Chapter 1

Positive Measures

1. Algebras of Sets

This section is intented to give the basic structures on sets, needed for the definition and properties of measures. We start with the following:

Preliminaries:

Let X be a set, and let $\mathcal{P}(X)$ be the power set of X. If I is any nonempty set, a function $f: I \longrightarrow \mathcal{P}(X)$ defines a family $\{A_i, i \in I\}$ of subsets of X, with $A_{i} = f(i) \in \mathcal{P}(X)$. For such family we perform the union and the intersection

$$\bigcup_{i} A_i = \{x : \exists i \in I, x \in A_i\}$$

$$\bigcap_{i} A_i = \{x : \forall i \in I, x \in A_i\}$$

Let us recall the frequently used **De Morgan's Laws:**

$$\left(\bigcup_{i} A_{i}\right)^{c} = \bigcap_{i} A_{i}^{c}, \quad \left(\bigcap_{i} A_{i}\right)^{c} = \bigcup_{i} A_{i}^{c}$$

 $\left(\bigcup_{i}A_{i}\right)^{c}=\bigcap_{i}A_{i}^{c},\quad\left(\bigcap_{i}A_{i}\right)^{c}=\bigcup_{i}A_{i}^{c}$ valid for any family $\{A_{i},\ i\in I\}$, where A^{c} denotes the complement of the set A.

Definition 1.1.

Let \mathcal{A} be a family of subsets of X.

We say that \mathcal{A} is an algebra on X if:

- (1) X, ϕ are in \mathcal{A}
- (2) For every subset A in \mathcal{A} , the complement A^c of A is in \mathcal{A}
- (3) For every subsets $A, B \in \mathcal{A}, A \cup B \in \mathcal{A}$

Example 1.2.

- (a) For any X the power set $\mathcal{P}(X)$ is an algebra
- (b) Let X be a set and let \mathcal{A} be the family given by $\mathcal{A} = \{A \subset X : A \text{ or } A^c \text{ finite}\}.$ It is not difficult to check that A is an algebra, using the De Morgan's Laws given in the Preliminaries
- (c) If \mathcal{A} is an algebra and if $A, B \in \mathcal{A}$ then $A \cap B \in \mathcal{A}$
- (d) For any finite sequence $A_1, ..., A_n$ in \mathcal{A} the union $\bigcup_{i=1}^{n} A_i$ and

the intersection $\bigcap_{i=1}^{n} A_i$ are in \mathcal{A} .

Definition 1.3.

Let \mathcal{F} be a family of subsets of X.

We say that \mathcal{F} is a σ -field or σ -algebra on X if:

- (1) X, ϕ are in \mathcal{F}
- (2) For every subset A in \mathcal{F} , the complement A^c of A is in \mathcal{F}
- (3) For every sequence (A_n) of subsets $A_n \in \mathcal{F}, \bigcup_n A_n \in \mathcal{F}$

The pair (X, \mathcal{F}) , where X is a set and \mathcal{F} a σ -field on X is called a measurable space and sets A in \mathcal{F} are called measurable sets.

Examples 1.4.

- (a) For any X the power set $\mathcal{P}(X)$ is a σ -field on X.
- (b) Let X be an infinite set and let \mathcal{F} be the family given by $\mathcal{F} = \{A \subset X : A \text{ or } A^c \text{ countable}\}$. Then it is not difficult to prove that \mathcal{F} is a σ -field on X

(use the De Morgan's Laws given in the Preliminaries).

(c) Every σ -field on X is an algebra, but the converse is not true as is shown by the following:

take $X = \mathbb{Z}$, the integers and the algebra $\mathcal{A} = \{A \subset X : A \text{ or } A^c \text{ finite}\}$, put $A_n = \{n\}, n \geq 0$; then $A_n \in \mathcal{A}, \forall n \geq 0$, but $\bigcup_{n>0} A_n \notin \mathcal{A}$.

Remark 1.5.

- (a) If \mathcal{F} is a σ -field on X, then for every sequence (A_n) in \mathcal{F} , $\bigcap A_n \in \mathcal{F}$.
- (b) For every sequence (A_n) such that $A_i \cap A_j = \phi$, for $i \neq j$ we denote the set $\bigcup_n A_n$ by $\sum_n A_n$.

2. Exercises

- 1. Prove that the family \mathcal{F} is a σ -field on X, if and if the following conditions are satisfied:
 - (a) $\phi \in \mathcal{F}$
 - (b) For any finite sequence $A_1, ..., A_n$ in $\mathcal{F}, \bigcap_{1}^{n} A_i \in \mathcal{F}$
 - (c) For every sequence (A_n) such that $A_i \cap A_j = \phi$, for $i \neq j$. we have $\sum A_n \in \mathcal{F}$
- **2.** For every sequence (A_n) , define the sequence (B_n) by the following recipe:

$$B_1 = A_1, B_2 = A_2 \backslash A_1, B_3 = A_3 \backslash (A_1 \cup A_2), B_n \backslash \left(\bigcup_{i < n} A_i\right)$$

Prove that $\bigcup_n A_n = \sum_n B_n$.

3. Generations

Lemma 3.1.

Let \mathcal{F}_i , $i \in I$ be an arbitrary family of σ -fields (resp. algebras). Then the family $\cap \mathcal{F}_i$ is a σ -field (resp. algebra).

Proof. Straightforward.

Corollary 3.2.

Let \mathcal{H} be a family of subsets of a set X

Then there exist a smallest σ -field on X containing \mathcal{H} , denoted by $\sigma(\mathcal{H})$.

Smallest is taken in the sens of the inclusion ordering.

 $\sigma(\mathcal{H})$ is called the σ -field generated by \mathcal{H} .

Proof. Let $\mathfrak{I} = \{ \mathcal{F} : \mathcal{F} \ \sigma - \text{field on } X, \text{ with } \mathcal{H} \subset \mathcal{F} \}$

then by **Lemma 3.1**, $\bigcap_{\mathcal{F} \in \Upsilon} \mathcal{F}$ is a σ -field on X and it is clear that:

$$\sigma\left(\mathcal{H}\right) = \underset{\mathcal{F} \in \mathfrak{I}}{\cap} \mathcal{F}.\blacksquare$$

Example 3.3.

(a) Let \mathcal{H} be a family given by one subset A, $\mathcal{H} = \{A\}$

then $\sigma(\mathcal{H}) = \{A, A^c, \phi, X\}$.

(b) If \mathcal{I} is the family of one point sets given by $\mathcal{I} = \{\{x\}: x \in X\}$

then we have $\sigma(\mathcal{I}) = \{A \subset X : A \text{ or } A^c \text{ countable}\}$ (see **Example 1.4** (b))

Definition 3.4.(Product σ -field)

Let (X_1, \mathcal{F}_1) , (X_2, \mathcal{F}_2) be measurable spaces. Consider on the product set $X_1 \times X_2$ the family $\mathcal{R} = \{A_1 \times A_2 : A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2\}$.

The product σ -field on $X_1 \times X_2$ is defined by $\mathcal{F}_1 \otimes \mathcal{F}_2 = \sigma(\mathcal{R})$.

The measurable space $(X_1 \times X_2, \mathcal{F}_1 \otimes \mathcal{F}_2)$ is called the product of (X_1, \mathcal{F}_1) , (X_2, \mathcal{F}_2) .

Definition 3.5. (Borel σ -field)

Let X be a topological space. The Borel σ -field of X is the σ -field generated by the family of all the open sets of X.

It is denoted by \mathcal{B}_X . Sets in \mathcal{B}_X are called Borel sets of X. One can see that \mathcal{B}_X is also generated by the closed sets of X.

Proposition 3.6.

The Borel σ -field $\mathcal{B}_{\mathbb{R}}$ of \mathbb{R} is generated by the open intervals of \mathbb{R} . In fact $\mathcal{B}_{\mathbb{R}}$ is generated by the family $\{]-\infty,t[\,,t\in\mathbb{R}\}$.

Proof. Every open set of \mathbb{R} is the union of a sequence of open intervals.

Definition 3.7. (Monotone family)

Let \mathcal{M} be a family of subsets of a set X. \mathcal{M} is said to be monotone if:

- (i) For any sequence (A_n) with $A_1 \subset A_2 \subset ... \subset A_n \subset ...$, we have $\bigcup_n A_n \in \mathcal{M}$
- (ii) For any sequence (A_n) with $A_1 \supset A_2 \supset ... \supset A_n \supset ...$, we have $\bigcap_n A_n \in \mathcal{M}$

Example 3.8.

- (a) Any σ -field is a monotone family
- (b) Let \mathcal{A} be an algebra, then \mathcal{A} is a σ -field iff \mathcal{A} is a monotone family.

Lemma 3.9.

Let \mathcal{M}_i , $i \in I$ be an arbitrary class of monotone families. Then the family $\cap \mathcal{M}_i$ is a monotone family.

Proof. Straightforward.■

Corollary 3.10.

Let \mathcal{H} be a family of subsets of a set X

Then there exist a smallest monotone family on X containing \mathcal{H} , denoted by $\mathcal{M}(\mathcal{H})$. Smallest is taken in the sens of the inclusion ordering.

 $\mathcal{M}(\mathcal{H})$ is called the monotone family generated by \mathcal{H} .

Proof. Let $\mathfrak{I} = \{ \mathcal{M} : \mathcal{M} \text{ monotone family on } X, \text{ with } \mathcal{H} \subset \mathcal{M} \}$

then by **Lemma 3.9**, $\bigcap_{\mathcal{M} \in \mathfrak{I}} \mathcal{M}$ is a monotone family on X and it is clear that:

$$\mathcal{M}\left(\mathcal{H}
ight)=\mathop{\cap}\limits_{\mathcal{M}\in\mathfrak{I}}\mathcal{M}.$$

Theorem 3.11.

Let \mathcal{A} be an algebra on the set X. Then the σ -field generated by \mathcal{A} is identical to the monotone family generated by \mathcal{A} .

Proof. Put $\mathcal{M} = \mathcal{M}(\mathcal{A})$, $\mathcal{B} = \sigma(\mathcal{A})$. Then $\mathcal{M} \subset \mathcal{B}$ (Example 3.8. (a)). To show that $\mathcal{B} \subset \mathcal{M}$ it is enough to prove that \mathcal{M} is an algebra (see Example 3.8. (b))

First we prove that $B \in \mathcal{M} \Longrightarrow B^c \in \mathcal{M}$. To this end let $\mathcal{M}' = \{B \in \mathcal{M} : B^c \in \mathcal{M}\}$ Then we have $\mathcal{A} \subset \mathcal{M}' \subset \mathcal{M}$. Moreover \mathcal{M}' is monotone and so $\mathcal{M}' = \mathcal{M}$. It remains to prove that \mathcal{M} is stable by intersection. For each $A \in \mathcal{M}$, consider the family $\mathcal{M}_A = \{B \in \mathcal{M} : A \cap B \in \mathcal{M}\}$, then \mathcal{M}_A is a monotone family with $\mathcal{M}_A \subset \mathcal{M}$. Moreover if $A \in \mathcal{A}$, we have $\mathcal{A} \subset \mathcal{M}_A$, so we deduce that $\mathcal{M}_A = \mathcal{M}$. On the other hand it is clear that $A \in \mathcal{M}_B$ iff $B \in \mathcal{M}_A$, therefore $A \in \mathcal{M}_B$ for every $A \in \mathcal{A}$ and $B \in \mathcal{M}$. Finally $\mathcal{M}_B = \mathcal{M}$, for all $B \in \mathcal{M}$. This proves that \mathcal{M} is an algebra.

4. Exercises

- **3.** Let \mathcal{A} be a family of subsets of a set X. If E is any subset in X, we define the trace of \mathcal{A} on E by the family $\mathcal{A} \cap E = \{A \cap E, A \in \mathcal{A}\}$. Prove that $\sigma(\mathcal{A} \cap E) = \sigma(\mathcal{A}) \cap E$.
- **4.** Let \mathcal{S} be a family of subsets of a set X. We say that \mathcal{S} is a semialgebra if it satisfies:
 - (a) ϕ , X are in S
 - (b) If A, B are in S then $A \cap B$ is in S
 - (c) If A is in S then $A^c = \sum_{1}^{n} A_k$, where the sets A_k are pairwise disjoint in

Prove that the algebra generated by the semialgebra $\mathcal S$ is the family

$$\mathcal{A} = \left\{ A : A = \sum_{1}^{n} S_k, \text{ where the } S_k \text{ are pairwise disjoint in } \mathcal{S}. \right\}$$

- **5.** Let \mathbb{R} the set of real numbers equiped with the usual topology, prove that the family of all intervals is a semialgebra.
- **6.** Let S_1, S_2 be semialgebras on the set X and consider the family $S = \{S_1 \cap S_2, S_1 \in S_1, S_2 \in S_2\}$.

Prove that S is a semialgebra and that the algebra generated by S is identical to the algebra generated by S_1 and S_2 .

7. Let (X_1, \mathcal{F}_1) , (X_2, \mathcal{F}_2) be measurable spaces. Prove that the family $\{A_1 \times A_2 : A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2\}$ is a semialgebra on $X_1 \times X_2$, (see exercise 4.).

5. Limsup and Liminf

Let X be a set, and let $\mathcal{P}(X)$ be the power set of X. We assume that $\mathcal{P}(X)$ is endowed with the inclusion ordering \subset . then:

Definition 5.1.

For any sequence (A_n) in $\mathcal{P}(X)$, we define the sets $\limsup A_n$ and $\liminf A_n$ by:

$$\limsup_{n} A_n = \bigcap_{n \ge 1} \bigcup_{k \ge n} A_k$$

$$\liminf_{n} A_n = \bigcup_{n \ge 1} \bigcap_{k \ge n} A_k$$

Similarly let \mathbb{R}, \leq be the ordered real number system and:

Definition 5.2.

For any sequence (a_n) in \mathbb{R} , we define the numbers $\limsup_n a_n$ and $\liminf_n a_n$

in
$$\overline{\mathbb{R}} = [-\infty, \infty]$$
 by:

$$\limsup_{n} a_n = \inf_{n \ge 1} \sup_{k \ge n} a_k$$

$$\liminf_{n} a_n = \sup_{n \ge 1} \inf_{k \ge n} a_k$$

Definition 5.3.

If $f_n: X \longrightarrow \mathbb{R}$ us a sequence of functions from a set X into \mathbb{R} , we define the functions $\limsup_n f_n$ and $\liminf_n f_n$ from X into $\overline{\mathbb{R}}$, by:

$$\left(\limsup_{n} f_{n}\right)(x) = \limsup_{n} \left(f_{n}(x)\right)$$
$$\left(\liminf_{n} f_{n}\right)(x) = \liminf_{n} \left(f_{n}(x)\right)$$

6. Exercises

8. Prove that for any sequence (A_n) in $\mathcal{P}(X)$ we have:

$$\liminf_{n} A_n \subset \limsup_{n} A_n$$

$$\left(\liminf_n A_n\right)^c = \limsup_n A_n^c$$

$$\left(\limsup_{n} A_{n}\right)^{c} = \liminf_{n} A_{n}^{c}$$

 $\left(\limsup_{n}A_{n}\right)^{c}=\liminf_{n}A_{n}^{c}$ **9.** Let I_{A} be the indicator function of the set A, i.e $I_{A}\left(x\right)=1$ if $x\in A$ and $I_A(x) = 0 \text{ if } x \notin A.$

Prove that for any sequence (A_n) in $\mathcal{P}(X)$ we have::

$$I_{\limsup_{n} A_n} = \limsup_{n} I_{A_n}$$
 and $I_{\liminf_{n} A_n} = \liminf_{n} I_{A_n}$

7. Positive Measures

Let (X, \mathcal{F}) be a measurable space.

Definition 7.1.

A positive measure μ on \mathcal{F} is a set function $\mu: \mathcal{F} \longrightarrow [0 \infty]$ such that:

 $(i) \mu(\phi) = 0$

(ii) For every pairwise disjoint sequence (A_n) in \mathcal{F} :

$$\mu\left(\sum_{n} A_{n}\right) = \sum_{n} \mu\left(A_{n}\right) \quad (\sigma - \text{additivity of } \mu).$$

The triple (X, \mathcal{F}, μ) is called measure space.

Let us observe that for a finite pairwise disjoint sequence

$$A_k, 1 \le k \le n \text{ in } \mathcal{F}, \text{ we have: } \mu\left(\sum_{1}^n A_k\right) = \sum_{1}^n \mu\left(A_k\right).$$

Example 7.2.

(a) Let X be a set and fix $x_0 \in X$. Define μ on $\mathcal{P}(X)$ by:

 $A \in \mathcal{P}(X), \mu(A) = I_A(x_0)$ (see exercise **9** defining the function I_A). $I_{(\cdot)}(x_0)$ is called Dirac measure at x_0 .

To prove the σ -additivity of μ , observe that $I_{\sum_{n} A_n} = \sum_{n} I_{A_n}$ for pairwise disjoint sequences (A_n) .

(b) For $A \subset X$ put $\mu(A) = \infty$ if A is an infinite set and $\mu(A) = n$ if A is a finite set with n elements. This measure is called the cardinality measure on $\mathcal{P}(X)$.

Proposition 7.3.

Let (X, \mathcal{F}, μ) be a measure space and let A, B be in \mathcal{F} , then:

(a) $A \subset B \Longrightarrow \mu(A) \leq \mu(B)$.

(b) $A \subset B$ and $\mu(A) < \infty \Longrightarrow \mu(B \backslash A) = \mu(B) - \mu(A)$.

 $(B \setminus A \text{ is the difference set } B \cap A^c)$

Proof. If $A \subset B$, then $B = (B - A) \cup A$ and $\mu(B) = \mu(B \setminus A) + \mu(A)$, by additivity; so $\mu(B) > \mu(A)$. If moreover $\mu(A) < \infty$ we deduce that: $\mu(B \backslash A) = \mu(B) - \mu(A)$.

Proposition 7.4. Let (X, \mathcal{F}, μ) be a measure space. Then for any sequence (A_n) in \mathcal{F} we have:

$$\mu\left(\bigcup_{n} A_{n}\right) \leq \sum_{n} \mu\left(A_{n}\right) \quad \text{(sub } \sigma\text{-additivity of } \mu\text{)}.$$

 $\mu\left(\bigcup_{n}A_{n}\right) \leq \sum_{n}\mu\left(A_{n}\right)$ (sub σ -additivity of μ). **Proof.** Define the sequence (B_{n}) by the following recipe: $B_{1}=A_{1},\ B_{2}=A_{2}$

$$A_2 \backslash A_1, B_3 = A_3 \backslash (A_1 \cup A_2),B_n \backslash \left(\bigcup_{i < n} A_i\right), \text{ then } \bigcup_n A_n = \sum_n B_n \text{ and } B_n \subset A_n,$$

$$\forall n.$$
 So $\mu\left(\bigcup_{n}A_{n}\right)=\mu\left(\sum_{n}B_{n}\right)=\sum_{n}\mu\left(B_{n}\right)$; by Proposition **7.3**(a) $\mu\left(B_{n}\right)\leq\mu\left(A_{n}\right), \forall n.\blacksquare$

Proposition 7.5. (sequential continuity of a measure)

Let (X, \mathcal{F}, μ) be a measure space. If (A_n) is a sequence in \mathcal{F} , then we have

(a) if $A_1 \subset A_2 \subset ... \subset A_n \subset ... \subset A = \bigcup_n A_n$ then $\mu(A) = \underset{n}{\lim} \mu(A_n)$ (b) if $A_1 \supset A_2 \supset ... \supset A_n \supset ... \supset A = \bigcap_n A_n$ and if $\mu(A_{n_0}) < \infty$ for some n_0 then $\mu(A) = Lim\mu(A_n)$

Proof. (a) Define the sequence (B_n) by: $B_1 = A_1, B_2 = A_2 \setminus A_1, B_3 = A_3 \setminus A_2, ..., B_n = A_n \setminus A_{n-1}$, so we have $A = \sum_n B_n$

and
$$\mu(A) = \sum_{n} \mu(B_n) = \sum_{n} \mu(A_n \setminus A_{n-1}) = \lim_{n} \sum_{k=1}^{n} \mu(A_k \setminus A_{k-1}) = \lim_{n} \mu\left(\sum_{k=1}^{n} A_k \setminus A_{k-1}\right);$$

but $\sum_{k=1}^{n} A_k \setminus A_{k-1} = A_n$ by construction and we deduce that $\mu(A) = \underset{n}{lim} \mu(A_n)$.

(b) We can assume $n_0 = 1$, so $\mu(A_n) < \infty$ for all n. On the other hand we have $A_1 \backslash A_1 \subset A_1 \backslash A_2 \subset ... \subset A_1 \backslash A_n \subset ... \cup A_1 \backslash A_n = A_1 \backslash A$. By (a) we deduce $\mu(A_1 \backslash A) = \underset{n}{lim} \mu(A_1 \backslash A_n)$. Since $\mu(A_n) < \infty$ for all n we get, by Proposition **7.3**(b), $\mu(A_1 \setminus A) = \mu(A_1) - \mu(A)$ and $\mu(A_1 \setminus A_n) = \mu(A_1) - \mu(A_n)$, whence $\mu(A) = Lim \mu(A_n)$.

Example 7.6. The condition (b) above is essential as is shown by taking μ the counting measure on \mathbb{N} and taking $A_n = \{p: p \geq n\}$; indeed we have $\cap A_n = \emptyset$, so $\mu(\phi) = 0$ but $\mu(A_n) = \infty$, for all n, and then $\lim \mu(A_n) = \infty$.

Proposition 7.7. (Borel-Cantelli Lemma)

Let (X, \mathcal{F}, μ) be a measure space. Let (A_n) be a sequence in \mathcal{F} such that:

$$\sum_{n} \mu(A_n) < \infty$$
, then: $\mu\left(\limsup_{n} A_n\right) = 0$

 $\sum_{n} \mu(A_n) < \infty, \text{ then: } \mu\left(\limsup_{n} A_n\right) = 0$ **Proof.** Put $B_n = \bigcup_{k \ge n} A_k$, then B_n is decreasing and $\limsup_{n} A_n = \bigcap_{n \ge 1} B_n$. Since

$$\mu(B_n) = \mu\left(\bigcup_{k \ge n} A_k\right) \le \sum_{k \ge n} \mu(A_n) \le \sum_n \mu(A_n) < \infty \text{ for all } n, \text{ we deduce, from } n$$

Proposition **7.5** (b), that
$$\mu\left(\limsup_{n} A_{n}\right) = \lim_{n} \mu\left(B_{n}\right) \leq \lim_{n} \sum_{k \geq n} \mu\left(A_{n}\right) = 0$$
, because $\sum_{k \geq n} \mu\left(A_{n}\right)$ is the remainder of a convergent series.

Proposition 7.7. (Borel-Cantelli Lemma)

Let (X, \mathcal{F}, μ) be a measure space. Let (A_n) be a sequence in \mathcal{F} such that:

$$\sum_{n} \mu(A_n) < \infty$$
, then: $\mu\left(\limsup_{n} A_n\right) = 0$

 $\sum_{n} \mu(A_n) < \infty, \text{ then: } \mu\left(\limsup_{n} A_n\right) = 0$ **Proof.** Put $B_n = \bigcup_{k \ge n} A_k$, then B_n is decreasing and $\limsup_{n} A_n = \bigcap_{n \ge 1} B_n$. Since

$$\mu(B_n) = \mu\left(\bigcup_{k\geq n} A_k\right) \leq \sum_{k\geq n} \mu(A_n) \leq \sum_n \mu(A_n) < \infty$$
 for all n , we deduce, from

$$\mu(B_n) = \mu\left(\bigcup_{k\geq n} A_k\right) \leq \sum_{k\geq n} \mu\left(A_n\right) \leq \sum_n \mu\left(A_n\right) < \infty \text{ for all } n, \text{ we deduce, from}$$
Proposition **1.6.5** (b), that $\mu\left(\limsup_n A_n\right) = \lim_n \mu\left(B_n\right) \leq \lim_n \sum_{k\geq n} \mu\left(A_n\right) = 0,$
because $\sum_{k\geq n} \mu\left(A_n\right)$ is the remainder of a convergent series.

8. Complete Measures

Definition 8.1.

Let (X, \mathcal{F}, μ) be a measure space and let N be a subset of X, we say that N is a null set if there is $A \in \mathcal{F}$, with $\mu(A) = 0$ such that $N \subset A$. Let \mathcal{N} be the family of null subsets of X. The space (X, \mathcal{F}, μ) is said to be complete if $\mathcal{N} \subset \mathcal{F}$ i.e every null set is mesurable.

Examples 8.2.

- (a) The counting measure on any set X is complete since in this case ϕ is the only null set.
- (b) If μ_s is the Dirac measure at s on (X, \mathcal{F}) (Example 7.2.(a)), every subset N not containing s is a null set

Lemma 8.3.

The family \mathcal{N} is closed by countable union.

Proof. Let (N_k) be a sequence in \mathcal{N} , then for each k there is $A_k \in \mathcal{F}$, with $\mu(A_k) = 0$ such that $N_k \subset A_k$. So $N = \bigcup_k N_k \subset \bigcup_k A_k$; by the sub σ - additivity of μ we have $\mu\left(\bigcup_{n}A_{n}\right)\leq\sum_{n}\mu\left(A_{n}\right)=0.\blacksquare$

It is possible to complete any measure space (X, \mathcal{F}, μ) according to the following:

Theorem 8.4.

Let (X, \mathcal{F}, μ) be a measure space and let \mathcal{N} be the family of null subsets of X. Let us put:

$$\begin{split} \mathcal{F}_{0} &= \{ \stackrel{\cdot}{E} \subset X \colon \ E = F \cup N, \ F \in \mathcal{F}, \ N \in \mathcal{N} \} \\ \mu_{0}\left(E\right) &= \mu_{0}\left(F \cup N\right) = \mu\left(F\right), \ \text{if} \ E = F \cup N, \ F \in \mathcal{F}, \ N \in \mathcal{N} \end{split}$$

Then: \mathcal{F}_0 is a σ -field on X containing \mathcal{F} , and \mathcal{N}

 μ_0 is a well defined measure on \mathcal{F}_0 that coincides with μ on \mathcal{F} .

The measure space $(X, \mathcal{F}_0, \mu_0)$ is complete.

Proof. First \mathcal{F}_0 is a σ -field

it is clear that ϕ and X are in \mathcal{F}_0

let $E \in \mathcal{F}_0$ with $E = F \cup N$, $F \in \mathcal{F}$, $N \in \mathcal{N}$ and let $A \in \mathcal{F}$, such that $\mu(A) = \mathcal{F}$ $0, N \subset A$; then we have $E^c = F^c \cap N^c = (F^c \cap N^c \cap A) + (F^c \cap N^c \cap A^c) =$ $(F^c \cap N^c \cap A) + (F^c \cap A^c)$; since $F^c \cap N^c \cap A \in \mathcal{N}$ and $F^c \cap A^c \in \mathcal{F}$

we have $E^c \in \mathcal{F}_0$. Finally \mathcal{F}_0 is closed by countable union and this comes from the same property for the family \mathcal{N} (Lemma 8.3).

To finish the proof, we consider the set function μ_0 . First it is well defined, indeed suppose the set $E \in \mathcal{F}_0$ can be written as $E = F_1 \cup N_1 = F_2 \cup N_2$, then $F_1 \cap F_2^c \subset N_1 \cup N_2$ and $F_2 \cap F_1^c \subset N_1 \cup N_2$ which gives $\mu(F_1 \cap F_2^c) =$ $\mu(F_2 \cap F_1^c) = 0$, so $\mu(F_1) = \mu(F_2)$ and $\mu_0(E) = \mu_0(F \cup N) = \mu(F)$ is well defined.

To prove the σ -additivity of μ_0 , let (E_n) be a pairwise disjoint sequence in \mathcal{F}_0 ,

and write $E_k = F_k \cup N_k$, $k \ge 1$, with $F_k \in \mathcal{F}$, $N_k \in \mathcal{N}$. Then we have $\sum_k E_k = \sum_k F_k \cup \sum_k N_k$, with $\sum_k N_k \in \mathcal{N}$ (Lemma 8.3).

and
$$\mu_0\left(\sum_k E_k\right)^k = \mu\left(\sum_k F_k\right) = \sum_k \mu(F_k) = \sum_k \mu_0(E_k)$$
, since μ is σ -additive. Finally we prove that $(X, \mathcal{F}_0, \mu_0)$ is complete. Let M_0 be a μ_0 null set in X , so

there is $E_0 \in \mathcal{F}_0$ with $\mu_0(E_0) = 0$ and $M_0 \subset E_0$; write $E_0 = F \cup N$, $F \in \mathcal{F}$, $N \in \mathcal{N}$ with $\mu_0(E_0) = \mu(F) = 0$ and $N \subset A \in \mathcal{F}$, $\mu(A) = 0$, so $M_0 \subset F \cup A$, with $\mu(F \cup A) = 0$; this proves that $M_0 \in \mathcal{N} \subset \mathcal{F}_0$ and M_0 is \mathcal{F}_0 measurable.

9. Exercises

- **10.** A family σ of subsets of X is σ -additive if:
 - (1) ϕ and X are in σ
 - (2) If (A_n) is an increasing sequence in σ then $\bigcup_n A_n \in \sigma$
 - (3) For any A, B in σ we have:

$$A \subset B \Longrightarrow B \cap A^c \in \sigma$$

$$A \cap B = \phi \Longrightarrow A + B \in \sigma$$

- (a) prove that any σ -field is a σ -additive family
- (b) let μ, λ be two measures on the same measurable space (X, \mathcal{F}) such that $\mu(X) = \lambda(X) < \infty$.

Prove that the family $\sigma = \{A \in \mathcal{F}: \ \mu(A) = \lambda(A)\}\ \text{is } \ \sigma\text{-additive}.$

Let C be a family of subsets of X then there exists a smallest σ -additive family on X containing C called the σ -additive family generated by C.

11. Let \Im be a family of subsets of X closed by finite intersection

Prove that the σ -field generated by \Im coincides with the σ -additive family generated by \Im .