Chapter 4

INTEGRATION

1. Preliminaries

Introduction.

Let (X, \mathcal{F}, μ) be a measure space. This chapter concerns the Lebesgue integration process $\int_{X} f . d \mu$ of numerical measurable functions on X with respect to the measure μ. Such classes of functions have been introduced with their convergence properties in sections 1-3 of chapter 3 .
If X is the closed interval $[a, b]$ in the real system \mathbb{R}, it is also possible to define the Riemann integral $\int_{a}^{b} f . d x$ of some function $f:[a, b] \longrightarrow \mathbb{R}$ (e.g continuous function).
If the Lebesgue integration process is applied to a sequence of Riemann integrable functions, it leads to a kind of convergence properties less restrictive and easier in applications than those needed in the Riemann process framework. Let us recall:
Classes of functions.1.1. (see sections 1-3 of chapter 3.)
$\mathcal{E}=\{s: X \longrightarrow \mathbb{R}, s$ simple measurable $\}$
$\mathcal{E}_{+}=\{s \in \mathcal{E}: s$ positive $\}$
$\mathcal{M}_{+}=\{f: X \longrightarrow[0, \infty], f$ measurable $\}$
$\mathcal{M}(\mathbb{R})=\{f: X \longrightarrow \mathbb{R}, f$ measurable $\}$
$\mathcal{M}(\mathbb{C})=\{f: X \longrightarrow \mathbb{C}, f$ measurable $\}$
Let us recall that if $f \in \mathcal{M}_{+}$, there is an increasing sequence s_{n} in \mathcal{E}_{+} with: $\lim _{n} s_{n}(x)=f(x), \forall x \in X$.

2. Integration in \mathcal{E}_{+}

Definition.2.1.

Let $s \in \mathcal{E}_{+}$with $s(\cdot)=\sum_{1}^{n} a_{i} \cdot I_{A_{i}}(\cdot)$, where I_{A} is the Dirac function of the set A, and the sets $A_{i}, 1 \leq i \leq n$ form a partition of X in \mathcal{F}. The integral of s with respect to μ is defined by:

$$
\int_{X} s . d \mu=\sum_{1}^{n} a_{i} \cdot \mu\left(A_{i}\right)
$$

with the convention $0 \cdot \infty=0$.

Remark.2.2.

Suppose $s \in \mathcal{E}_{+}$with $s(\cdot)=\sum_{i=1}^{n} a_{i} . I_{A_{i}}(\cdot)=\sum_{j=1}^{m} b_{j} . I_{B_{j}}(\cdot)$, where $\left\{A_{i}, 1 \leq i \leq n\right\}$ and $\left\{B_{j}, 1 \leq j \leq m\right\}$ are partitions of X. Then we have:
$A_{i}=\left\{x \in X: s(x)=a_{i}\right\}$ and $B_{j}=\left\{x \in X: s(x)=b_{j}\right\}$
so $a_{i} \cdot I_{A_{i} \cap B_{j}}(\cdot)=b_{j} \cdot I_{A_{i} \cap B_{j}}(\cdot)$ for $1 \leq i \leq n, 1 \leq j \leq m$.
$a_{i} \cdot I_{A_{i}}(\cdot)=\sum_{j=1}^{m} a_{i} . I_{A_{i} \cap B_{j}}(\cdot)$ and $\sum_{i=1}^{n} a_{i} \cdot I_{A_{i}}(\cdot)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} . I_{A_{i} \cap B_{j}}(\cdot)$
likewise $\sum_{j=1}^{m} b_{j} \cdot I_{B_{j}}(\cdot)=\sum_{i=1}^{n} \sum_{j=1}^{m} b_{j} \cdot I_{A_{i} \cap B_{j}}(\cdot)$ and the terms in the two double sums are equivalent so $\sum_{i=1}^{n} a_{i} \cdot \mu\left(A_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} \cdot \mu\left(A_{i} \cap B_{j}\right)$ and $\sum_{j=1}^{m} b_{j} \cdot \mu\left(B_{j}\right)=\sum_{j=1}^{m} \sum_{i=1}^{n} b_{j} \cdot \mu\left(A_{i} \cap B_{j}\right)$ then $\sum_{i=1}^{n} a_{i} \cdot \mu\left(A_{i}\right)=\sum_{j=1}^{m} b_{j} \cdot \mu\left(B_{j}\right)$ we deduce that the integral $\int_{X} s . d \mu=\sum_{1}^{n} a_{i} \cdot \mu\left(A_{i}\right)$ is well defined.

Proposition.2.3.

Let s, t be in \mathcal{E}_{+}and $c \geq 0$ then we have:
(1) $\int_{X}(s+t) \cdot d \mu=\int_{X} s \cdot d \mu+\int_{X} t \cdot d \mu$ $\int_{X} c . s . d \mu=c . \int_{X} s . d \mu$
(2) If $s \leq t$ then $\int_{X} s . d \mu \leq \int_{X} t . d \mu$
(3) If $E \in \mathcal{F}$ and $s(\cdot)=\sum_{i=1}^{n} a_{i} \cdot I_{A_{i}}(\cdot)$ we have $s . I_{E}=\sum_{i=1}^{n} a_{i} . I_{A_{i} \cap E}(\cdot)$ and $\int_{X} s . I_{E} \cdot d \mu=\int_{E} s . d \mu=\sum_{1}^{n} a_{i} \cdot \mu\left(A_{i} \cap E\right)$
Proof. Put $s(\cdot)=\sum_{i=1}^{n} a_{i} \cdot I_{A_{i}}(\cdot), t(\cdot)=\sum_{j=1}^{m} b_{j} . I_{B_{j}}(\cdot)$, then
(1) $s+t=\sum_{i . j} \cdot\left(a_{i}+b_{j}\right) \cdot I_{A_{i} \cap B_{j}}, c . s=\sum_{i=1}^{n} c a_{i} \cdot I_{A_{i}}$
$\int_{X}(s+t) \cdot d \mu=\sum_{i . j} \cdot\left(a_{i}+b_{j}\right) \cdot \mu\left(A_{i} \cap B_{j}\right)=\sum_{i . j} \cdot a_{i} \cdot \mu\left(A_{i} \cap B_{j}\right)+\sum_{i . j} \cdot b_{j} \cdot \mu\left(A_{i} \cap B_{j}\right)$
but $\sum_{i=1}^{n} a_{i} \cdot \sum_{j=1}^{m} \mu\left(A_{i} \cap B_{j}\right)=\sum_{i=1}^{n} a_{i} \cdot \mu\left(A_{i}\right)=\int_{X} s . d \mu$
and $\sum_{j=1}^{m} b_{j} \cdot \sum_{i=1}^{n} \mu\left(A_{i} \cap B_{j}\right)=\sum_{j=1}^{m} b_{j} \cdot \mu\left(B_{j}\right)=\int_{X} t . d \mu$
so $\int_{X}(s+t) . d \mu=\int_{X} s . d \mu+\int_{X} t . d \mu$, similarly $\int_{X} c . s . d \mu=c . \int_{X} s . d \mu$
(2) If $s \leq t$, then $t-s \geq 0$ and $t=s+(t-s)$
so $\int_{X} t \cdot d \mu=\int_{X} s . d \mu+\int_{X}(t-s) \cdot d \mu \geq \int_{X} s . d \mu$. Point (3) is obvious.
Theorem.2.4.
Let $\left(s_{n}\right)$ be an increasing sequence in \mathcal{E}_{+}.
If $r \in \mathcal{E}_{+}$is such that $r \leq \sup . s_{n}$, then:

$$
\int_{X} r \cdot d \mu \leq \sup _{n} . \int_{X} s_{n} \cdot d \mu
$$

Proof. Since s_{n} is increasing, the sequence $\int_{X} s_{n} \cdot d \mu$ is increasing in $[0, \infty]$ by Proposition 5.2.3(2) so $\sup _{n} \int_{X} s_{n} . d \mu$ exists in $[0, \infty]$. Let $0<c<1$ and put $E_{n}=\left\{s_{n} \geq c r\right\}$. Since $s_{n} \leq s_{n+1}$ we have $E_{n} \subset E_{n+1}$. On the other hand for $x \in X$ we have $\operatorname{c.r}(x)<r(x) \leq \sup . s_{n}(x)$, therefore there is n with $s_{n}(x) \geq \operatorname{c.r}(x)$ and this gives $X=\bigcup_{n}^{n} E_{n}$. Now put $r=\sum_{i} \alpha_{i} . I_{A_{i}}$ and taking integrals, we obtain $\int_{X} s_{n} \cdot d \mu \geq \int_{X}$ c.r. $I_{E_{n}} \cdot d \mu$ (since $s_{n} \geq$ c.r. $I_{E_{n}}$ on X), then $\int_{X} s_{n} \cdot d \mu \geq c \cdot \sum_{i} \alpha_{i} \cdot \mu\left(A_{i} \cap E_{n}\right), \forall n$. This implies $\sup _{n} . \int_{X} s_{n} \cdot d \mu \geq$ $\lim _{n} .\left(c \cdot \sum_{i} \alpha_{i} \cdot \mu\left(A_{i} \cap E_{n}\right)\right)=c \cdot \sum_{i} \alpha_{i} \cdot \mu\left(A_{i}\right)=c . \int_{X} r . d \mu$, because $\mu\left(A_{i} \cap E_{n}\right)$ goes to $\mu\left(A_{i}\right)$ since E_{n} is increasing to X. Making $c \longrightarrow 1$ we get the proof.

Corollary.

Let s_{n}, t_{n} be two increasing sequences in \mathcal{E}_{+}such that $\sup _{n} . s_{n}=\sup _{n} . t_{n}$ then $\sup _{n} . \int_{X} s_{n} \cdot d \mu=\sup _{n} . \int_{X} t_{n} \cdot d \mu$
Proof. We have $\sup _{n} . s_{n}=\sup _{n} . t_{n} \Longrightarrow s_{k} \leq \sup _{n} . t_{n}, \forall k$; from the Theorem we get $\int_{X} s_{k} \cdot d \mu \leq \sup _{n} . \int_{X} t_{n} \cdot d \mu$, this gives $\sup _{k} . \int_{X} s_{k} \cdot d \mu \leq \sup _{n} . \int_{X} t_{n} \cdot d \mu$. By the same way we prove the reverse inequality

Now we are in a position to extend the integration process from the class \mathcal{E}_{+} to the class $\mathcal{M}_{+}=\{f: X \longrightarrow[0, \infty], f$ measurable $\}$.

3. Integration in \mathcal{M}_{+}

Definition.3.1.

Let $f \in \mathcal{M}_{+}$, we know by Theorem. 5.6. that for some increasing sequence s_{n} in \mathcal{E}_{+}we have $\lim _{n} . s_{n}(x)=f(x), \forall x \in X$.
We define the integral of f with respect to μ by $\int_{X} f \cdot d \mu=\sup _{n} . \int_{X} s_{n} \cdot d \mu$.
This integral is well defined, that is, it does not depend on the sequence s_{n} in \mathcal{E}_{+}converging to f (corollary of Theorem.2.4.).

Definition.3.2.

Let $f \in \mathcal{M}_{+}$and $E \in \mathcal{F}$. We define the integral of f over E by:
$\int_{E} f . d \mu=\int_{X} f \cdot I_{E} \cdot d \mu$
where $\left(f . I_{E}\right)(x)=f(x)$ for $x \in E$ and $\left(f . I_{E}\right)(x)=0$ for $x \in E^{c}$

Proposition.3.3.

The integral in \mathcal{M}_{+}has the following properties:
If $f, g \in \mathcal{M}_{+}, c \geq 0$, and $E, F \in \mathcal{F}$, then:
(1) $\int_{X}(f+g) \cdot d \mu=\int_{X} f \cdot d \mu+\int_{X} g \cdot d \mu$
$\int_{X} c . f . d \mu=c . \int_{X} f . d \mu$
(2) If $f \leq g$ then $\int_{X} f . d \mu \leq \int_{X} g \cdot d \mu$ and $\int_{E} f \cdot d \mu \leq \int_{E} g \cdot d \mu$
(3) $E \subset F \Longrightarrow \int_{E} f . d \mu \leq \int_{F} f . d \mu$
(4) If $f=0$ on E then $\int_{E} f \cdot d \mu=0$ even if $\mu(E)=\infty$.
(5) If $\mu(E)=0$ then $\int_{E} f . d \mu=0$ even if $f=\infty$ on E.

Proof. All properties are consequence of Definitions 3.1-3.2.

Theorem.3.4.

Let $f \in \mathcal{M}_{+}$then we have:

$$
\int_{X} f . d \mu=\sup \cdot\left\{\int_{X} s . d \mu: s \in \mathcal{E}_{+} \text {and } s \leq f\right\}
$$

Proof. If $s \in \mathcal{E}_{+}$and $s \leq f$ then $\int_{X} s . d \mu \leq \int_{X} f . d \mu$
so $\sup _{n}\left\{\int_{X} s . d \mu: s \in \mathcal{E}_{+}\right.$and $\left.s \leq f\right\} \leq \int_{X} f . d \mu$.
But by Definition 5.3.1.we have $\int_{X} f . d \mu=\sup _{n}\left\{\int_{X} s_{n} . d \mu, s_{n} \in \mathcal{E}_{+}\right.$and $\left.s_{n} \leq f\right\}$ from this we deduce the proof of the Theorem.
Theorem.3.5. (Beppo-Levy monotone convergence Theorem)
Let $\left(f_{n}\right)$ be an increasing sequence in \mathcal{M}_{+}, then:
$\lim _{n} f_{n}=f \in \mathcal{M}_{+}$and $\int_{X} f . d \mu=\lim _{n} \int_{X} f_{n} d \mu$, in other words:

$$
\lim _{n} \int_{X} f_{n} d \mu=\int_{X} \lim _{n} f_{n} d \mu
$$

Proof. We know that $\lim _{n} f_{n}=f \in \mathcal{M}_{+}$(see chapter 4, section 2) and since $\left(f_{n}\right)$
is increasing we have $\int_{X} f_{n} d \mu \leq \int_{X} f_{n+1} d \mu \leq \int_{X} f . d \mu, \forall n$. So $a=\lim _{n} \int_{X} f_{n} d \mu$ exists
and $a \leq \int_{X} f . d \mu$. Let $s \in \mathcal{E}_{+}$with $s \leq f$ and for $0<c<1$ put $E_{n}=\left\{f_{n} \geq c . s\right\}$.
We have $E_{n} \subset E_{n+1}$ since $f_{n} \leq f_{n+1}$ and $\cup E_{n}=X$ because $c . s<f=\sup _{n} f_{n}$. On the other hand $f_{n} \geq 0 \Longrightarrow f_{n} \geq$ c.s. $I_{E_{n}}, \forall n$.
Now put $s=\sum_{i} \alpha_{i} . I_{A_{i}}$ and taking integrals, we obtain $\int_{X} f_{n} \cdot d \mu \geq \int_{X} c . s . I_{E_{n}} \cdot d \mu$ (since $f_{n} \geq$ c.s. $I_{E_{n}}$ on X), then $\int_{X} f_{n} . d \mu \geq c . \sum_{i} \alpha_{i} . \mu\left(A_{i} \cap E_{n}\right), \forall n$. This implies $a=\lim _{n} . \int_{X} f_{n} \cdot d \mu \geq \lim _{n} .\left(c \cdot \sum_{i} \alpha_{i} \cdot \mu\left(A_{i} \cap E_{n}\right)\right)=c \cdot \sum_{i} \alpha_{i} \cdot \mu\left(A_{i}\right)=c \cdot \int_{X} s d \mu$, because $\mu\left(A_{i} \cap E_{n}\right)$ goes to $\mu\left(A_{i}\right)$ since E_{n} is increasing to X. Making $c \longrightarrow 1$ we get $a \geq \int_{X} s d \mu$ for all $s \in \mathcal{E}_{+}$with $s \leq f$, so $a \geq \sup \left\{\int_{X} s d \mu, s \in \mathcal{E}_{+}, s \leq f\right\}=$ $\int_{X} f . d \mu$ by Theorem.5.3.4, then $a=\int_{X} f . d \mu$.
Remark. Theorem.3.5.is not valid in general for decreasing sequences $\left(f_{n}\right)$ as is shown by the following example: let $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu\right)$ be the Borel measure space and $f_{n}=I_{] n, \infty}\left[\right.$, then f_{n} decreases to 0 but $\lim _{n} . \int_{X} f_{n} \cdot d \mu=\infty$.

Lemma 3.6. (Fatou Lemma)

Let $\left(f_{n}\right)$ be any sequence in \mathcal{M}_{+}, then:
$\int_{X} \liminf _{n} f_{n} d \mu \leq \liminf _{n} \int_{X} f_{n} d \mu$
Proof. Put $F_{k}=\inf _{n \geq k} f_{n}$ then F_{k} is increasing in \mathcal{M}_{+}to $\lim _{n} \inf f_{n}$,
so by Theorem.5.3.5, $\lim _{k} . \int_{X} F_{k} \cdot d \mu=\int_{X} \liminf _{n} f_{n} d \mu$.
But $F_{k} \leq f_{n}, \forall n \geq k$, which implies $\int_{X} F_{k} \cdot d \mu \leq \inf _{n \geq k} \int_{X} f_{n} d \mu$ and then making $k \longrightarrow \infty$ we get $\lim _{k} \int_{X} F_{k} \cdot d \mu=\int_{X} \liminf _{n} f_{n} d \mu \leq \liminf _{k} \inf _{n} \int_{X} f_{n} d \mu=$ $\liminf _{n} \int_{X} f_{n} d \mu$.

4. Exercises

29.(a) Let $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ be the counting measure on \mathbb{N}.

If $f: \mathbb{N} \longrightarrow\left[0, \infty\left[\right.\right.$ is given by $f(i)=a_{i} i \in \mathbb{N}$ prove that:

$$
\int_{\mathbb{N}} f . d \mu=\sum_{i} a_{i}
$$

(b) Let $\mu=\delta_{x_{0}}$ be the Dirac measure on the power set $\mathcal{P}(X)$ of X.
then for any $f: X \longrightarrow\left[0, \infty\left[, \int_{X} f . d \mu=f\left(x_{0}\right)\right.\right.$.
30.Let $\left(f_{n}\right)$ be any sequence in \mathcal{M}_{+}, prove that $\sum_{n} f_{n} \in \mathcal{M}_{+}$and:

$$
\int_{X} \sum_{n} f_{n} d \mu=\sum_{n} \int_{X} f_{n} \cdot d \mu
$$

(Hint $\sum_{1}^{n} f_{i}$ increases to $\sum_{n} f_{n}$ and use Theorem.5.3.5).
31.Let $f \in \mathcal{M}_{+}$
(a) Prove that the set function $\nu: A \longrightarrow \int_{A} f . d \mu$, defined on \mathcal{F} is a positive measure
(b) If $g \in \mathcal{M}_{+}$prove that $\int_{X} g . d \nu=\int_{X} f . g . d \mu$
(Hint: check (b) for $g \in \mathcal{E}_{+}$and apply Theorem 3.5 for $g \in \mathcal{M}_{+}$)
32.Let $\left(f_{n}\right)$ be a sequence in \mathcal{M}_{+}with $\lim _{n} f_{n}(x)=f(x), \forall x \in X$ for some $f \in \mathcal{M}_{+}$

Suppose $\sup _{n} \int_{X} f_{n} . d \mu<\infty$, and prove that $\int_{X} f . d \mu<\infty$
(Apply Fatou Lemma 3.6)
33.Let $\left(f_{n}\right)$ be a decreasing sequence in \mathcal{M}_{+}such that $\int_{X} f_{n_{0}} \cdot d \mu<\infty$, for some $n_{0} \geq 1$
Prove that $\lim _{n} \int_{X} f_{n} d \mu=\int_{X} \lim _{n} f_{n} d \mu$
(Hint: apply Theorem 3.5 to the increasing positive sequence $\left(f_{n_{0}}-f_{n}\right)$ $n \geq n_{0}$)
34.Let the interval $] 0,1$ [of real numbers be endowed with Lebesgue measure. Apply Fatou Lemma to the following sequence:
$f_{n}(x)=n, 0 \leq x \leq \frac{1}{n}$ and $f_{n}(x)=0,1>x>\frac{1}{n}$.

