g � F 
 G. On the other hand we have:
��11 (A)\��12 (B) = (A� Y )\(X �B) = A�B 2 F
G. So every set of the form
A�B with A 2 F and B 2 G is in � f�1; �2g. But � fA�B : A 2 F ; B 2 Gg =
F 
 G, �nally F 
 G � � f�1; �2g. Then F 
 G = � f�1; �2g.
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3. Exercises

20. Let X be a non empty set. Determine the ���eld F generated by the
constant functions f : X �! R. Let = be the family of measurable functions
from (X;F) into (R;BR), prove that = is isomorphic to R.
21. Let f be a measurable function from (X;F) into (R;BR), prove that jf j
is measurable. Let E be a set not Lebesgue measurable (see section 5 for the
de�nition of Lebesgue measurable sets). Consider the function f : R �! R
de�ned by f (x) = xIEc �xIE , prove that f is not Lebesgue measurable but jf j
is measurable.
22. Let f(Xi;Fi) ; 1 � i � ng be a �nite family of measurable spaces and form
the product set X =

n

�
1
Xi = X1 �X2 � � � � �Xn. We denote by pi : X �! Xi

the projection from X onto Xi given by pi (x1; x2; � � �; xn) = xi. Consider the
���eld � fpi; 1 � i � ng generated by the functions fpi; 1 � i � ng and denoted

by F1
F2
� � �
Fn =
n


1
Fi. The space

�
X;

n


1
Fi
�
is called the product of the

spaces (Xi;Fi) ; 1 � i � n.
(a) Prove that

n


1
Fi is generated by the subsets of X of the form

A = A1 �A2 � � � � �An, Ai 2 Fi 1 � i � n.
(b) Let (Y;G) be a measurable space and let g : Y �!

n

�
1
Xi be a function, prove

that g is measurable with respect to (Y;G) and
�
X;

n


1
Fi
�
if and only if pi � g

is measurable from (Y;G) into (Xi;Fi) for each 1 � i � n.
23. Let X be a non empty set and let ffi; i 2 Ig be a family of functions de�ned
on X such that each fi : X �! Ei sends X into the measurable space (Ei;Bi).
Suppose that X is endowed with the ���eld � ffi; 1 � i � ng generated by
the functions ffi; 1 � i � ng (see De�nition 2.11). Let (Y;G) be a measurable
space and let g : Y �! X, prove that g is measurable with respect to (Y;G) and
(X;� ffi; 1 � i � ng) if and only if fi � g is measurable from (Y;G) into (Ei;Bi)
for each 1 � i � n.

4. Measurable Functions with values
in R;R;C

De�nition.4.1
(a) The set R is the real numbers system endowed with the Borel ���eld BR:
(b) The set R is de�ned as fR;�1;+1g. The ���eld we need on R is given
by � fBR;�1;1g and denoted by BR:
(c) It is well known that the set C of complex numbers can be identi�ed with
the product space R � R; so we can identify the Borel ���eld BCwith BR�R,
which is BR 
 BR by Theorem.2.9.
Notations. 4.2.
Let (X;F) be a measurable space. In the sequel.we will use the following

notations:

5



M (X;R) is the family of measurable functions f from (X;F) into (R;BR).
M (X;C) is the family of measurable functions f from (X;F) into (C;BC)
We already have seen that M (X;R) is a vector space on the �eld R (see the
Corollary of Proposition.2.10).
It is not di¢ cult to prove the same forM (X;C)
Arithmetic in R. 4.3.
We will agree with the following conventions in R = fR;�1;+1g :

0 � (�1) = (�1) � 0 = 0
(+1) + (+1) = +1
(�1) + (�1) = �1
a� (�1) = �1;8a 2 R
(�1) � (�1) = (�1)
De�nition. 4.4.
Let (X;F) be a measurable space.

A function f : X �! R is measurable from (X;F) into
�
R;BR

�
if:

f�1 (B) 2 F ;8B 2 BR, and f�1 (+1) 2 F ; f�1 (�1) 2 F
this comes from the fact that BR = � fBR;�1;1g and Proposition 2.3.
We denote byM

�
X;R

�
the the family of measurable functions f from (X;F)

into
�
R;BR

�
.

Proposition. 4.5.
The ���eld BR is generated by all the intervals of the form [�1; t [:

Proof. Use the fact that BR is generated by all the open intervals by
Proposition 3.6.Chap.1�
Corollary.
A function f : X �! R is measurable from (X;F) into

�
R;BR

�
if:

f�1 ([�1; t [) 2 F ;8t 2 R:
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De�nition. 4.6.
Let (X;F) ; (Y;G) be measurable spaces and E � X a subset of X:

If f : X �! Y is a function. We say that f is measurable on E if the restriction
of f to E considered as a function from (E;E \ F) into (Y;G) is measurable.
Example. 4.7.
If f; g are inM

�
X;R

�
, then the function f+g is measurable on the set E with:

Ec = (ff =1g \ fg = �1g) [ (ff = �1g \ fg =1g)
Let ' be the restriction of f + g to E then we have
' is well de�ned on E and f' < tg = ff + g < tg \ E 2 E \ F :

5. Sequences of Measurable Functions

De�nition. 5.1. (simple function)
Let f : X �! R be a function from X into R: The function f is simple

if it takes a �nite number of values, that is, f is simple if the set f (X) is a
�nite subset of R: So if f (X) = fa1; a2; :::; ang and Ai = fx : f (x) = aig ; i =
1; 2; :::; n, then fA1; A2; :::; Ang is a partition of X and the function f can be

written as f (�) =
nP
1
ai:IAi

(�), where IAi
is the indicateur function of the set

Ai; i = 1; 2; :::; n:

Proposition. 5.2

A simple function f (�) =
nP
i=1

ai:IAi
(�) is measurable from (X;F) into (R;BR)

i¤ Ai 2 F ; i = 1; 2; :::; n.
Proof. We have f�1 faig = Ai 2 F ; i = 1; 2; :::; n; so if B 2 BR and
nB = fi : ai 2 Bg, we deduce that f�1 (B) = [

i2nB
Ai 2 F :�

Notation. 5.3. We denote by E the family of measurable simple functions
from (X;F) into (R;BR)
Proposition. 5.4.
Let s; t be in E and � 2 R, then:

the functions s+ t; s � t; � � s; sup (s; t) ; inf (s; t) are in E .

Proof. Write s (�) =
nP
1
ai:IAi

(�), t (�) =
mP
1
bj :IBj (�), then we have:

s+ t =
nP
i=1

mP
j=1

(ai + bj) :IAi\Bj

s � t =
nP
i=1

mP
j=1

(aibj) :IAi\Bj
; � � s =

nP
1

(�ai) :IAi

(so the family E is an algebra on R:)

sup (s; t) =
nP
i=1

mP
j=1

sup (ai; bj) :IAi\Bj
; inf (s; t) =

nP
i=1

mP
j=1

inf (ai; bj) :IAi\Bj

Since fAi \Bj ; 1 � i � n; 1 � j � mg is a partition of X we get the result.�
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Proposition. 5.5.
Let (fn) be a sequence of functions inM (X;R) or either inM

�
X;R

�
then:

the functions sup
n
fn and inf

n
fn are inM

�
X;R

�
:

Proof. For any t 2 R we have
�
sup
n
fn � t

�
= \

n
ffn � tg whence the mesura-

bility of sup
n
fn: Since inf

n
fn = �sup

n
� fn we deduce the mesurability of inf

n
fn:�

Corollary. 1.
Let (fn) be a sequence of functions inM (X;R) or either inM

�
X;R

�
then:

the functions lim sup
n

fn and lim inf
n

fn are measurable

Proof. Comes directly from the proposition above since lim sup
n

fn = inf
n�1

sup
k�n

fk

and lim inf
n

fn = sup
n�1

inf
k�n

fk:�

Corollary. 2.
Let (fn) be a sequence of functions inM (X;R) or either inM

�
X;R

�
then:

The set C =
�
x : lim sup

n
fn (x) = lim inf

n
fn (x)

�
belongs to F :

Proof. Observe that C is the convergence set of the sequence (fn). Put :

C1 =

��
x : lim sup

n
fn (x) =1

�
\
n
x : lim inf

n
fn (x) =1

o�
C2 =

��
x : lim sup

n
fn (x) = �1

�
\
n
x : lim inf

n
fn (x) = �1

o�
C3 =

�
x : lim sup

n
fn (x) 2 R

�
\
�
x : lim sup

n
fn (x) = lim inf

n
fn (x)

�
Then C1 and C2 and C3 are in F and C = C1 [ C2 [ C3:�:
Corollary. 3.
Let (fn) be a sequence of functions inM (X;R) or either inM

�
X;R

�
Suppose that: lim

n
fn (x) = f (x) 2 R exists for each x 2 X: Then f 2M

�
X;R

�
:

Proof. The convergence set C =
�
x : lim sup

n
fn (x) = lim inf

n
fn (x)

�
given in

Corollary 2 is equal to X here.
So the function f (x) is equal to lim sup

n
fn (x) = lim inf

n
fn (x) ;8x 2 X. Then f

is measurable by Corollary 1.�
The following theorem is fundamental and will be used in the construction of
the integral of a measurable function.

Theorem. 5.6.
Let f 2M

�
X;R

�
be such that f (x) 2 [0;1], 8x 2 X:Then:

there exists a sequence (sn)of positive measurable simple functions
from (X;F) into (R;BR) with:
(i) 0 � sn � sn+1
(ii) lim

n
sn (x) = f (x), 8x 2 X:
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Proof. For each n � 1 and each x 2 X, de�ne sn by:
sn (x) =

i� 1
2n

if
i� 1
2n

� f (x) < i

2n
; i = 1; 2; :::; n2n

sn (x) = n if f (x) � n
we can use a consolidated form for sn:

sn (x) =
n2nP
i=1

i� 1
2n

I( i� 1
2n

�f(x)<
i

2n

) + n Iff(x)�ng
recall that IA is the function de�ned by IA (x) = 1 if x 2 A and IA (x) = 0 if
x =2 A.
Then (sn) is an increasing sequence of positive simple functions (check it!).
Let us prove that lim

n
sn (x) = f (x), 8x 2 X:

if f (x) < 1 then for every n > f (x) we have 0 < f (x) � sn (x) <
1

2n
, so

lim
n
sn (x) = f (x)

if f (x) = 1 then f (x) � n for every n and so we have sn (x) = n for all n
whence lim

n
sn (x) =1:�

De�nition. 5.7.
Let f 2M

�
X;R

�
. De�ne the positive measurable functions f+; f� by:

f+ = sup (f; 0), f� = � inf (f; 0)
Remark. 5.8.
It is easy to check that:

f = f+ � f�
jf j = f+ + f�

Proposition. 5.9.
Let f 2 M

�
X;R

�
. Then there exists a sequence (sn) of measurable simple

functions from (X;F) into (R;BR) with lim
n
sn (x) = f (x), 8x 2 X:

Proof. We have f = f+ � f� where f+; f� are simple positives.
By Theorem. 5.6.there exist simple positive functions s

0

n; s
00

n such that:
lim
n
s
0

n (x) = f
+ (x), 8x 2 X and lim

n
s
00

n (x) = f
� (x), 8x 2 X: Then sn = s

0

n� s
00

n

is measurable simple and lim
n
sn (x) = f

+ (x)� f� (x) = f (x), 8x 2 X:�
Corollary.
Let f 2M (X;R) and suppose f bounded. Then there is a sequence (sn) of

measurable simple functions converging uniformly to f on X.

Proof. By the Proposition above it is enough to consider the case f positive.
Since f is bounded there is n such that n > f (x) for every x 2 X. So there
exists a sequence (sn) of positive measurable simple functions

with 0 � f (x) � sm (x) <
1

2m
;8x 2 X;8m > n, from which we deduce the

uniform convergence of sn to f on X:�
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6. Convergence of Measurable Functions

Let us recall that if (X;F ; �) is a measure space, a subset N of X is a null
set if there is A 2 F , with � (A) = 0 such that N � A.
In this section we describe di¤erent type of convergence of measurable functions
and the relations between them.

De�nition. 6.1.
Let P be a property depending on a variable x 2 X, that is P may be true

or false according to x. We say that P is true almost every where if there is a
null subset N of X such that P is true for any x outside N .
Examples. 6.2.
(a) A function f : X �! R is said to be �nite almost every where if there is a
null subset N of X such that f (x) 2 R 8x 2 XnN . If moreover f 2 M

�
X;R

�
then ff = �1g 2 F and the condition of �niteness almost every where may be
written simply as � ff = �1g = 0:
(b) :A function f : X �! R is said to be bounded almost every where if there
is a constant M > 0 and a null subset N such that jf (x)j � M;8x 2 XnN . If
moreover f 2M (X;R) then fjf j > Mg 2 F and the condition of boundedness
almost every where may be written simply as � fjf j > Mg = 0:
(c). Let f; g : X �! R be functions. We say that f = g almost every where
if there is a null subset N such that f (x) = g (x) ;8x 2 XnN . If moreover
f 2M

�
X;R

�
, the condition may be written as � ff 6= gg = 0:

Abbreviation. almost every where with respect to � is abbreviated to: ��a:e
De�nition. 6.3.
Let fn : X �! R be a sequence of functions. We say that fn converges ��a:e if
the set N =

�
lim sup

n
fn 6= lim inf

n
fn

�
is a null set. In other words fn converges

��a:e if for each x 2 XnN the real sequence fn (x) converge to the real number
f (x), that is: 8� > 0;9m (�; x) � 1 such that 8n � m (�; x) ; jfn (x)� f (x)j < �:
De�nition. 6.4.
Let fn : X �! R be a sequence of functions. We say that fn is a Cauchy
sequence � � a:e if there is a null subset N such that for each x 2 XnN the
real sequence fn (x) is a Cauchy sequence in R, that is satis�es the following
condition:
8� > 0;9M (�; x) � 1 such that 8n;m �M (�; x) ; jfn (x)� fm (x)j < �

Proposition. 6.5.
Let fn : X �! R be a sequence of functions. The following conditions are

equivalent:
(a) The sequence fn converges to �� a:e to a function f : X �! R
(b) fn is a Cauchy sequence �� a:e
Proof. For each x outside of a null set fn (x) is a Cauchy sequence in R, so the
Proposition results from the validity of the same properties in R.�
Now let us come to the convergence of measurable functions.
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Proposition. 6.6.
Let fn be a sequence of functions in M

�
X;R

�
converging � � a:e on X.

Then there is f 2M
�
X;R

�
such that fn converges �� a:e to f:

Conversely if there is f : X �! R such that fn converges � � a:e to f , then f
is measurable on a set E with � (Ec) = 0:

Proof. Take E =
�
x : lim sup

n
fn (x) = lim inf

n
fn (x)

�
and take f de�ned by:

f (x) = lim inf
n

fn (x) for x 2 E and f (x) = 0 for x 2 Ec

(see De�nition 4.6 for the measurability of f on E ).�
De�nition. 6.7. (uniform convergence �� a:e)
Let fn : X �! R be a sequence of functions. We say that fn converges

uniformly �� a:e to the function f : X �! R if there is a null set N such that
fn converges uniformly to f on XnN , that is:
8� > 0;9M (�) � 1 such that 8n �M (�) ; jfn (x)� f (x)j < �;8x 2 XnN

We say that fn is a Cauchy sequence for the uniform convergence � � a:e if
there is a null set N such that:
8� > 0;9M (�) � 1 such that 8n;m � M (�) ; jfn (x)� fm (x)j < �; 8x 2

XnN
let us observe that the integer M (�) does not depend on x.

Remark. 6.8.
In most of our discussion, especially in integration theory, we frequently use

a complete measure space (X;F ; �) as our basic space.
So in this case every null set is in F and this avoids some cumbersome measur-
ability character of functions.

The following Theorem localizes the points of the spaceX where the convergence
of a sequence fails to be uniform. Let us start with an example:

Example. 6.9.
Consider the space X = [0; 1] endowed with the Lebesgue measure � and let

fn : X �! R be the sequence of functions given by fn (x) = xn; x 2 [0; 1]. The
sequence converges pointwise to the function f given by f (x) = 0 for 0 � x < 1,
and f (x) = 1 for x = 1, but the convergence is not uniform (why?). However for
� > 0, we see that the sequence fn converges uniformly on the interval

�
0; 1� �

2

�
;

intuitevely the points where the uniform convergence fails are localized in the
set B =

�
1� �

2 ; 1
�
and � (B) < �:

Theorem. 6.10. (Egorov)
Let (X;F ; �) be a measure space, with � (X) < 1. Let fn; f 2 M

�
X;R

�
be functions �nite �� a:e:
Suppose that the sequence fn converges �� a:e to f on X: Then we have:
For every � > 0 there is B 2 F such that � (B) < �
and fn converges uniformly to f on XnB:

Proof. Without losing general hypothesis, we can assume that:
fn; f take values in R and fn converges everywhere to f on X:
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Let Emn = \
j�n

�
jfj � f j < 1

m

	
, since fn; f are measurable we get Emn 2 F ,8n;m.

Moreover it is clear that Emn � Emn+1 � :::: � [
n�1

Emn . Since fn converges

everywhere to f on X, we have [
n�1

Emn = X;8m � 1.
So XnEmn � XnEmn+1 � :::: � \

n�1
(XnEmn ) = /� for each m � 1. Since � (X) <

1 we deduce that lim
n
� (XnEmn ) = 0; so for each m � 1 there is n (m) � 1 such

that �
�
XnEmn(m)

�
<

�

2m
. Now put B = [

m�1
XnEmn(m); then we have:

� (B) �
P
m�1

�
�
XnEmn(m)

�
<
P
m�1

�

2m
= �. So � (B) < � and XnB = \

m�1
Emn(m),

therefore jfn (x)� f (x)j < 1
m ;8x 2 XnB;8n > n (m) and then the uniform

convergence of fn to f on XnB:�

Remark. 6.11.

Egorov�Theorem is not valid in the case � in�nite as is shown by the follow-
ing:
Take for (X;F ; �) the space (N;P (N) ; �) with � the counting measure;
if fn = If1;2;:::;ng then fn (k) converges to 1 for each k 2 N; nevertheless there
is no F � N such that � (F ) < � and fn converges uniformly to 1 on XnF
(indeed take 0 < � < 1).

Remark. 6.12.
It is not di¢ cult to prove the equivalence of the following assertions:

(a) fn converges almost uniformly
(b) fn is a Cauchy sequence for the almost uniform convergence.
De�nition. 6.13.
Let (X;F ; �) be a measure space, and let fn; f 2M

�
X;R

�
be functions �nite �� a:e:
(a) the sequence fn converges almost uniformly if:
8� > 0 9B 2 F such that � (B) < � and fn converges uniformly to f on XnB:
(b) the sequence fn is a Cauchy sequence for the almost uniform convergence if:
8� > 0 9B 2 F such that � (B) < � and fn is a Cauchy sequence for the uniform
convergence on XnB:
Here is a speci�c type of convergence of measurable functions:

De�nition. 6.14.
Let fn; f 2M

�
X;R

�
be functions �nite �� a:e:.

We say that the sequence (fn) converges in measure to f if:
8� > 0; lim

n
� fx : jfn (x)� f (x)j > �g = 0

Notation: fn
��! f

Proposition. 6.15.
The almost uniform convergence implies:

(a) The convergence �� a:e
(b) The convergence in measure
Proof. By almost uniform convergence we have:
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8k � 1;9Fk 2 F , with � (Fk) < 1
k , and fn converges uniformly on XnFk:

Take F = \
k
Fk then F 2 F , � (F ) = 0. If x 2 XnF , there is k such that

x 2 XnFk, so lim
n
fn (x) = f (x) and proves (a) :

By almost uniform convergence we have:
8� > 0;9F� 2 F , with � (F�) < �, and fn converges uniformly on XnF�:
Put En (�) = fx : jfn (x)� f (x)j > �g, then En (�) = En (�) \ F� + En (�) \
XnF�; we deduce that � (En (�)) < � + � (En (�) \XnF�). Now since fn con-
verges uniformly on XnF� there is N (�; �) � 1 such that for n � N (�; �),
� (En (�) \XnF�) = 0. This proves that 8� > 0; lim

n
� (En (�)) = 0 whence

fn
��! f:�

Proposition. 6.16.
Let (X;F ; �) be a measure space, with � (X) <1. Then:

The convergence �� a:e implies the convergence in measure.
Proof. By Egorov Theorem (6.10) convergence � � a:e implies almost uni-
form convergence from which the convergence in measure comes by Proposition.
6.15.�
Proposition. 6.17.
If fn

��! f then fn is a Cauchy sequence for the convergence in measure that
is:
8� > 0; lim

n;m
� fx : jfn (x)� fm (x)j > �g = 0

Moreover if also fn
��! g then f = g �� a:e:

Proof. Since jfn (x)� fm (x)j � jfn (x)� f (x)j + jf (x)� fm (x)j, we deduce
that:
fx : jfn (x)� fm (x)j > �g �

�
x : jfn (x)� f (x)j > �

2

	
[
�
x : jfm (x)� f (x)j > �

2

	
and we have:
� fx : jfn (x)� fm (x)j > �g �
�
�
x : jfn (x)� f (x)j > �

2

	
+ �

�
x : jfm (x)� f (x)j > �

2

	
so lim

n;m
� fx : jfn (x)� fm (x)j > �g �

lim
n
�
�
x : jfn (x)� f (x)j > �

2

	
+ lim

m
�
�
x : jfm (x)� f (x)j > �

2

	
= 0

now suppose fn
��! g; it is clear that

fx : jf (x)� g (x)j > 0g = [
n

�
x : jf (x)� g (x)j > 1

n

	
and

�
x : jf (x)� g (x)j > 1

n

	
��

x : jf (x)� fk (x)j > 1
2n

	
[
�
x : jfk (x)� g (x)j > 1

2n

	
;8k; n; then

�
�
x : jf (x)� g (x)j > 1

n

	
�

�
�
x : jf (x)� fk (x)j > 1

2n

	
+ �

�
x : jfk (x)� g (x)j > 1

2n

	
the right side goes to 0 as k �!1, for each n since fn

��! f and fn
��! g,

so �
�
x : jf (x)� g (x)j > 1

n

	
= 0 for all n and then

� fx : jf (x)� g (x)j > 0g = 0 whence f = g �� a:e:�
Lemma. 6.18.
Every Cauchy sequence in measure fn contains a subsequence fnk satisfying
Cauchy condition for the almost uniform convergence (De�nition 6.13(b)).
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Proof. Left to the reader.�
Theorem. 6.19.
Every Cauchy sequence in measure fn converges in measure to a measurable

function f

Proof. By Lemma 6.18, fn contains a subsequence fnk satisfying the Cauchy
condition for the almost uniform convergence. So from Remark.6.12 the subse-
quence fnk converges almost uniformly to some measurable function f and then
fnk converges in measure to f by Proposition. 6.15 (b). But fn itself converges
in measure to f , indeed we have:
fx : jfn (x)� f (x)j > �g �

�
x : jfn (x)� fnk (x)j > �

2

	
[
�
x : jf (x)� fnk (x)j > �

2

	
and � fx : jfn (x)� f (x)j > �g �
�
�
x : jfn (x)� fnk (x)j > �

2

	
+ �

�
x : jf (x)� fnk (x)j > �

2

	
so if n; k �! 1; �

�
x : jfn (x)� fnk (x)j > �

2

	
�! 0, since fn is Cauchy se-

quence in measure and �
�
x : jf (x)� fnk (x)j > �

2

	
�! 0 because fnk converges

in measure to f .�

7. Exercises

24. (a) Prove that in any measure space the uniform convergence implies the
convergence in measure.
(b) In the counting measure space (N;P (N) ; �) the uniform convergence is
equivalent to the convergence in measure.
25. In the space (N;P (N) ; �) consider the sequence of indicator functions
fn = If1;2;:::;ng; prove that fn converges �� a:e but does not converge in mea-
sure.What do we deduce about Proposition. 4.3.16.
26. Let fn; f 2 M

�
X;R

�
be functions �nite � � a:e:. Suppose fn con-

verges pointwise to f and there is a positive measurable function g satisfying
lim
n
� fg > �ng = 0 for some sequence of positive numbers �n with lim

n
�n = 0.

Then if jfnj � g;8n, prove that fn converges in measure to f .
27. Let f : X �! R be measurable in the space (X;F ; �) and put:
M (f) = inf f� � 0 : � fjf j > �g = 0g ;Prove that jf j �M (f) �� a:e:
Prove that lim

n
M (fn � f) = 0 i¤ lim

n
fn = f uniformly �� a:e:

28 Let fn; f : X �! R be measurable functions in the space (X;F ; �) and
suppose that fn converges in measure to f ; if g : R �! R is a uniformly
continuous function prove that the sequence g �fn converges in measure to g �f
.
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