Chapter 2

Outer measures Extension of measures
1. Outer measures

Definition 1.1.
An outer measure on a set X is a set function
A:P(X) — [0 oo] such that:
(1) A(¢) =0
(2) if A C B then A(A) <\ (B)
(3) if (E,,) is any sequence in P (X) then A (%En> <SS A (En)

Remark.1.2.
It is not difficult to see that if A is additive then A is a positive measure on
P(X).
Example.1.3.

(a) Any positive measure on P (X) is an outer measure.

(b) Define A on P (X) by A(¢) =0 and A(E) = 1if E # ¢; if X has more
than one point then A is an outer measure but not a measure.
We can say that the notion of outer measure is a natural generalization of
that of positive measure. We will see below that an outer measure acts as a
true measure on a some specific family of subsets of X. Let us start with the
following:

Definition 1.4.
Let A be an outer measure on X. A subset £ C X is said to be outer
measurable or A—measurable if we have:

forevery AC X, AMNA) =XANE)+X(ANE")

Example.1.5.

(a) A subset E C X with A (F) = 0 is A—measurable.

(b) X, ¢ are A—measurable for every outer measure \.

(c) .Let A be defined on X by A(¢) =0, A(X) =2, A(F) =1 for E # ¢, X.

Then A is an outer measure and ¢, X are the only A—measurable sets.
Now we go to the important assertion:

Theorem.1.6.

Let A be an outer measure on X

and let F be the family of the A—measurable sets.

Then F is a o—field and the restriction of A to F is a positive measure.

Proof. see [7].



2. Exercises

12. Let X\ be an outer measure on X and let H be a A—measurable set. Let A\
be the restriction of A to P (H), prove that:

(a) Ao is an outer measure on P (H).

(b) A C H is Ap—measurable iff A is A—measurable.
13.Let A be an outer measure on X and let A be a A—measurable set. If B C X
is a subset with A (B) < oo, prove that:

AMAUB)=X(A)+ A (B)—-X(ANDB)

3. Extension of Measures

We start this section with the construction of an outer measure from a
measure defined on an algebra of sets.
Definition 3.1.

Let A be an algebra on X. A positive measure on A is a set function
p: A — [0 oo such that:
(i) p(d) =0
(#4) For every pairwise disjoint sequence (A,,) in A with %An € A

L (ZAn) =Y u(4,) (o—additivity of p).

Any measure on an algebra A gives rise toan outer measure according to:
Theorem.3.2.

Let 12 be a measure on an algebra A.
For each subset E C X define A (F) by the recipe:

A(E) = inf {Zu (A,): EC %JA”, (4,)c A

the lower bound being taken over all sequences (4,) C A.

Then A is an outer measure whose restriction to A coincides with p.
Moreover the sets of A are A—measurable.

Proof. see [7].

Definition 3.3. (0—finite measures)
Let (X,F,u) be a measure space. We say that the measure p is o—finite if
there is a sequence (A,) in F, such that UA,, = X and p(A,) < oo, Vn.

n

A measure p on an algebra A is o—finite if there is a sequence (4,,) in A such
that UA,, = X and p(A,) < oo, Vn.
n

Example 3.4.

(a) Any finite measure p, i.e p(X) < 0o, is o—finite
(b) The counting measure on N or on any infinite
countable set is o—finite but not finite.

(c) we will see later that the Lebesgue measure on R
is a non trivial c—finite measure.



Now we give the main extension theorem:
Theorem 3.5.

Let 1 be a measure on an algebra A of subsets of X.
Then g can be extended to a measure &t on the o—field o (A) generated by A.
Moreover if y is o—finite on A the extension & is unique.
Proof.
Let ©* be the outer measure given by Theorem. 3.2 and let F be the o—field
of p*—measurable sets. By the same theorem we have A C F and p* coincides
with g on A. So we have o (A) C F. By Theorem. 1.6 p* acts as a true measure
on F. Then it is enough to take 7 as the restriction of u* to o (A). We prove the
uniqueness in the case u finite. Suppose the existence of two extensions p,, p5 for
p and consider the family M = {A € 0 (A) : p; (A) = po (A)}. Tt is not difficult
to prove that M is a monotone class which contains A (use the finiteness of the
measures) So we have A C M C o (A) and since A is an algebra the monotone
class generated by A is idendical to the o—field generated by A (Theorem 3.10,
Chap. 1) We deduce that M = o (A). We leave the o—finiteness case to the
reader.ll
Theorem 3.6.
Let p be a o—finite measure on an algebra A of subsets of X.
Let @ be the unique extension of p to the o—field o (A) generated by A. If
B € o (A) with 1 (B) < oo, then:

Ve > 0 there is A, € A such that @ (BAA.) <€
where BA A, is the symmetric difference (BN A%) U (A. N B°).

Proof. By Theorems 3.2 and 3.5 the unique extension i has the form:
o (B) = inf {Z,u (A4,): BCUA4,, (A,)CA }
If B € o(A) with i(B) < o0, Ye > 0 3(A,) C A such that B C UA,, and

N N
> 1 (An) <7 (B) + §.then use the fact that UA,, = li]{In Y A, and LlJAn cA;

N J— _ . J— _ .
put By = LlJAn then @ (%An) = h]{;n'u (Bn) = hj{fnu (Bn)-

So for some Ny we have i (UAn) < I (Bn,) + §, then the set A, = By, is in
A and works.l

4. Exercises

14. An outer measure p* on X is regular if for any A C X there is a
p*—measurable set E such that A C E and p* (4) = p* (E).
(a) If p* is regular then for any sequence (A,,) of subsets of X we have

w* <limniann> < limninfu* (4,).

(b) If moreover the sequence (A,,) is increasing then p* (limA,,,) = limyp* (A,) .



15. Let (X, F, 1) be a measure space. Define p* on P (X) by the recipe:
p(E)y=inf{pu(A): Ae F EC A}

(a) Prove that p* is an outer measure.

(b) Prove that VE C X 3JA € F such that E C A and p* (E) = p(4).

(c) Let us define p* on P (X) by the recipe:
. (E)=sup{u(Ad): AeF EC A}

Prove that VE C X, in either case u, (E) < oo or p, (F) = oo, there isA € F

such that E C A and p, (E) = p(4).

(d) Prove that p, (E) < p* (F),VE C X and if F is p*—measurable

then p, (E) = p* (E) If p, (E) = p* (F) < oo then E is p*—measurable.

5. Lebesgue Measure on R

Measure on the Algebra generated by the semialgebra of intervals

Let us recall that a family S of subsets of a set X is a semialgebra if it satisfies:
(a) ¢, X arein §
(b) If A,B arein S then ANBisin S

(c¢) If Aisin S then A° = )" Ay, where the sets Ay, are pairwise disjoint in S
1

(see Chapter 1 exercise 4)
We recall also that the algebra generated by the semialgebra S is the family

{A : A =>"5k, where the S}, are pairwise disjoint in S.}
1

It is easy to prove that the family Z of all intervals of R is a semialgebra. Let
A be the algebra generated by Z. It is well known that the borel o—field Bgr

of R is generated by A or simply by Z. Now if A € A has the form A = > I,
1

where the I, are pairwise disjoint in Z, put p(A) = > A (Ix), where A (I) is the
1

lengh of the interval I. Then g is unambiguously defined on A. Moreover p is
a o—finite measure on the algebra A. By Theorems 3.2 and 3.5 the unique
extension 71 of p to the o—field o (A) = Bg generated by A has the form:

o (B) = inf {Z,u (A4,): BCUA,, (A,)CA }
The completion of the measure space (R, Bg, fz) is the Lebesgue space (R, Lg, %)
(see Theorem 8.4, Chap.1). In fact each set E € L has the foorm E = BUN,
where B € Bg and N is a g—null set. Let us note the following approximation
result:
Theorem 5.1.

Let E € L, then we have:

Ve > 0 there is a closed set F' and an open set G such that:
FCECGandu" (G\F)<e



