Chapter 1

Positive Measures

1. Algebras of Sets

This section is intented to give the basic structures on sets, needed for the definition and properties of measures. We start with the following:

Preliminaries:

Let X be a set, and let $\mathcal{P}(X)$ be the power set of X. If I is any nonempty set, a function $f: I \longrightarrow \mathcal{P}(X)$ defines a family $\left\{A_{i}, i \in I\right\}$ of subsets of X, with $A_{i}=f(i) \in \mathcal{P}(X)$. For such family we perform the union and the intersection by:

$$
\begin{aligned}
& \cup_{i} A_{i}=\left\{x: \exists i \in I, x \in A_{i}\right\} \\
& \bigcap_{i} A_{i}=\left\{x: \forall i \in I, x \in A_{i}\right\}
\end{aligned}
$$

Let us recall the frequently used De Morgan's Laws:

$$
\left(\cup_{i} A_{i}\right)^{c}=\cap_{i} A_{i}^{c}, \quad\left(\cap_{i} A_{i}\right)^{c}=\bigcup_{i} A_{i}^{c}
$$

valid for any family $\left\{A_{i}, i \in I\right\}$, where A^{c} denotes the complement of the set A.
Definition 1.1.
Let \mathcal{A} be a family of subsets of X.
We say that \mathcal{A} is an algebra on X if:
(1) X, ϕ are in \mathcal{A}
(2) For every subset A in \mathcal{A}, the complement A^{c} of A is in \mathcal{A}
(3) For every subsets $A, B \in \mathcal{A}, A \cup B \in \mathcal{A}$

Example 1.2.
(a) For any X the power set $\mathcal{P}(X)$ is an algebra
(b) Let X be a set and let \mathcal{A} be the family given by $\mathcal{A}=\left\{A \subset X: A\right.$ or A^{c} finite $\}$. It is not difficult to check that \mathcal{A} is an algebra, using the De Morgan's Laws given in the Preliminaries
(c) If \mathcal{A} is an algebra and if $A, B \in \mathcal{A}$ then $A \cap B \in \mathcal{A}$
(d) For any finite sequence A_{1}, \ldots, A_{n} in \mathcal{A} the union $\cup_{1}^{n} A_{i}$ and the intersection $\bigcap_{1}^{n} A_{i}$ are in \mathcal{A}.

Definition 1.3.

Let \mathcal{F} be a family of subsets of X.
We say that \mathcal{F} is a σ-field or σ-algebra on X if:
(1) X, ϕ are in \mathcal{F}
(2) For every subset A in \mathcal{F}, the complement A^{c} of A is in \mathcal{F}
(3) For every sequence $\left(A_{n}\right)$ of subsets $A_{n} \in \mathcal{F}, \cup_{n} A_{n} \in \mathcal{F}$

The pair (X, \mathcal{F}), where X is a set and \mathcal{F} a σ-field on X is called a measurable space and sets A in \mathcal{F} are called measurable sets.

Examples 1.4.

(a) For any X the power set $\mathcal{P}(X)$ is a σ-field on X.
(b) Let X be an infinite set and let \mathcal{F} be the family given by $\mathcal{F}=\left\{A \subset X: A\right.$ or A^{c} countable $\}$.

Then it is not difficult to prove that \mathcal{F} is a σ-field on X
(use the De Morgan's Laws given in the Preliminaries).
(c) Every σ-field on X is an algebra, but the converse is not true as is shown by the following:
take $X=\mathbb{Z}$, the integers and the algebra $\mathcal{A}=\left\{A \subset X: A\right.$ or A^{c} finite $\}$, put $A_{n}=\{n\}, n \geq 0$; then $A_{n} \in \mathcal{A}, \forall n \geq 0$, but $\cup_{n \geq 0}^{\cup} A_{n} \notin \mathcal{A}$.
Remark 1.5.
(a) If \mathcal{F} is a σ-field on X, then for every sequence $\left(A_{n}\right)$ in $\mathcal{F}, \cap_{n} A_{n} \in \mathcal{F}$.
(b) For every sequence $\left(A_{n}\right)$ such that $A_{i} \cap A_{j}=\phi$, for $i \neq j$ we denote the set $\cup_{n} A_{n}$ by $\sum_{n} A_{n}$.

2. Exercises

1. Prove that the family \mathcal{F} is a σ-field on X, if and if the following conditions are satisfied:
(a) $\phi \in \mathcal{F}$
(b) For any finite sequence A_{1}, \ldots, A_{n} in $\mathcal{F}, \bigcap_{1}^{n} A_{i} \in \mathcal{F}$
(c) For every sequence $\left(A_{n}\right)$ such that $A_{i} \cap A_{j}=\phi$, for $i \neq j$. we have $\sum_{n} A_{n} \in \mathcal{F}$
2. For every sequence $\left(A_{n}\right)$, define the sequence $\left(B_{n}\right)$ by the following recipe:
$B_{1}=A_{1}, B_{2}=A_{2} \backslash A_{1}, B_{3}=A_{3} \backslash\left(A_{1} \cup A_{2}\right), \ldots . B_{n} \backslash\left(\cup_{i<n} A_{i}\right)$
Prove that $\cup_{n} A_{n}=\sum_{n} B_{n}$.

3. Generations

Lemma 3.1.

Let $\mathcal{F}_{i}, i \in I$ be an arbitrary family of σ-fields (resp. algebras). Then the family $\cap_{i} \mathcal{F}_{i}$ is a σ-field (resp. algebra).
Proof. Straightforward.

Corollary 3.2.

Let \mathcal{H} be a family of subsets of a set X
Then there exist a smallest σ-field on X containing \mathcal{H}, denoted by $\sigma(\mathcal{H})$.
Smallest is taken in the sens of the inclusion ordering.
$\sigma(\mathcal{H})$.is called the σ-field generated by \mathcal{H}.
Proof. Let $\mathfrak{I}=\{\mathcal{F}: \mathcal{F} \sigma-$ field on X, with $\mathcal{H} \subset \mathcal{F}\}$
then by Lemma 3.1, $\cap_{\mathcal{F} \in \mathfrak{I}} \mathcal{F}$ is a σ-field on X and it is clear that:
$\sigma(\mathcal{H})=\bigcap_{\mathcal{F} \in \mathfrak{I}} \mathcal{F}$

Example 3.3.

(a) Let \mathcal{H} be a family given by one subset $A, \mathcal{H}=\{A\}$
then $\sigma(\mathcal{H})=\left\{A, A^{c}, \phi, X\right\}$.
(b) If \mathcal{I} is the family of one point sets given by $\mathcal{I}=\{\{x\}: x \in X\}$
then we have $\sigma(\mathcal{I})=\left\{A \subset X: A\right.$ or A^{c} countable $\}$ (see Example $\left.1.4(b)\right)$

Definition 3.4.(Product σ-field)

Let $\left(X_{1}, \mathcal{F}_{1}\right),\left(X_{2}, \mathcal{F}_{2}\right)$ be measurable spaces. Consider on the product set $X_{1} \times X_{2}$ the family $\mathcal{R}=\left\{A_{1} \times A_{2}: A_{1} \in \mathcal{F}_{1}, A_{2} \in \mathcal{F}_{2}\right\}$.
The product σ-field on $X_{1} \times X_{2}$ is defined by $\mathcal{F}_{1} \otimes \mathcal{F}_{2}=\sigma(\mathcal{R})$.
The measurable space $\left(X_{1} \times X_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)$ is called the product of $\left(X_{1}, \mathcal{F}_{1}\right)$, $\left(X_{2}, \mathcal{F}_{2}\right)$.

Definition 3.5. (Borel σ-field)

Let X be a topological space. The Borel σ-field of X is the σ-field generated by the family of all the open sets of X.
It is denoted by \mathcal{B}_{X}. Sets in \mathcal{B}_{X} are called Borel sets of X. One can see that \mathcal{B}_{X} is also generated by the closed sets of X.

Proposition 3.6.

The Borel σ-field $\mathcal{B}_{\mathbb{R}}$ of \mathbb{R} is generated by the open intervals of \mathbb{R}.
In fact $\mathcal{B}_{\mathbb{R}}$ is generated by the family $]-\infty, t[, t \in \mathbb{R}\}$.
Proof. Every open set of \mathbb{R} is the union of a sequence of open intervals

Definition 3.7. (Monotone family)

Let \mathcal{M} be a family of subsets of a set $X . \mathcal{M}$ is said to be monotone if:
(i) For any sequence $\left(A_{n}\right)$ with $A_{1} \subset A_{2} \subset \ldots \subset A_{n} \subset \ldots$, we have $\cup_{n} A_{n} \in \mathcal{M}$
(ii) For any sequence $\left(A_{n}\right)$ with $A_{1} \supset A_{2} \supset \ldots \supset A_{n} \supset \ldots$, we have $\bigcap_{n}^{n} A_{n} \in \mathcal{M}$

Example 3.8.

(a) Any σ-field is a monotone family
(b) Let \mathcal{A} be an algebra, then \mathcal{A} is a σ-field iff \mathcal{A} is a monotone family.

Lemma 3.9.

Let $\mathcal{M}_{i}, i \in I$ be an arbitrary class of monotone families
Then the family $\cap_{i} \mathcal{M}_{i}$ is a monotone family.
Proof. Straightforward.

Corollary $\mathbf{3 . 1 0}$.

Let \mathcal{H} be a family of subsets of a set X
Then there exist a smallest monotone family on X containing \mathcal{H}, denoted by $\mathcal{M}(\mathcal{H})$. Smallest is taken in the sens of the inclusion ordering.
$\mathcal{M}(\mathcal{H})$.is called the monotone family generated by \mathcal{H}.
Proof. Let $\mathfrak{I}=\{\mathcal{M}: \mathcal{M}$ monotone family on X, with $\mathcal{H} \subset \mathcal{M}\}$
then by Lemma 3.9, $\cap_{\mathcal{M} \in \mathfrak{J}} \mathcal{M}$ is a monotone family on X and it is clear that:

$$
\mathcal{M}(\mathcal{H})=\bigcap_{\mathcal{M} \in \mathfrak{I}} \mathcal{M}
$$

Theorem 3.11.

Let \mathcal{A} be an algebra on the set X. Then the σ-field generated by \mathcal{A} is identical to the monotone family generated by \mathcal{A}.

Proof. Put $\mathcal{M}=\mathcal{M}(\mathcal{A}), \mathcal{B}=\sigma(\mathcal{A})$. Then $\mathcal{M} \subset \mathcal{B}$ (Example 3.8. (a)).
To show that $\mathcal{B} \subset \mathcal{M}$ it is enough to prove that \mathcal{M} is an algebra
(see Example 3.8. (b))
First we prove that $B \in \mathcal{M} \Longrightarrow B^{c} \in \mathcal{M}$. To this end let $\mathcal{M}^{\prime}=\left\{B \in \mathcal{M}: \quad B^{c} \in \mathcal{M}\right\}$
Then we have $\mathcal{A} \subset \mathcal{M}^{\prime} \subset \mathcal{M}$. Moreover \mathcal{M}^{\prime} is monotone and so $\mathcal{M}^{\prime}=\mathcal{M}$.
It remains to prove that \mathcal{M} is stable by intersection. For each $A \in \mathcal{M}$, consider the family $\mathcal{M}_{A}=\{B \in \mathcal{M}: A \cap B \in \mathcal{M}\}$, then \mathcal{M}_{A} is a monotone family with $\mathcal{M}_{A} \subset \mathcal{M}$. Moreover if $A \in \mathcal{A}$, we have $\mathcal{A} \subset \mathcal{M}_{A}$, so we deduce that $\mathcal{M}_{A}=\mathcal{M}$. On the other hand it is clear that $A \in \mathcal{M}_{B}$ iff $B \in \mathcal{M}_{A}$, therefore $A \in \mathcal{M}_{B}$ for every $A \in \mathcal{A}$ and $B \in \mathcal{M}$. Finally $\mathcal{M}_{B}=\mathcal{M}$, for all $B \in \mathcal{M}$. This proves that \mathcal{M} is an algebra.

4. Exercises

3. Let \mathcal{A} be a family of subsets of a set X. If E is any subset in X, we define the trace of \mathcal{A} on E by the family $\mathcal{A} \cap E=\{A \cap E, A \in \mathcal{A}\}$.
Prove that $\sigma(\mathcal{A} \cap E)=\sigma(\mathcal{A}) \cap E$.
4. Let \mathcal{S} be a family of subsets of a set X. We say that \mathcal{S} is a semialgebra if it satisfies:
(a) ϕ, X are in \mathcal{S}
(b) If A, B are in \mathcal{S} then $A \cap B$ is in \mathcal{S}
(c) If A is in \mathcal{S} then $A^{c}=\sum_{1}^{n} A_{k}$, where the sets A_{k} are pairwise disjoint in
\mathcal{S}.
Prove that the algebra generated by the semialgebra \mathcal{S} is the family

$$
\mathcal{A}=\left\{A: A=\sum_{1}^{n} S_{k}, \text { where the } S_{k} \text { are pairwise disjoint in } \mathcal{S} .\right\}
$$

5. Let \mathbb{R} the set of real numbers equiped with the usual topology, prove that the family of all intervals is a semialgebra.
6. Let $\mathcal{S}_{1}, \mathcal{S}_{2}$ be semialgebras on the set X and consider the family $\mathcal{S}=$ $\left\{S_{1} \cap S_{2}, \quad S_{1} \in \mathcal{S}_{1}, S_{2} \in \mathcal{S}_{2}\right\}$.
Prove that \mathcal{S} is a semialgebra and that the algebra generated by \mathcal{S} is identical to the algebra generated by \mathcal{S}_{1} and \mathcal{S}_{2}.
7. Let $\left(X_{1}, \mathcal{F}_{1}\right),\left(X_{2}, \mathcal{F}_{2}\right)$ be measurable spaces. Prove that the family $\left\{A_{1} \times A_{2}: A_{1} \in \mathcal{F}_{1}, A_{2} \in \mathcal{F}_{2}\right\}$ is a semialgebra.on $X_{1} \times X_{2}$, (see exercise 4.).

5. Limsup and Liminf

Let X be a set, and let $\mathcal{P}(X)$ be the power set of X. We assume that $\mathcal{P}(X)$ is endowed with the inclusion ordering \subset. then:

Definition 5.1.
For any sequence $\left(A_{n}\right)$ in $\mathcal{P}(X)$, we define the sets $\limsup A_{n}$ and $\liminf _{n} A_{n}$ by:
$\underset{n}{\lim \sup _{n}} A_{n}=\underset{n \geq 1}{\cap} \bigcup_{k \geq n} A_{k}$
$\liminf _{n} A_{n}=\underset{n \geq 1}{\cup} \cap_{k \geq n} A_{k}$
Similarly let \mathbb{R}, \leq be the ordered real number system and:

Definition 5.2.

For any sequence $\left(a_{n}\right)$ in \mathbb{R}, we define the numbers $\limsup a_{n}$ and $\lim \inf a_{n}$
in $\overline{\mathbb{R}}=[-\infty, \infty]$ by:
$\limsup _{n} a_{n}=\inf _{n \geq 1} \sup _{k \geq n} a_{k}$
$\liminf _{n} a_{n}=\sup _{n \geq 1} \inf _{k \geq n} a_{k}$

Definition 5.3.

If $f_{n}: X \longrightarrow \mathbb{R}$ us a sequence of functions from a set X into \mathbb{R}, we define the functions $\limsup f_{n}$ and $\liminf _{n} f_{n}$ from X into $\overline{\mathbb{R}}$, by:

$$
\begin{aligned}
& \left(\limsup _{n} f_{n}\right)^{n}(x)=\limsup _{n}^{n}\left(f_{n}(x)\right) \\
& \left(\underset{n}{\left.\liminf _{n} f_{n}\right)}(x)=\liminf _{n}\left(f_{n}(x)\right)\right.
\end{aligned}
$$

6. Exercises

8. Prove that for any sequence $\left(A_{n}\right)$ in $\mathcal{P}(X)$ we have:

$$
\begin{aligned}
& \liminf _{n} A_{n} \subset \limsup _{n} A_{n} \\
& \left(\liminf _{n} A_{n}\right)^{c}=\limsup _{n} A_{n}^{c} \\
& \left(\limsup _{n} A_{n}\right)^{c}=\liminf _{n} A_{n}^{c}
\end{aligned}
$$

9. Let I_{A} be the indicator function of the set A, i.e $I_{A}(x)=1$ if $x \in A$ and $I_{A}(x)=0$ if $x \notin A$.
Prove that for any sequence $\left(A_{n}\right)$ in $\mathcal{P}(X)$ we have::

$$
I_{\limsup A_{n}}=\limsup I_{A_{n}} \text { and } I_{\liminf _{n}}=\liminf _{n} I_{A_{n}}
$$

7. Positive Measures

Let (X, \mathcal{F}) be a measurable space.

Definition 7.1.

A positive measure μ on \mathcal{F} is a set function $\mu: \mathcal{F} \longrightarrow[0 \infty]$ such that:
(i) $\mu(\phi)=0$
(ii) For every pairwise disjoint sequence $\left(A_{n}\right)$ in \mathcal{F} :

$$
\mu\left(\sum_{n} A_{n}\right)=\sum_{n} \mu\left(A_{n}\right) \quad(\sigma-\text { additivity of } \mu)
$$

The triple (X, \mathcal{F}, μ) is called measure space.
Let us observe that for a finite pairwise disjoint sequence
$A_{k}, 1 \leq k \leq n$ in \mathcal{F}, we have: $\mu\left(\sum_{1}^{n} A_{k}\right)=\sum_{1}^{n} \mu\left(A_{k}\right)$.

Example 7.2.

(a) Let X be a set and fix $x_{0} \in X$. Define μ on $\mathcal{P}(X)$ by: $A \in \mathcal{P}(X), \mu(A)=I_{A}\left(x_{0}\right)$ (see exercise $\mathbf{9}$ defining the function $\left.I_{A}\right) . I_{(\cdot)}\left(x_{0}\right)$ is called Dirac measure at x_{0}.
To prove the σ-additivity of μ, observe that $I_{\sum_{n} A_{n}}=\sum_{n} I_{A_{n}}$ for pairwise disjoint sequences $\left(A_{n}\right)$.
(b) For $A \subset X$ put $\mu(A)=\infty$ if A is an infinite set and $\mu(A)=n$ if A is a finite set with n elements. This measure is called the cardinality measure on $\mathcal{P}(X)$.

Proposition 7.3 .

Let (X, \mathcal{F}, μ) be a measure space and let A, B be in \mathcal{F}, then:
(a) $A \subset B \Longrightarrow \mu(A) \leq \mu(B)$.
(b) $A \subset B$ and $\mu(A)<\infty \Longrightarrow \mu(B \backslash A)=\mu(B)-\mu(A)$.
$\left(B \backslash A\right.$ is the difference set $\left.B \cap A^{c}\right)$
Proof. If $A \subset B$, then $B=(B-A) \cup A$ and $\mu(B)=\mu(B \backslash A)+\mu(A)$, by additivity; so $\mu(B) \geq \mu(A)$.If moreover $\mu(A)<\infty$ we deduce that:
$\mu(B \backslash A)=\mu(B)-\mu(A)$.
Proposition 7.4. Let (X, \mathcal{F}, μ) be a measure space. Then for any sequence $\left(A_{n}\right)$ in \mathcal{F} we have:
$\mu\left(\cup_{n} A_{n}\right) \leq \sum_{n} \mu\left(A_{n}\right) \quad($ sub σ-additivity of $\mu)$.
Proof. Define the sequence $\left(B_{n}\right)$ by the following recipe: $B_{1}=A_{1}, B_{2}=$ $A_{2} \backslash A_{1}, B_{3}=A_{3} \backslash\left(A_{1} \cup A_{2}\right), \ldots . B_{n} \backslash\left(\underset{i<n}{\cup} A_{i}\right)$, then $\cup_{n} A_{n}=\sum_{n} B_{n}$ and $B_{n} \subset A_{n}$, $\forall n$. So $\mu\left(\cup_{n} A_{n}\right)=\mu\left(\sum_{n} B_{n}\right)=\sum_{n} \mu\left(B_{n}\right)$;by Proposition $7.3(a) \mu\left(B_{n}\right) \leq$ $\mu\left(A_{n}\right), \forall n$

Proposition 7.5. (sequential continuity of a measure)
Let (X, \mathcal{F}, μ) be a measure space. If $\left(A_{n}\right)$ is a sequence in \mathcal{F}, then we have
(a) if $A_{1} \subset A_{2} \subset \ldots \subset A_{n} \subset \ldots \subset A=\cup_{n} A_{n}$ then $\mu(A)=\operatorname{Lim} \mu\left(A_{n}\right)$
(b) if $A_{1} \supset A_{2} \supset \ldots \supset A_{n} \supset \ldots \supset A \stackrel{n}{=} \bigcap_{n} A_{n}$ and if $\mu\left(A_{n_{0}}\right)^{n}<\infty$ for some n_{0} then $\mu(A)=\operatorname{Lim}_{n} \mu\left(A_{n}\right)$
Proof. (a) Define the sequence $\left(B_{n}\right)$ by: $B_{1}=A_{1}, B_{2}=A_{2} \backslash A_{1}, B_{3}=A_{3} \backslash A_{2}, \ldots, B_{n}=A_{n} \backslash A_{n-1}$, so we have $A=\sum_{n} B_{n}$ and $\mu(A)=\sum_{n} \mu\left(B_{n}\right)=\sum_{n} \mu\left(A_{n} \backslash A_{n-1}\right)=\operatorname{Lim}_{n} \sum_{k=1}^{n} \mu\left(A_{k} \backslash A_{k-1}\right)=\operatorname{Lim}_{n} \mu\left(\sum_{k=1}^{n} A_{k} \backslash A_{k-1}\right)$; but $\sum_{1}^{n} A_{k} \backslash A_{k-1}=A_{n}$ by construction and we deduce that $\mu(A)=\operatorname{Lim}_{n} \mu\left(A_{n}\right)$.
(b) We can assume $n_{0}=1$, so $\mu\left(A_{n}\right)<\infty$ for all n. On the other hand we have $A_{1} \backslash A_{1} \subset A_{1} \backslash A_{2} \subset \ldots \subset A_{1} \backslash A_{n} \subset \ldots \cup_{n} A_{1} \backslash A_{n}=A_{1} \backslash A$. By (a) we deduce $\mu\left(A_{1} \backslash A\right)=\operatorname{Lim}_{n} \mu\left(A_{1} \backslash A_{n}\right)$. Since $\mu\left(A_{n}\right) \stackrel{n}{<} \infty$ for all n we get, by Proposition $7.3(b), \mu\left(A_{1} \backslash A\right)=\mu\left(A_{1}\right)-\mu(A)$ and $\mu\left(A_{1} \backslash A_{n}\right)=\mu\left(A_{1}\right)-\mu\left(A_{n}\right)$, whence $\mu(A)=\operatorname{Lim}_{n} \mu\left(A_{n}\right)$.
Example 7.6. The condition (b) above is essential as is shown by taking μ the counting measure on \mathbb{N} and taking $A_{n}=\{p: p \geq n\}$; indeed we have $\cap A_{n}=\phi$, so $\mu(\phi)=0$ but $\mu\left(A_{n}\right)=\infty$, for all n, and then $\operatorname{Lim}_{n} \mu\left(A_{n}\right)=\infty$.

Proposition 7.7. (Borel-Cantelli Lemma)

Let (X, \mathcal{F}, μ) be a measure space. Let $\left(A_{n}\right)$ be a sequence in \mathcal{F} such that:
$\sum_{n} \mu\left(A_{n}\right)<\infty$, then: $\mu\left(\limsup _{n} A_{n}\right)=0$
Proof. Put $B_{n}=\underset{k \geq n}{\cup} A_{k}$, then B_{n} is decreasing and $\underset{n}{\limsup } A_{n}=\underset{n \geq 1}{\cap} B_{n}$. Since $\mu\left(B_{n}\right)=\mu\left(\bigcup_{k \geq n} A_{k}\right) \leq \sum_{k \geq n} \mu\left(A_{n}\right) \leq \sum_{n} \mu\left(A_{n}\right)<\infty$ for all n, we deduce, from
Proposition $7.5(b)$, that $\mu\left(\lim _{n} \sup _{n} A_{n}\right)=\operatorname{Lim}_{n} \mu\left(B_{n}\right) \leq \operatorname{Lim}_{n} \sum_{k \geq n} \mu\left(A_{n}\right)=0$, because $\sum_{k \geq n} \mu\left(A_{n}\right)$ is the remainder of a convergent series.
Proposition 7.7. (Borel-Cantelli Lemma)
Let (X, \mathcal{F}, μ) be a measure space. Let $\left(A_{n}\right)$ be a sequence in \mathcal{F} such that:
$\sum_{n} \mu\left(A_{n}\right)<\infty$, then: $\mu\left(\limsup _{n} A_{n}\right)=0$
Proof. Put $B_{n}=\underset{k \geq n}{\cup} A_{k}$, then B_{n} is decreasing and $\limsup _{n} A_{n}=\underset{n \geq 1}{\cap} B_{n}$. Since $\mu\left(B_{n}\right)=\mu\left(\bigcup_{k \geq n} A_{k}\right) \leq \sum_{k \geq n} \mu\left(A_{n}\right) \leq \sum_{n} \mu\left(A_{n}\right)<\infty$ for all n, we deduce, from Proposition 1.6.5 (b), that $\mu\left(\limsup _{n} A_{n}\right)=\operatorname{Lim} \mu\left(B_{n}\right) \leq \operatorname{Lim}_{n} \sum_{k \geq n} \mu\left(A_{n}\right)=0$, because $\sum_{k \geq n} \mu\left(A_{n}\right)$ is the remainder of a convergent series.

8. Complete Measures

Definition 8.1.

Let (X, \mathcal{F}, μ) be a measure space and let N be a subset of X, we say that N is a null set if there is $A \in \mathcal{F}$, with $\mu(A)=0$ such that $N \subset A$. Let \mathcal{N} be the family of null subsets of X. The space (X, \mathcal{F}, μ) is said to be complete if $\mathcal{N} \subset \mathcal{F}$ i.e every null set is mesurable.

Examples 8.2.

(a) The counting measure on any set X is complete since in this case ϕ is the only null set.
(b) If μ_{s} is the Dirac measure at s on (X, \mathcal{F}) (Example 7.2.(a)), every subset N not containing s is a null set

Lemma 8.3.

The family \mathcal{N} is closed by countable union.
Proof. Let $\left(N_{k}\right)$ be a sequence in \mathcal{N}, then for each k there is $A_{k} \in \mathcal{F}$, with $\mu\left(A_{k}\right)=0$ such that $N_{k} \subset A_{k}$. So $N=\cup_{k} N_{k} \subset \cup_{k} A_{k}$; by the sub σ - additivity
of μ we have $\mu\left(\cup_{n} A_{n}\right) \leq \sum_{n} \mu\left(A_{n}\right)=0$.
It is possible to complete any measure space (X, \mathcal{F}, μ) according to the following:
Theorem 8.4.
Let (X, \mathcal{F}, μ) be a measure space and let \mathcal{N} be the family of null subsets of X. Let us put:
$\mathcal{F}_{0}=\{E \subset X: \quad E=F \cup N, F \in \mathcal{F}, N \in \mathcal{N}\}$
$\mu_{0}(E)=\mu_{0}(F \cup N)=\mu(F)$, if $E=F \cup N, F \in \mathcal{F}, N \in \mathcal{N}$
Then: \mathcal{F}_{0} is a σ-field on X containing \mathcal{F}, and \mathcal{N}
μ_{0} is a well defined measure on \mathcal{F}_{0} that coincides with μ on \mathcal{F}.
The measure space $\left(X, \mathcal{F}_{0}, \mu_{0}\right)$ is complete.
Proof. First \mathcal{F}_{0} is a σ-field
it is clear that ϕ and X are in \mathcal{F}_{0}
let $E \in \mathcal{F}_{0}$ with $E=F \cup N, F \in \mathcal{F}, N \in \mathcal{N}$ and let $A \in \mathcal{F}$, such that $\mu(A)=$ $0, N \subset A$; then we have $E^{c}=F^{c} \cap N^{c}=\left(F^{c} \cap N^{c} \cap A\right)+\left(F^{c} \cap N^{c} \cap A^{c}\right)=$ $\left(F^{c} \cap N^{c} \cap A\right)+\left(F^{c} \cap A^{c}\right)$; since $F^{c} \cap N^{c} \cap A \in \mathcal{N}$ and $F^{c} \cap A^{c} \in \mathcal{F}$
we have $E^{c} \in \mathcal{F}_{0}$. Finally \mathcal{F}_{0} is closed by countable union and this comes from the same property for the family \mathcal{N} (Lemma 8.3).
To finish the proof, we consider the set function μ_{0}. First it is well defined, indeed suppose the set $E \in \mathcal{F}_{0}$ can be written as $E=F_{1} \cup N_{1}=F_{2} \cup N_{2}$, then $F_{1} \cap F_{2}^{c} \subset N_{1} \cup N_{2}$ and $F_{2} \cap F_{1}^{c} \subset N_{1} \cup N_{2}$ which gives $\mu\left(F_{1} \cap F_{2}^{c}\right)=$ $\mu\left(F_{2} \cap F_{1}^{c}\right)=0$, so $\mu\left(F_{1}\right)=\mu\left(F_{2}\right)$ and $\mu_{0}(E)=\mu_{0}(F \cup N)=\mu(F)$ is well defined.
To prove the σ-additivity of μ_{0}, let $\left(E_{n}\right)$ be a pairwise disjoint sequence in \mathcal{F}_{0}, and write $E_{k}=F_{k} \cup N_{k}, k \geq 1$, with $F_{k} \in \mathcal{F}, N_{k} \in \mathcal{N}$.
Then we have $\sum_{k} E_{k}=\sum_{k} F_{k} \cup \sum_{k} N_{k}$, with $\sum_{k} N_{k} \in \mathcal{N}($ Lemma 8.3 $)$.
and $\mu_{0}\left(\sum_{k} E_{k}\right)=\mu\left(\sum_{k} F_{k}\right)=\sum_{k} \mu\left(F_{k}\right)=\sum_{k} \mu_{0}\left(E_{k}\right)$, since μ is σ-additive.
Finally we prove that $\left(X, \mathcal{F}_{0}, \mu_{0}\right)$ is complete. Let M_{0} be a μ_{0} null set in X, so
there is $E_{0} \in \mathcal{F}_{0}$ with $\mu_{0}\left(E_{0}\right)=0$ and $M_{0} \subset E_{0}$; write $E_{0}=F \cup N, F \in \mathcal{F}$, $N \in \mathcal{N}$ with $\mu_{0}\left(E_{0}\right)=\mu(F)=0$ and $N \subset A \in \mathcal{F}, \mu(A)=0$, so $M_{0} \subset F \cup A$, with $\mu(F \cup A)=0$; this proves that $M_{0} \in \mathcal{N} \subset \mathcal{F}_{0}$ and M_{0} is \mathcal{F}_{0} measurable.

9. Exercises

10. A family σ of subsets of X is σ-additive if:
(1) ϕ and X are in σ
(2) If $\left(A_{n}\right)$ is an increasing sequence in σ then $\cup_{n} A_{n} \in \sigma$
(3) For any A, B in σ we have:
$A \subset B \Longrightarrow B \cap A^{c} \in \sigma$
$A \cap B=\phi \Longrightarrow A+B \in \sigma$
(a) prove that any σ-field is a σ-additive family
(b) let μ, λ be two measures on the same measurable space (X, \mathcal{F}) such that $\mu(X)=\lambda(X)<\infty$.
Prove that the family $\sigma=\{A \in \mathcal{F}: \mu(A)=\lambda(A)\}$ is σ-additive.
Let \boldsymbol{C} be a family of subsets of X then there exists a smallest σ-additive family on X containing \boldsymbol{C} called the σ-additive family generated by \boldsymbol{C}.
11. Let \Im be a family of subsets of X closed by finite intersection

Prove that the σ-field generated by \Im coincides with the σ-additive family generated by \Im.

