Chapter 3

Measurable Functions

1. Preliminaries

Definition.1.1.

Let X,Y be non empty sets.
To each function f: X — Y it corresponds the preimage function
f71:P(Y) — P(X) defined by: BeEP(Y), f 1 (B)={z€ X : f(z) € B}.
Also if S is any subfamily of P (Y) put f~!(S) = {f~*(B),B € S}.
Proposition.1.2.

The preimage function has the following properties:

(a) /71 (UB:) = Uf =" (Bi) and £~ (0B;) = 0f 7 (By)
for any family (B;) C P (Y)

(b) f7H(B°) = (f~1(B))", for any B € P (Y)

() BCC = f1(B)C f~1(C) for any B,C in P (Y).
Proof. straightforward.ll

Proposition.1.3.
Let (X,F),(Y,G) be measure spaces and f : X — Y a function. Define
the families:
Ry ={/1(G):Geg}=f""(9)
By={BCY:f'(B)eF}
Then Ry is a o—field on X and By a o—field on Y’
Moreover we have f~1 (By) C F.
Proof. We prove first that R is a c—field on X.
X € Ry since X = f1(Y)and Y € G.
Let A € Ry with A = f~!(G) for some G € G, then A° = f~1(G°)
since G° € G, we deduce that A° € R;.
Let (A,) be a sequence in Ry with A, = f~!(G,,) for some G, € G;
by Proposition. 1.2 (a) we have UA,, = Uf~1(G,) = f~! <UGn)
since UG,, € G, we deduce that UA,, € Ry. So Ry is a o—field on X.
The reader can do the remains by the same way.ll

2. Measurable Functions Properties

Definition.2.1.

Let (X,F),(Y,G) be measure spaces and f: X — Y a function. We say that
f is measurable if f~1 (G) C F.This means that:

f71(G) € F for every G € G.



Theorem.2.2.

Let f: X — Y be a function and & a family of subsets of Y.

Then we have o (f71(9)) = /7! (¢ (9)).

This means that: the o—field o (f~*(S)) generated by f~'(S) coincides with
the preimage of the o—field o (S).

Proof. S C o (S) = f1(S) C f1(0(9)) and f~1(0(Q)) is a o—field,
since the preimage of a o—field is a o—field by Proposition.1.3.

So we deduce that o (f~1(S)) C ff1 (0 (3)). Now consider the o—field
By={BcCY:[f! (B) co(f1(Q)}. B e By, then f~1(B)Co(f1(9)),
so f71(By) Co (f71(S)). But S C By, and then o (3) C By,

so we get f1(0(3)) C 71 Bf)Ca(f 1(%))..

Proposition.2.3.

Let (X,F),(Y,G) be measurable spaces and f : X — Y a function.
Suppose there is a family ' of subsets of YV with ¢ (3) = G and satsfying
f71(S) € F.Then f is measurable with respect to (X, F),(Y,G).

Proof. Since f~!(S) C F we have o (f~1(S)) C F.

By Theorem.2.2 o (f~1(Q)) = 7! (¢ (Y)), but 0 (I) =G

and so f~1(G) c F.1

Examples.2.4.

(a) Let f: X — R be a function from (X, F) into (R, Br).The Borel o—field
Br is defined in Proposition 3.6, chap.1. For f to be measurable it is enough
that f=1 (]—o0o,t[) € F (the intervals |—oo,t[ generates Bg)

(b) Let X be a topological space with a countable base (U,,), endowed with its
Borel o—field By . It is well known that By is generated by the family (U,,) and
any open set is the union of a subfamily of (U,,). So for a function from (X, F)
into (Y, By) to be measurable it is enough that f~! (U,) € F for every n.

(c) Let XY be topological spaces endowed with their Borel o—fields Bx, By.
A function f: X — Y is measurable with respect to Bx, By iff f~!(G) € Bx
for every open set G C Y. In particular any continuous function is measurable.
(d) Let T4 : X — R be the indicator function of the set A, i.e I (z) = 1 if
x € Aand Is(z) =0if z ¢ A. We have I;' (Br) = {A, A°, X, ¢}, then I, is
measurable from (X, F) into (R, Bg) iff A € F.

(
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Now we state some important properties of measurable functions.

Proposition.2.5.

Let (X,F),(Y,G),(Z, H) be measurable spaces and
f: X —Y,g:Y — Z measurable functions. Then the composition function
go f: X — Z is measurable from (X, F) into (Z, H)
Proof. We have (g o f)71 (H) = (ffl ngl) (H) = (9 ( ))
Since g is measurable g=' (H) C G, so f~! (¢~ (H )) C f71(G). But f is
measurable then f~! (G) € F. We deduce that (go f)™" (H) € F and go f is
measurable.ll



Proposition.2.6.

Let (X X Y, F ® G) be the product of the measurable spaces (X, F), (Y, G)
(see Definition 3.4. Chap.1). Then the projection 7y (z,y) = = is measur-
able from (X x Y,F ® G) into (X, F). Similarly the projection 3 (z,y) = y is
measurable from (X x Y, F ® G) into (Y, G).

Proof. By Definition 3.4 Chap.1 the o—field F ® G contains the family
{AxB: AcF, BcG} Wegetm;'(A)=AxY € F®G for every A € F
and 7,1 (B) = X x B € F®G for every B € G. So m; and 7y are measurable.l
Proposition.2.7.

Let (Z,H) be a measurable space and let f : Z — X X Y be a function
with fi=mof:Z — X and fo =790 f: Z — Y. Then f is measurable
from (Z,’H) into (X x Y, F ® G) if and only if f; is measurable from (Z, H) into
(X,F) and fo is measurable from (Z,H) into (Y, G).

Proof. The <if> part comes from the measurability of w1 and 7o (Proposition
2.6) and the measurability of the composition function (Proposition 2.5).

We prove the <only if> part:. Since the family {Ax B: A€ F, B € G} gen-
erates the product o—field F ® G it is enough to prove that f~! (A x B) € ‘H
(Proposition 2.3). Since f; and f, are measurable we have

it (A) =(miof) 7 (A) =1 (AxY)eH

and fy ' (A) = (m0 /)" (B)=f'(X xB) e H
fTPAXY)N YN X xB)=f 1 (AxY)N(XxB)=f1(AxB)eHN
Remark. 2.8.

Let Let X be a topological space. Let us recall that the Borel o—field of X
is the o—field generated by the family of all the open sets of X.

It is denoted by Bx. Sets in Bx are called Borel sets of X. If X, Y are topological
spaces whose product X x Y is endowed with the product topology then on the
space X X Y one may put two o—fields that are Bx ® By and Bxgy. An
interesting question is when do we have Bxgy = Bx ® By. It is known that if
X and Y are separable metric spaces then Bxgy = Bx ® By . This result is of
particular importance when X =Y =R :

Theorem.2.9.

The space R is separable, since the countable set Q of rational numbers
is dense. So the set R? with the product topology is separable and we have
Br2 = Br ® Bg.

As a consequence of this Theorem we have:
Proposition. 2.10.

Let f,g : X — R be measurable functions from (X, F) into (R, Bg). Then

the following functions f + g, f.g, sup (f, g), inf (f, g) are measurable.

Proof. Since the functions f, ¢ are measurable, the function ¢ : X — R? de-

fined by ¢ (z) = (f (x), g (x)) is measurable with respect to F and Bgz (Proposition.2.7).
On the other hand the functions S, P, M, m : R? — R given by: S (u,v) = u+w,

P (u,v) = ww, M (u,v) = sup (u,v), m (u,v) = inf (u,v) are continuous and so
measurable with respect to Bg2 and Bgr. Now we have Sop = f+g, Pop = fg,

Moy = sup(f,g), mo e = inf(f,g); the conclusion comes from Proposi-
tion.2.5.H



Corollary. The family M (X,R) of measurable functions from (X,F) into
(R, Bgr) is a vector space on the field R and even an algebra of functions.

Definition.2.11.

Let {f;,i € I'} be a family of functions defined on a set X such that each f; :
X — E; sends X into the measurable space (E;, F;). The o—field generated
by the family {f;,i € I} is defined as the smallest o—field F on X making each
function f; measurable from (X,F) into the space (F;, ;). We denote this
o—field F by o {f;,i € I'}; in other words o {f;,i € I} is the smallest o—field F
on X containing all the families f;* (F;),i € I.
Examples.2.12.
(a) Let X be a set and take {f;,i € I} = {I4,A € P(X)} where I4 is the
indicator function, then o {I4,A € P (X)} =P (X).
(b) Let X be a topological space. The Baire o—field on X is defined as the
o—field By (X) generated by all continuous functions f; : X — R, that is the
smallest o—field on X making each continuous function f; : X — R measurable
with respect to By (X) and Bg.
(¢) If in Example (b) the space X is a metric space whose topology is defined
by the distance d then By (X) coincides with the Borel o—field Bx on X.
Indeed we have By (X) C Bx since Bx makes each continuous function measur-
able as easily may be seen. On the other hand let F' be a closed set in X and
consider the continuous function f : X — R given by f (z) = d(z, F). Then
we have F={zx € X : f(z) =0} = f~1(0) € By (X); so By (X) contains
all the closed sets of X and then Bx C By (X) since Bx is generated by the
family of closed sets in X (see Definition 3.5 Chap.1).
(d) Let (X x Y, F ®G) be the product of the measurable spaces (X, F), (Y, G).
Then the projection 71 (x,y) = = and the projection 75 (z,y) = y are measur-
able on (X x Y, F ® G) (Proposition.2.6). Then 7;* (A) = AxY € F® G for
everyAG}"andWQ_l(B):XXB€f®gf0reveryB€g.
We deduce that o {1, 72} C F ® G. On the other hand we have:
(ANt (B) = (A x Y)N(X x B) = AxB € F®G. So every set of the form
AxBwithAe Fand BeEGisino{m,m}. Butc{AxB: Ae F,Beg}=
F®G, finally F®G C o {my,m2}. Then F®G = o {m1, m2}.



3. Exercises

20. Let X be a non empty set. Determine the o—field F generated by the
constant functions f : X — R. Let & be the family of measurable functions
from (X, F) into (R, Bg), prove that & is isomorphic to R.

21. Let f be a measurable function from (X, F) into (R, Bg), prove that |f]
is measurable. Let E be a set not Lebesgue measurable (see section 5 for the
definition of Lebesgue measurable sets). Consider the function f : R — R
defined by f (x) = zlgc — xlg, prove that f is not Lebesgue measurable but |f|
is measurable.

22. Let {(X;,F;),1 < i <n} be a finite family of measurable spaces and form

the product set X = 11[X,» = X1 X Xo X ---x X,,. We denote by p; : X — X

the projection from X onto X; given by p; (z1, 2, -, &,) = ;. Consider the
o—field o {p;, 1 < i < n} generated by the functions {p;, 1 < < n} and denoted

by AiRF® - QF, = é;@]-'z The space <X, (%).7-"1) is called the product of the
spaces (X;, F;),1 <i<n.

(a) Prove that %fi is generated by the subsets of X of the form

A=A XAy x---xA,, A, € F; 1 <i<n.

(b) Let (Y,G) be a measurable space and let g : Y — lle,» be a function, prove

that ¢ is measurable with respect to (Y, G) and (X, (%]-"l> if and only if p;og
1

is measurable from (Y, G) into (X;,F;) for each 1 < i <n.

23. Let X be a non empty set and let { f;,7 € I} be a family of functions defined
on X such that each f; : X — F; sends X into the measurable space (E;, ;).
Suppose that X is endowed with the o—field o {f;,1 <i <n} generated by
the functions {f;,1 <i <n} (see Definition 2.11). Let (Y, G) be a measurable
space and let g : Y — X, prove that g is measurable with respect to (Y, G) and
(X,0{fi,1 <i<mn})if and only if f; o g is measurable from (Y, G) into (E;, B;)
for each 1 < i <n.

4. Measurable thgtions with values
inR,R,C

Definition.4.1

(a) The set R is the real numbers system endowed with the Borel o—field Bg.
(b) The set R is defined as {R, —oco, +0o}. The o—field we need on R is given
by o {Br, —00, 00} and denoted by Bg.

(c) Tt is well known that the set C of complex numbers can be identified with
the product space R x R; so we can identify the Borel o—field Bewith Br«r,
which is Bg ® Bg by Theorem.2.9.

Notations. 4.2.
Let (X,F) be a measurable space. In the sequel.we will use the following
notations:



M (X,R) is the family of measurable functions f from (X, F) into (R, Bg).
M (X,C) is the family of measurable functions f from (X, F) into (C, Bc)

We already have seen that M (X,R) is a vector space on the field R (see the
Corollary of Proposition.2.10).
It is not difficult to prove the same for M (X, C)

Arithmetic in R. 4.3.

We will agree with the following conventions in R = {R, —co, +00} :
0-(+o0) = (£o0)-0=0
(+00) + (+00) = +00
(~00) +(00) = o0
a =+ (£oo) = +oo,Va € R
(=1) - (£00) = (F0)

Definition. 4.4.

Let (X, F) be a measurable space.

A function f: X — R is measurable from (X, F) into (R, Bg) if:

f~1(B) € F,VB € Bg, and f~!(+o00) € F,f1 (—0) € F
this comes from the fact that By = o {Bg, —00, 00} and Proposition 2.3.
We denote by M (X ,@) the the family of measurable functions f from (X, F)
into (@, B@).

Proposition. 4.5.

The o—field By is generated by all the intervals of the form [—oo,t [.
Proof. Use the fact that By is generated by all the open intervals by
Proposition 3.6.Chap.1l
Corollary.

A function f: X — R is measurable from (X, F) into (R, Bg) if:

7 ([~oo,t |) € F,Vt € R.



Definition. 4.6.

Let (X,F),(Y,G) be measurable spaces and E C X a subset of X.
If f: X — Y is a function. We say that f is measurable on F if the restriction
of f to E considered as a function from (E, E N F) into (Y, G) is measurable.

Example. 4.7.

If f,g are in M (X, R), then the function f+ g is measurable on the set E with:
B = ({f = 0o} N {g = —o0}) U ({f = —oc} N {g = oo})

Let ¢ be the restriction of f + g to E then we have

¢ is well defined on E and {p <t} ={f+g<t}NE € ENF.

5. Sequences of Measurable Functions

Definition. 5.1. (simple function)

Let f : X — R be a function from X into R. The function f is simple
if it takes a finite number of values, that is, f is simple if the set f(X) is a
finite subset of R. So if f(X) = {a1,a9,...,a,} and A; = {z: f (z) = a;},i =
1,2,...,n, then {Ay, Ay, ..., A, } is a partition of X and the function f can be

written as f () = Xn:ai.IAi (), where I, is the indicateur function of the set
Aji=1,2,... n. '
Proposition. 5.2

A simple function f (+) = Zn:ai.IAi (+) is measurable from (X, F) into (R, Br)
A EFi=12 .n

Proof. We have f~!{a;} = A; € F,i=1,2,...,n; so if B € Bg and
np = {i: a; € B}, we deduce that f~1 (B) = 'eU A, eFl
np

Notation. 5.3. We denote by £ the family of measurable simple functions
from (X, F) into (R, Br)
Proposition. 5.4.
Let s,t be in £ and A € R, then:
the functions s + ¢, s- ¢, A - s, sup (s,t), inf (s,t) are in £.

n m
Proof. Write s(-) =Y a;.1a, (-), t(-) = > bj.Ip; (), then we have:
1 1

n

s+t= Z Z (ai—&—bj).IAmBj
i=1j=1

s-t=3% (aibj) La,nB;, - 5= (Aa;) .Ia,
=

) j=1 1
(so the family £ is an algebra on R.)

n o m n o m

sup (Svt) = Z Z sup (aia b]) 'IAimBj? inf ($7t) = Z Z inf (aiv bJ) 'IAq‘,ﬁBj

i=15=1 i=1j=1
Since {A; N B;j, 1<i<n, 1<j<m}isa partition of X we get the result.ll



Proposition. 5.5. B
Let (fn) be a sequence of functions in M (X, R) or either in M (X, R) then:

the functions supf, and inff, are in M (X , ﬁ) .

Proof. For any ¢t € R we have {supfn <ty =nN{fn <t} whence the mesura-
n n

bility of supf,. Since inf f,, = —sup — f,, we deduce the mesurability of inf f,,.l
n n n n

Corollary. 1. -
Let (f») be a sequence of functions in M (X,R) or either in M (X, R) then:

the functions lim supf, and liminf f,, are measurable
n n

Proof. Comes directly from the proposition above since lim supf,, = 11;f1 sup fx
n nzlkg>
and liminf f,, = sup inf f,.H
n nzlk)Zn
Corollary. 2. -
Let (f») be a sequence of functions in M (X, R) or either in M (X,R) then:

The set C' = {z : limsupf, () = liminff, (:c)} belongs to F.

Proof. Observe that C' is the convergence set of the sequence (f,). Put :

Oy = <{x . limsupf, (z) = oo} N {x  liminff, (z) = oo}>

n

Cy = ({x + limsupf, (z) = —oo} N {x  liminff, (v) = —oo}>

C3 =<z limsupf, (z) € R} N {ac : limsupf, (z) = liminff, (x)}
Then Cq and C5 and C5 are in F and C = C; U Cy U C5.

Corollary. 3. -
Let (f,,) be a sequence of functions in M (X, R) or either in M (X,R)
Suppose that: limf,, (z) = f (z) € R exists for each z € X. Then f € M (X, @) .
n

Proof. The convergence set C' = {x : limsupf, (z) = liminff, (m)} given in
n n

Corollary 2 is equal to X here.
So the function f () is equal to limsupf, () = liminff, (z),Vz € X. Then f

is measurable by Corollary 1.1

The following theorem is fundamental and will be used in the construction of
the integral of a measurable function.

Theorem. 5.6.

Let f e M (X, R) be such that f (z) € [0, 00], V& € X.Then:
there exists a sequence (s, )of positive measurable simple functions
from (X, F) into (R, Bg) with:

(l) 0 S Sn S Sn+1

(1) h,ILnS” () = f(z), Vo € X.



Proof. For each n > 1 and each x € X, define s, by:

-1
Sul@) = o i < f () < i = 1,2, 2"

Sp () =nif f(x )_

we can use a consolidated form for s,,:
n2'; 1

sn(@) =X 5 Tpi-1 1L f()2n}
= { o _f(a><2n}
recall that 14 is the function defined by I4 (z) =1if x € A and I4 (z) = 0 if

x ¢ A.
Then (s,,) is an increasing sequence of positive simple functions (check it!).
Let us prove that limsn (z) = f(z), Vo € X:

if f(x) < oo then for every n > f(x) we have 0 < f(z) — s, (z) < S0

hmsn( )= f(x)

1f f(z) = oo then f(x) > n for every n and so we have s, () = n for all n
whence lims,, (z) = co.l

Definition. 5.7.
Let femMm (X E). Define the positive measurable functions f*, f~ by:
=sup (f,0), f~ = —inf (f,0)
Remark. 5.8.
It is easy to check that:
f=f—f
[fl=r"+7"
Proposition. 5.9.
Let f € M (X,R). Then there exists a sequence (s,) of measurable simple
functions from (X, F) into (R, Bg) with liTr’nsn () = f(x), Vo e X.

273

Proof. We have f = fT — f~ where f*, f~ are simple positives.
By Theorem. 5.6.there exist simple posmve functions s,,, s,, such that:

n» n

lims,, () = f* (z), Vz € X and lims,, (z) = f~ (z), Vz € X. Then s, = s, — s,
is measurable simple and lims,, (z) = f* (z) — f~ (z) = f (x), Vo € X.I
Corollary.

Let f € M (X,R) and suppose f bounded. Then there is a sequence (s,) of
measurable simple functions converging uniformly to f on X.

Proof. By the Proposition above it is enough to consider the case f positive.
Since f is bounded there is n such that n > f(x) for every z € X. So there
exists a sequence (s;,) of positive measurable simple functions

with 0 < f(z) — s () < 2—m,Vx € X,Vm > n, from which we deduce the

uniform convergence of s, to f on X.A



6. Convergence of Measurable Functions

Let us recall that if (X, F, i) is a measure space, a subset N of X is a null
set if there is A € F, with u (A) = 0 such that N C A.
In this section we describe different type of convergence of measurable functions
and the relations between them.

Definition. 6.1.

Let P be a property depending on a variable x € X, that is P may be true
or false according to z. We say that P is true almost every where if there is a
null subset NV of X such that P is true for any x outside N.

Examples. 6.2.

(a) A function f: X — R is said to be finite almost every where if there is a
null subset N of X such that f (z) € R Vo € X\N. If moreover f € M (X,R)
then {f = oo} € F and the condition of finiteness almost every where may be
written simply as p{f = oo} = 0.

(b) .A function f : X — R is said to be bounded almost every where if there
is a constant M > 0 and a null subset N such that |f (z)| < M,Vx € X\N. If
moreover f € M (X,R) then {|f| > M} € F and the condition of boundedness
almost every where may be written simply as p {|f| > M} = 0.

(c). Let f,g : X — R be functions. We say that f = g almost every where
if there is a null subset N such that f(z) = g(z),Vz € X\N. If moreover
f € M (X,R), the condition may be written as u {f # g} = 0.

Abbreviation. almost every where with respect to p is abbreviated to: y—a.e

Definition. 6.3.
Let f, : X — R be a sequence of functions. We say that f,, converges u—a.e if

the set N = < limsupf, # liminf fn} is a null set. In other words f, converges

p—a.e if for each © € X\ N the real sequence f,, (x) converge to the real number
f (x), that is: Ve > 0,3m (e, ) > 1 such that Vn > m (e, z), |fn () — [ (z)] <e.

Definition. 6.4.

Let f, : X — R be a sequence of functions. We say that f, is a Cauchy
sequence p — a.e if there is a null subset N such that for each z € X\N the
real sequence f, (z) is a Cauchy sequence in R, that is satisfies the following
condition:

Ve > 0,3M (e,z) > 1 such that Vn,m > M (e, ), | fn (x) — fim (z)| < €

Proposition. 6.5.
Let f, : X — R be a sequence of functions. The following conditions are
equivalent:
(a) The sequence f, converges to u — a.e to a function f: X — R
(b) fn is a Cauchy sequence p — a.e

Proof. For each x outside of a null set f,, (x) is a Cauchy sequence in R, so the
Proposition results from the validity of the same properties in R.H

Now let us come to the convergence of measurable functions.

10



Proposition. 6.6.

Let f, be a sequence of functions in M (X,R) converging u — a.e on X.
Then there is f € M (X,R) such that f, converges p — a.e to f.
Conversely if there is f : X — R such that f,, converges 1t — a.e to f, then f
is measurable on a set E with p (E°) = 0.

Proof. Take F = {z : limsupf, (x) = liminf f, (x)} and take f defined by:
f(z) =liminff, (z) for z € E and f (z) =0 for x € E°

(see Definition 4.6 for the measurability of f on E ).l
Definition. 6.7. (uniform convergence p — a.e)

Let f, : X — R be a sequence of functions. We say that f,, converges
uniformly p — a.e to the function f: X — R if there is a null set IV such that
fn converges uniformly to f on X\N, that is:

Ve > 0,3M (e) > 1 such that Vn > M (€), |fn (z) — f (z)] < e,Vz € X\N
We say that f, is a Cauchy sequence for the uniform convergence p — a.e if
there is a null set IV such that:

Ve > 0,3M (e) > 1 such that Yn,m > M (¢),|fn () — fm (z)| < €,Vx €
X\N
let us observe that the integer M (¢) does not depend on .

Remark. 6.8.

In most of our discussion, especially in integration theory, we frequently use
a complete measure space (X, F, ) as our basic space.
So in this case every null set is in F and this avoids some cumbersome measur-
ability character of functions.

The following Theorem localizes the points of the space X where the convergence
of a sequence fails to be uniform. Let us start with an example:

Example. 6.9.

Consider the space X = [0, 1] endowed with the Lebesgue measure y and let
fn : X — R be the sequence of functions given by f, () = 2",z € [0,1]. The
sequence converges pointwise to the function f given by f (z) =0for 0 <z < 1,
and f (z) = 1 for z = 1, but the convergence is not uniform (why?). However for
€ > 0, we see that the sequence f;,, converges uniformly on the interval [0, 1-— %],
intuitevely the points where the uniform convergence fails are localized in the
set B=[1-5,1] and p(B) <e.

Theorem. 6.10. (Egorov)

Let (X, F,u) be a measure space, with p(X) < oo. Let f,, f € M (X, @)
be functions finite p — a.e.

Suppose that the sequence f,, converges p — a.e to f on X. Then we have:

For every € > 0 there is B € F such that u(B) < e

and f, converges uniformly to f on X\B.

Proof. Without losing general hypothesis, we can assume that:
fn, f take values in R and f,, converges everywhere to f on X.
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Let E" = 0 {If; — fI < L}, since f,, f are measurable we get E™* € F,¥n,m.
j>n
Moreover it is clear that EJ' C EJ%; C ... C nglE}? Since f,, converges

everywhere to f on X, we have L;lETT = X,¥Ym > 1.
nz
So X\E' D X\E’,1 D ...D 0, (X\E™) = ¢ for each m > 1. Since p(X) <

oo we deduce that limy (X\E?") = 0; so for each m > 1 there is n (m) > 1 such

that (X\Em

#(B)< 5 u(X\E,,)) < X oo = e Sou(B) < cand X\B =
m>1 m>12m

therefore |f, (z) — f(z)] < L,Vz € X\B,Vn > n(m) and then the uniform

m’

convergence of f,, to f on X\B.W

m)> then we have:

€ m
) < 5 Now put B = Y X\E

m
mglEn(m)’

Remark. 6.11.

Egorov’Theorem is not valid in the case p infinite as is shown by the follow-
ing:
Take for (X, F, u) the space (N, P (N), p) with p the counting measure;
if f, = I{12,....n}y then f, (k) converges to 1 for each k € N; nevertheless there
is no F' C N such that p (F') < € and f, converges uniformly to 1 on X\ F
(indeed take 0 < € < 1).

Remark. 6.12.
It is not difficult to prove the equivalence of the following assertions:
(a) fn converges almost uniformly
(b) fn is a Cauchy sequence for the almost uniform convergence.
Definition. 6.13.
Let (X, F, 1) be a measure space, and let f,, f € M (X,R)
be functions finite p — a.e.
(a) the sequence f, converges almost uniformly if:
Ve > 0 dB € F such that p(B) < € and f,, converges uniformly to f on X\B.
(b) the sequence f,, is a Cauchy sequence for the almost uniform convergence if:
Ve > 0 3B € F such that u (B) < € and f,, is a Cauchy sequence for the uniform
convergence on X \B.

Here is a specific type of convergence of measurable functions:

Definition. 6.14.
Let f,,feM (X, @) be functions finite p — a.e..

We say that the sequence (f,,) converges in measure to f if:
Ve > 0, 1i7r]nu{m e (@)= f(z)>€}=0

Notation: f, - f

Proposition. 6.15.
The almost uniform convergence implies:
(a) The convergence p — a.e
(b) The convergence in measure
Proof. By almost uniform convergence we have:
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Vk > 1,3F, € F, with u (Fg) < %, and f,, converges uniformly on X\ Fj.
Take F = QFk then FF € F, p(F) = 0. If x € X\F, there is k such that
x € X\Fg, so limf, () = f (x) and proves (a).
By almost uniform convergence we have:
Vo > 0,3F5 € F, with p (Fs) < 4, and f,, converges uniformly on X\ Fj.
Put E, (¢) = {z:|fn(z) — f(2)| > €}, then E, () = E, () N Fs + E, () N
X\ Fs; we deduce that p(E, (€)) < 0 + (B, () N X\Fs). Now since f, con-
verges uniformly on X\Fs there is N (¢,0) > 1 such that for n > N (e, ),
w(En ()N X\Fs) = 0. This proves that Ye > 0,limu (E, (¢)) = 0 whence
fo = £
Proposition. 6.16.

Let (X, F, u) be a measure space, with p (X) < co. Then:
The convergence p — a.e implies the convergence in measure.
Proof. By Egorov Theorem (6.10) convergence p — a.e implies almost uni-
form convergence from which the convergence in measure comes by Proposition.
6.15.1
Proposition. 6.17.

If f, > f then f, is a Cauchy sequence for the convergence in measure that
is:

ve> 0, limp{z : |fp (2) = fm (2)] > €} =0
Moreover if also f, —— g then f =g pu — a.e.
Proof. Since [fy () — fin ()] < |fa (2) — f (@) + | () — fn (2)], we deduce
that:
s (@) = fn @) > €} € {as £ @) = F@)] > §10{e s [fun (@) — £ (@)] > §)
and we have:
,LL{:E : |fn (I) - fm (l’)| > 6} <
pla | fo (@) = f(@)] > 5} + p{z: |fm (2) = f ()] > 5}
so limp | (0) = fn (2)] > ¢} <
timp (< | (@) — £ @) > §} +lmp o< [fn (2) — £(@)] > 5} =0
now suppose f, LN g; it is clear that
{o: 1/ (@) g (@)] >0} = U{e:|f(x) — g (@) > 1}
and {z: |f(z) —g(z)] > 1} C
{z:|f (@)= fi (@) > 5=} U{z:|fi (2) — g ()] > 5=}, Vk,n; then
plo:lf @) g @) > 1} <
plo 17 @) = Je @] > &+ {e: 1 @) - g @) > &
the right side goes to 0 as k — oo, for each n since f, —— f and f, —— g,
so p{z:|f(z) = g(x)] > 1} =0 for all n and then
p{z:|f(x)—g(x)] >0} =0 whence f =g u—a.c.ll
Lemma. 6.18.
Every Cauchy sequence in measure f,, contains a subsequence f,, satisfying
Cauchy condition for the almost uniform convergence (Definition 6.13(b)).
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Proof. Left to the reader.l

Theorem. 6.19.
Every Cauchy sequence in measure f,, converges in measure to a measurable
function f

Proof. By Lemma 6.18, f, contains a subsequence f,, satisfying the Cauchy
condition for the almost uniform convergence. So from Remark.6.12 the subse-
quence f,, converges almost uniformly to some measurable function f and then
fn,, converges in measure to f by Proposition. 6.15 (b). But f,, itself converges
in measure to f, indeed we have:

{z:|fa (@) = f (@) > e} C{a|fu (@) = fa, (@) > §}0{z : |f (@) = fu, (2)] >
and pfz : [fn (x) = f ()| > €} <

piz | fo (@) = fan (@) > 5} +p{z |f (2) = far (2)] > 5}

so if n,k — oo, p{x:|fn (@) — fa, (x)] > 5§} — 0, since f, is Cauchy se-
quence in measure and p {z : |f () — f5, (z)| > §} — 0 because f,, converges
in measure to f .1

7. Exercises

24. (a) Prove that in any measure space the uniform convergence implies the
convergence in measure.

(b) In the counting measure space (N,P(N),u) the uniform convergence is
equivalent to the convergence in measure.

25. In the space (N, P (N), u) consider the sequence of indicator functions

fn =1I{12,..n); Prove that f, converges p — a.e but does not converge in mea-
sure.What do we deduce about Proposition. 4.3.16.

26. Let f,,f € M (X,K) be functions finite y — a.e.. Suppose f,, con-
verges pointwise to f and there is a positive measurable function g satisfying
1i7gﬂﬂ {g > €,} = 0 for some sequence of positive numbers ¢, with lirrlnen = 0.
Then if |f,| < g,Vn, prove that f,, converges in measure to f.

27. Let f: X — R be measurable in the space (X, F, ) and put:
M((f)=inf{a>0: p{|f]>a} =0} Prove that |f| < M (f) u— a.e.

Prove that li7ILIlM (fn—f)=0iff 1iTanfn = f uniformly p — a.e.

28 Let f,,f : X — R be measurable functions in the space (X, F,u) and
suppose that f,, converges in measure to f ; if ¢ : R — R is a uniformly
continuous function prove that the sequence go f,, converges in measure to go f
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