Chapter 2

Outer measures Extension of measures 1. Outer measures

Definition 1.1.

An outer measure on a set X is a set function $\lambda : \mathcal{P}(X) \longrightarrow [0 \infty]$ such that: (1) $\lambda(\phi) = 0$ (2) if $A \subset B$ then $\lambda(A) \leq \lambda(B)$ (3) if (E_n) is any sequence in $\mathcal{P}(X)$ then $\lambda\left(\bigcup_n E_n\right) \leq \sum_n \lambda(E_n)$

Remark.1.2.

It is not difficult to see that if λ is additive then λ is a positive measure on $\mathcal{P}(X)$.

Example.1.3.

(a) Any positive measure on $\mathcal{P}(X)$ is an outer measure.

(b) Define λ on $\mathcal{P}(X)$ by $\lambda(\phi) = 0$ and $\lambda(E) = 1$ if $E \neq \phi$; if X has more than one point then λ is an outer measure but not a measure.

We can say that the notion of outer measure is a natural generalization of that of positive measure. We will see below that an outer measure acts as a true measure on a some specific family of subsets of X. Let us start with the following:

Definition 1.4.

Let λ be an outer measure on X. A subset $E \subset X$ is said to be outer measurable or λ -measurable if we have:

for every
$$A \subset X$$
, $\lambda(A) = \lambda(A \cap E) + \lambda(A \cap E^c)$

Example.1.5.

(a) A subset $E \subset X$ with $\lambda(E) = 0$ is λ -measurable. (b) X, ϕ are λ -measurable for every outer measure λ . (c) Let λ be defined on X by $\lambda(\phi) = 0, \lambda(X) = 2, \lambda(E) = 1$ for $E \neq \phi, X$. Then λ is an outer measure and ϕ, X are the only λ -measurable sets.

Now we go to the important assertion:

Theorem.1.6.

Let λ be an outer measure on X

and let \mathcal{F} be the family of the λ -measurable sets.

Then \mathcal{F} is a σ -field and the restriction of λ to \mathcal{F} is a positive measure. **Proof. see** [7].

2. Exercises

12. Let λ be an outer measure on X and let H be a λ -measurable set. Let λ_0 be the restriction of λ to $\mathcal{P}(H)$, prove that:

(a) λ_0 is an outer measure on $\mathcal{P}(H)$.

(b) $A \subset H$ is λ_0 -measurable iff A is λ -measurable.

13.Let λ be an outer measure on X and let A be a λ -measurable set. If $B \subset X$ is a subset with $\lambda(B) < \infty$, prove that:

 $\lambda \left(A \cup B \right) = \lambda \left(A \right) + \lambda \left(B \right) - \lambda \left(A \cap B \right)$

3. Extension of Measures

We start this section with the construction of an outer measure from a measure defined on an algebra of sets.

Definition 3.1.

Let \mathcal{A} be an algebra on X. A positive measure on \mathcal{A} is a set function $\mu : \mathcal{A} \longrightarrow [0 \infty]$ such that:

$$(i) \ \mu \left(\phi \right) = 0$$

(*ii*) For every pairwise disjoint sequence (A_n) in \mathcal{A} with $\bigcup_n A_n \in \mathcal{A}$:

$$\mu\left(\sum_{n} A_{n}\right) = \sum_{n} \mu\left(A_{n}\right) \quad (\sigma \text{-additivity of } \mu).$$

Any measure on an algebra \mathcal{A} gives rise to an outer measure according to: **Theorem.3.2**.

Let μ be a measure on an algebra \mathcal{A} .

For each subset $E \subset X$ define $\lambda(E)$ by the recipe:

$$\lambda(E) = \inf\left\{\sum_{n} \mu(A_n) : E \subset \bigcup_{n} A_n, \quad (A_n) \subset \mathcal{A}\right\}$$

the lower bound being taken over all sequences $(A_n) \subset \mathcal{A}$.

Then λ is an outer measure whose restriction to \mathcal{A} coincides with μ . Moreover the sets of \mathcal{A} are λ -measurable.

Proof. see [7].

Definition 3.3. (σ -finite measures)

Let (X, \mathcal{F}, μ) be a measure space. We say that the measure μ is σ -finite if there is a sequence (A_n) in \mathcal{F} , such that $\bigcup_n A_n = X$ and $\mu(A_n) < \infty$, $\forall n$.

A measure μ on an algebra \mathcal{A} is σ -finite if there is a sequence (A_n) in \mathcal{A} such that $\bigcup_n A_n = X$ and $\mu(A_n) < \infty, \forall n$.

Example 3.4.

(a) Any finite measure μ , i.e $\mu(X) < \infty$, is σ -finite

(b) The counting measure on \mathbb{N} or on any infinite

countable set is σ -finite but not finite.

(c) we will see later that the Lebesgue measure on \mathbb{R}

is a non trivial σ -finite measure.

Now we give the main extension theorem:

Theorem 3.5.

Let μ be a measure on an algebra \mathcal{A} of subsets of X. Then μ can be extended to a measure $\overline{\mu}$ on the σ -field $\sigma(\mathcal{A})$ generated by \mathcal{A} . Moreover if μ is σ -finite on \mathcal{A} the extension $\overline{\mu}$ is unique.

Proof.

Let μ^* be the outer measure given by Theorem. 3.2 and let \mathcal{F} be the σ -field of μ^* -measurable sets. By the same theorem we have $\mathcal{A} \subset \mathcal{F}$ and μ^* coincides with μ on \mathcal{A} . So we have $\sigma(\mathcal{A}) \subset \mathcal{F}$. By Theorem. **1.6** μ^* acts as a true measure on \mathcal{F} . Then it is enough to take $\overline{\mu}$ as the restriction of μ^* to $\sigma(\mathcal{A})$. We prove the uniqueness in the case μ finite. Suppose the existence of two extensions μ_1, μ_2 for μ and consider the family $\mathcal{M} = \{A \in \sigma(\mathcal{A}) : \mu_1(A) = \mu_2(A)\}$. It is not difficult to prove that \mathcal{M} is a monotone class which contains \mathcal{A} (use the finiteness of the measures) So we have $\mathcal{A} \subset \mathcal{M} \subset \sigma(\mathcal{A})$ and since \mathcal{A} is an algebra the monotone class generated by \mathcal{A} is idendical to the σ -field generated by \mathcal{A} (Theorem 3.10, Chap. 1) We deduce that $\mathcal{M} = \sigma(\mathcal{A})$. We leave the σ -finiteness case to the reader.

Theorem 3.6.

Let μ be a σ -finite measure on an algebra \mathcal{A} of subsets of X. Let $\overline{\mu}$ be the unique extension of μ to the σ -field $\sigma(\mathcal{A})$ generated by \mathcal{A} . If $B \in \sigma(\mathcal{A})$ with $\overline{\mu}(B) < \infty$, then:

 $\forall \epsilon > 0$ there is $A_{\epsilon} \in \mathcal{A}$ such that $\overline{\mu} (B \triangle A_{\epsilon}) < \epsilon$

where $B \triangle A_{\epsilon}$ is the symmetric difference $(B \cap A_{\epsilon}^c) \cup (A_{\epsilon} \cap B^c)$.

Proof. By Theorems **3.2** and **3.5** the unique extension $\overline{\mu}$ has the form: $\overline{\mu}(B) = \inf \left\{ \sum_{n} \mu(A_n) : B \subset \bigcup_{n} A_n, \quad (A_n) \subset \mathcal{A} \right\}$ If $B \in \sigma(\mathcal{A})$ with $\overline{\mu}(B) < \infty, \forall \epsilon > 0 \exists (A_n) \subset \mathcal{A}$ such that $B \subset \bigcup_{n} A_n$ and $\sum_{n=1}^{\infty} \mu(A_n) < \overline{\mu}(B) + \frac{\epsilon}{2} \text{ then use the fact that } \bigcup_{n=1}^{\infty} A_n = \lim_{n \to \infty} \bigcup_{n=1}^{N} A_n \text{ and } \bigcup_{n=1}^{\infty} A_n \in \mathcal{A} ;$ put $B_N = \bigcup_{1}^N A_n$ then $\overline{\mu}\left(\bigcup_n A_n\right) = \lim_N \overline{\mu}\left(B_N\right) = \lim_N \mu\left(B_N\right).$ So for some N_0 we have $\overline{\mu}\left(\bigcup_n A_n\right) < \overline{\mu}\left(B_{N_0}\right) + \frac{\epsilon}{2}$, then the set $A_{\epsilon} = B_{N_0}$ is in \mathcal{A} and works.

4. Exercises

14. An outer measure μ^* on X is regular if for any $A \subset X$ there is a μ^* -measurable set E such that $A \subset E$ and $\mu^*(A) = \mu^*(E)$. (a) If μ^* is regular then for any sequence (A_n) of subsets of X we have $\mu^* \left(\liminf_n A_n \right) \le \liminf_n \mu^* \left(A_n \right).$

(b) If moreover the sequence (A_n) is increasing then $\mu^* \left(\lim_{n \to \infty} A_n \right) = \lim_{n \to \infty} \mu^* (A_n)$.

15. Let (X, \mathcal{F}, μ) be a measure space. Define μ^* on $\mathcal{P}(X)$ by the recipe: $\mu^*(E) = \inf \{\mu(A) : A \in \mathcal{F} \mid E \subset A\}$

(a) Prove that μ^* is an outer measure.

(b) Prove that $\forall E \subset X \quad \exists A \in \mathcal{F} \text{ such that } E \subset A \text{ and } \mu^*(E) = \mu(A)$.

(c) Let us define μ^* on $\mathcal{P}(X)$ by the recipe:

 $\mu_*(E) = \sup \left\{ \mu(A) : A \in \mathcal{F} \ E \subset A \right\}$

Prove that $\forall E \subset X$, in either case $\mu_*(E) < \infty$ or $\mu_*(E) = \infty$, there is $A \in \mathcal{F}$ such that $E \subset A$ and $\mu_*(E) = \mu(A)$.

(d) Prove that $\mu_*(E) \le \mu^*(E), \forall E \subset X$ and if E is μ^* -measurable

then $\mu_*(E) = \mu^*(E)$. If $\mu_*(E) = \mu^*(E) < \infty$ then E is μ^* -measurable.

5. Lebesgue Measure on \mathbb{R}

Measure on the Algebra generated by the semialgebra of intervals Let us recall that a family S of subsets of a set X is a semialgebra if it satisfies:

(a) ϕ , X are in \mathcal{S}

(b) If A, B are in \mathcal{S} then $A \cap B$ is in \mathcal{S}

(c) If A is in S then $A^c = \sum_{1}^{n} A_k$, where the sets A_k are pairwise disjoint in S (see Chapter 1 exercise 4)

We recall also that the algebra generated by the semialgebra ${\mathcal S}$ is the family

 $\left\{A: A = \sum_{1}^{n} S_{k}, \text{ where the } S_{k} \text{ are pairwise disjoint in } \mathcal{S}.\right\}$

It is easy to prove that the family \mathcal{I} of all intervals of \mathbb{R} is a semialgebra. Let \mathcal{A} be the algebra generated by \mathcal{I} . It is well known that the borel σ -field $\mathcal{B}_{\mathbb{R}}$ of \mathbb{R} is generated by \mathcal{A} or simply by \mathcal{I} . Now if $A \in \mathcal{A}$ has the form $A = \sum_{i=1}^{n} I_k$, where the I_k are pairwise disjoint in \mathcal{I} , put $\mu(A) = \sum_{i=1}^{n} \lambda(I_k)$, where $\lambda(I)$ is the

lengh of the interval *I*. Then μ is unambiguously defined on \mathcal{A} . Moreover μ is a σ -finite measure on the algebra \mathcal{A} . By Theorems **3.2** and **3.5** the unique extension $\overline{\mu}$ of μ to the σ -field $\sigma(\mathcal{A}) = \mathcal{B}_{\mathbb{R}}$ generated by \mathcal{A} has the form:

$$\overline{\mu}(B) = \inf\left\{\sum_{n} \mu(A_n) : B \subset \bigcup_{n} A_n, \quad (A_n) \subset \mathcal{A}\right\}$$

The completion of the measure space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \overline{\mu})$ is the Lebesgue space $(\mathbb{R}, \mathcal{L}_{\mathbb{R}}, \overline{\mu}^*)$ (see Theorem 8.4, Chap.1). In fact each set $E \in \mathcal{L}_{\mathbb{R}}$ has the form $E = B \cup N$, where $B \in \mathcal{B}_{\mathbb{R}}$ and N is a $\overline{\mu}$ -null set. Let us note the following approximation result:

Theorem 5.1.

Let $E \in \mathcal{L}_{\mathbb{R}}$, then we have:

 $\forall \epsilon > 0$ there is a closed set F and an open set G such that:

 $F \subset E \subset G$ and $\overline{\mu}^* \left(G \diagdown F \right) < \epsilon$