SOLUTIONS TO SOME EXERCISES

24. (a) Prove that in any measure space the uniform convergence implies the convergence in measure.
(b) In the counting measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ the uniform convergence is equivalent to the convergence in measure.

solution.

(a) Let $f_{n}, f: X \longrightarrow \mathbb{R}$ be measurable in the space (X, \mathcal{F}, μ) such that f_{n} converges uniformly to f
then we have $\forall \epsilon>0, \exists N_{\epsilon}$ such that $\forall n \geq N_{\epsilon},\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in X$ this implies $\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}=\phi, \forall n \geq N_{\epsilon}$
that is $\lim \mu\left(\left|f_{n}-f\right|>\epsilon\right)=0$ so f_{n} converges in measure to f. The result is true if f_{n}^{n} converges uniformly μ-a.e to f.
(b) use the fact that for the counting measure we have:
$A \subset \mathbb{N}$ and $\mu(A)=0 \Longrightarrow A=\phi$.
25. In the space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ consider the sequence of indicator functions $f_{n}=I_{\{1,2, \ldots, n\}} ;$ prove that f_{n} converges $\mu-a . e$ but does not converge in measure.
solution.
The sets $\{1,2, \ldots, n\}$ increase to \mathbb{N} as $n \longrightarrow \infty$ and so $I_{\{1,2, \ldots, n\}}$ converges to 1 for any $x \in \mathbb{N}$.
On the other hand for $\epsilon>0\left\{\left|I_{\{1,2, \ldots, n\}}-1\right|>\epsilon\right\}=\{x \in \mathbb{N}: x>n\}$ $=\{n+1, n+2, n+3, \ldots \ldots$.$\} which gives \mu\left\{\left|I_{\{1,2, \ldots, n\}}-1\right|>\epsilon\right\}=\infty \quad \forall n$
26. Let $f_{n}, f \in \mathcal{M}(X, \mathbb{R})$ and suppose f_{n} converges pointwise to f and there is a positive measurable function g satisfying $\lim _{n} \mu\left\{g>\epsilon_{n}\right\}=0$ for some sequence of positive numbers ϵ_{n} with $\lim _{n} \epsilon_{n}=0$. Then if $\left|f_{n}\right| \leq g, \forall n$, prove that f_{n} converges in measure to f.

solution.

We have to prove that $n \longrightarrow \infty \Longrightarrow \mu\left(\left|f_{n}-f\right|>\epsilon\right) \longrightarrow 0, \forall \epsilon>0$
Since $\left|f_{n}\right| \leq g$ and f_{n} converges pointwise to f we deduce that $|f| \leq g$ so $\left|f_{n}-f\right| \leq 2 g$. Let $\epsilon>0$, since $\lim \epsilon_{n}=0$ there is $N \geq 1$ with $2 \epsilon_{n}<\epsilon, \forall n \geq N$. Now we have $\left(\left|f_{n}-f\right|>\epsilon\right) \subset\left(2 g^{n}>\epsilon\right) \subset\left(2 g>2 \epsilon_{n}\right)=\left(g>\epsilon_{n}\right), \forall n \geq N$ we deduce that $\lim _{n} \mu\left(\left|f_{n}-f\right|>\epsilon\right) \leq \lim _{n} \mu\left\{g>\epsilon_{n}\right\}=0$. So f_{n} converges in measure to f.
27. Let $f: X \longrightarrow \mathbb{R}$ be measurable in the space (X, \mathcal{F}, μ) and put:
$M(f)=\inf \{\alpha \geq 0: \quad \mu\{|f|>\alpha\}=0\}$, Prove that $|f| \leq M(f) \quad \mu-a . e$.
Prove that $\lim _{n} M\left(f_{n}-f\right)=0$ iff $\lim _{n} f_{n}=f$ uniformly μ-a.e.

solution.

We have to prove that $\mu\{|f|>M(f)\}=0$
If $M(f)=\infty$ the result is true.
Suppose $M(f)$ finite then we have $\{|f|>M(f)\}=\cup_{n}\left\{|f|>M(f)+\frac{1}{n}\right\}$
but $M(f)<M(f)+\frac{1}{n} \Longrightarrow \exists \alpha_{n} \in\{\alpha \geq 0: \quad \mu\{|f|>\alpha\}=0\}$
with $M(f)<\alpha_{n}<M(f)+\frac{1}{n}$ so $\left\{|f|>M(f)+\frac{1}{n}\right\} \subset\left\{|f|>\alpha_{n}\right\}$ and then $\mu\left\{|f|>M(f)+\frac{1}{n}\right\} \leq \mu\left\{|f|>\alpha_{n}\right\}=0, \forall n$, we deduce $\mu\{|f|>M(f)\}=$ $\mu\left(\cup_{n}\left\{|f|>M(f)+\frac{1}{n}\right\}\right) \leq \sum_{n} \mu\left\{|f|>M(f)+\frac{1}{n}\right\}=0$.
28 Let $f_{n}, f: X \longrightarrow \mathbb{R}$ be measurable functions in the space (X, \mathcal{F}, μ) and suppose that f_{n} converges in measure to $f ;$ if $g: \mathbb{R} \longrightarrow \mathbb{R}$ is a uniformly continuous function prove that the sequence $g \circ f_{n}$ converges in measure to $g \circ f$ solution.
We have to prove that $n \longrightarrow \infty \Longrightarrow \mu\left(\left|g \circ f_{n}-g \circ f\right|>\epsilon\right) \longrightarrow 0, \forall \epsilon>0$ g uniformly continuous implies:
(*) $\quad \forall \epsilon>0 \quad \exists \delta>0 \quad \forall(x, y) \in \mathbb{R} \times \mathbb{R} \quad|x-y|<\delta \Longrightarrow|g(x)-g(y)|<\epsilon$ $(* *) \quad f_{n}$ converges in measure to $f \Longrightarrow \mu\left(\left|f_{n}-f\right|>\alpha\right) \longrightarrow 0, \forall \alpha>0$
$(*) \Longrightarrow \forall \epsilon>0 \quad \exists \delta>0$ such that $\left(\left|g \circ f_{n}-g \circ f\right|>\epsilon\right) \subset\left(\left|f_{n}-f\right|>\delta\right)$
then applying μ we get $\mu\left(\left|g \circ f_{n}-g \circ f\right|>\epsilon\right) \leq \mu\left(\left|f_{n}-f\right|>\delta\right)$
$(* *) \Longrightarrow \lim _{n} \mu\left(\left|f_{n}-f\right|>\delta\right)=0$ so we deduce
$\lim _{n} \mu\left(\left|g \circ f_{n}-g \circ f\right|>\epsilon\right)=0, \forall \epsilon>0$.
29.(a) Let $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ be the counting measure on \mathbb{N}.

If $f: \mathbb{N} \longrightarrow\left[0, \infty\left[\right.\right.$ is given by $f(i)=a_{i} i \in \mathbb{N}$ prove that:

$$
\int_{\mathbb{N}} f . d \mu=\sum_{i} a_{i}
$$

(b) Let $\mu=\delta_{x_{0}}$ be the Dirac measure on the power set $\mathcal{P}(X)$ of X.
then for any $f: X \longrightarrow\left[0, \infty\left[, \int_{X} f . d \mu=f\left(x_{0}\right)\right.\right.$.
solution. $\quad f: \mathbb{N} \longrightarrow[0, \infty[$
(a) Suppose f simple function of the form $\sum_{1}^{n} a_{i} \cdot I_{\{i\}}$ then $\int_{\mathbb{N}} f . d \mu=\sum_{1}^{n} a_{i} \cdot \mu\{i\}$ but $\mu\{i\}=1$ since μ is the counting measure so $\int_{\mathbb{N}} f . d \mu=\sum_{1}^{n} a_{i}$ now take f of the form $f=\cdot \sum_{i} a_{i} \cdot I_{\{i\}}$ which is the limit pointwise of the increasing sequence $\varphi_{n}=\sum_{1}^{n} a_{i} \cdot I_{\{i\}}$, by Beppo-Levy theorem we get $\int_{\mathbb{N}} f . d \mu=\lim _{n} \int_{\mathbb{N}} \varphi_{n} \cdot d \mu=\lim _{n} \sum_{1}^{n} a_{i}=\sum_{i} a_{i}$.
(b) Recall that Dirac measure is defined on $\mathcal{P}(X)$ by

$$
\delta_{x_{0}}(A)=I_{A}\left(x_{0}\right)=\left\{\begin{array}{l}
1 \text { if } x_{0} \in A \\
0 \text { if } x_{0} \notin A
\end{array}\right\}
$$

so we have $\delta_{x_{0}}(A)=\int_{X} I_{A} \cdot d \delta_{x_{0}}$ and generalize this formula by usual procedure to get for any $f: X \longrightarrow\left[0, \infty\left[, \int_{X} f . d \delta_{x_{0}}=f\left(x_{0}\right)\right.\right.$
30.Let $\left(f_{n}\right)$ be any sequence in \mathcal{M}_{+}, prove that $\sum_{n} f_{n} \in \mathcal{M}_{+}$and:

$$
\int_{X} \sum_{n} f_{n} d \mu=\sum_{n} \int_{X} f_{n} \cdot d \mu
$$

solution.

$\sum_{1}^{n} f_{i}$ increases to $\sum_{n} f_{n}$ and use Beppo-Levy Theorem, see the recall.
31. Let $f \in \mathcal{M}_{+}$
(a) Prove that the set function $\nu: A \longrightarrow \int_{A} f \cdot d \mu$, defined on \mathcal{F} is a positive measure
(b) If $g \in \mathcal{M}_{+}$prove that $\int_{X} g . d \nu=\int_{X} f . g . d \mu$

solution.

(a) Let $\left(A_{n}\right)$ be a pairwise disjoint sequence of sets in \mathcal{F}
we have to prove that $\int_{\underset{\sim}{\cup} A_{n}} f . d \mu=\sum_{n} \int_{A_{n}} f . d \mu$
since the sets A_{n} are pairwise disjoint we have $I_{\cup A_{n}}=\sum_{n} I_{A_{n}}$ and $f \geq 0$ then $f . I_{\cup n} A_{n}=\sum_{n} f . I_{A_{n}}$, so we get $\int_{X} f \cdot I_{\cup A_{n}} \cdot d \mu=\int_{X} \sum_{n} f . I_{A_{n}} \cdot d \mu=\sum_{n} \int_{A_{n}} f \cdot d \mu$
where the last equality comes from Beppo-Levy Theorem 3.5 (see recall 1) (b) check (b) for $g \in \mathcal{E}_{+}$and apply Beppo-Levy Theorem for $g \in \mathcal{M}_{+}$
32. Let $\left(f_{n}\right)$ be a sequence in \mathcal{M}_{+}with $\lim _{n} f_{n}(x)=f(x), \forall x \in X$ for some $f \in \mathcal{M}_{+}$.Suppose $\sup _{n} \int_{X} f_{n} . d \mu<\infty$, and prove that $\int_{X} f . d \mu<\infty$

solution.

(Apply Fatou Lemma 3.6 see recall 1)
$\int_{X} \liminf _{n} f_{n} d \mu \leq \liminf _{n} \int_{X} f_{n} d \mu$ with $\liminf _{n} f_{n}=\lim _{n} f_{n}(x)=f(x), \forall x \in X$ for some $f \in \mathcal{M}_{+}$so $\int_{X} f . d \mu \leq \liminf _{n} \int_{X} f_{n} d \mu \leq \sup _{n} \int_{X} f_{n} . d \mu<\infty$.
33.Let $\left(f_{n}\right)$ be a decreasing sequence in \mathcal{M}_{+}such that

$$
\int_{X} f_{n_{0}} \cdot d \mu<\infty, \text { for some } n_{0} \geq 1
$$

Prove that $\lim _{n} \int_{X} f_{n} d \mu=\int_{X} \lim _{n} f_{n} d \mu$

solution.

apply Theorem 3.5 (Recall 1) to the increasing positive sequence $\left(f_{n_{0}}-f_{n}\right)$ $n \geq n_{0}$
indeed we have $f_{n+1} \leq f_{n} \Longrightarrow f_{n_{0}}-f_{n} \leq f_{n_{0}}-f_{n+1}, \forall n \geq n_{0}$ and so $\lim _{n}\left(f_{n_{0}}-f_{n}\right)=f_{n_{0}}-f$
by Theorem 3.5 we deduce $\lim _{n} \int_{X}\left(f_{n_{0}}-f_{n}\right) \cdot d \mu=\int_{X} f_{n_{0}} \cdot d \mu-\lim _{n} \int_{X} f_{n} \cdot d \mu=$ $\int_{X} f_{n_{0}} . d \mu-\int_{X} f . d \mu$ since $f \in \mathcal{M}_{+}$
by the fact $\int_{X} f_{n_{0}} \cdot d \mu<\infty$, we get $\lim _{n} \int_{X} f_{n} \cdot d \mu=\int_{X} f \cdot d \mu$
34.Let the interval $] 0,1$ [of real numbers be endowed with Lebesgue measure.
(Apply Fatou Lemma 3.6 see recall 1) to the following sequence:
$f_{n}(x)=n, 0 \leq x \leq \frac{1}{n}$ and $f_{n}(x)=0, \frac{1}{n}<x<1$.

solution.

$\int_{X} \liminf _{n} f_{n} d \mu \leq \liminf _{n} \int_{X} f_{n} d \mu$ with $\liminf _{n} f_{n}=\sup \inf _{n \geq n} f_{k}=0$ and $\int_{X} f_{n} d \mu=$
$1, \forall n$
whence $0 \leq \liminf _{n} \int_{X} f_{n} d \mu \leq 1$.

35 (continuity of integrals depending on a parameter)

Let T be an interval of \mathbb{R} and $f: X \times T \longrightarrow \mathbb{R}$ a function such that:
(a) for each $t \in T$ the function $x \longrightarrow f(x, t)$ is in $L_{1}(\mu)$
(b) there is g in $L_{1}(\mu)$ such that $|f(x, t)| \leq|g(x)| \quad \mu-a . e$ for all $t \in T$
if $\lim _{t \rightarrow t_{0}} . f(x, t)=f\left(x, t_{0}\right)$ then we have $\lim _{t \rightarrow t_{0}} \int_{X} f(x, t) d \mu=\int_{X} f\left(x, t_{0}\right) d \mu$
solution.
Consider the function $h: T \longrightarrow \mathbb{R}$ given by $h(t)=\int_{X} f(x, t) d \mu$
we have to prove that $\lim _{t \rightarrow t_{0}} h(t)=h\left(t_{0}\right)$
that is the function h is continuous on T which is equivalent to: for any sequence $\left(t_{n}\right)$ with $\lim _{n} t_{n}=t_{0}$ we have $\lim _{n} h\left(t_{n}\right)=h\left(t_{0}\right)$ let us observe that the functions u_{n} defined by $u_{n}(x)=f\left(x, t_{n}\right)$
satisfies Theorem.3.7 by (b) and $\lim _{n} . u_{n}(x)=f\left(x, t_{0}\right)$, so $\int_{X} u_{n} . d \mu=h\left(t_{n}\right)$ converges to $\int_{X} \lim _{n} \cdot u_{n}(x) \cdot d \mu=\int_{X} f\left(x, t_{0}\right) \cdot d \mu=h\left(t_{0}\right)$.

36 (Derivative of integrals depending on a parameter)

Let T be an open set of \mathbb{R} and $f: X \times T \longrightarrow \mathbb{R}$ a function such that:
(a) for each $t \in T$ the function $x \longrightarrow f(x, t)$ is in $L_{1}(\mu)$
(b) the function $t \longrightarrow f(x, t)$ derivable on T for each $x \in X$
(c) there is $g \in L_{1}(\mu)\left|\frac{d}{d t} f(x, t)\right| \leq|g(x)| \quad \mu-a . e$ for all $t \in T$

Then the function $t \longrightarrow \int_{X} f(x, t) d \mu$ is differentiable on T
and $\frac{d}{d t} \int_{X} f(x, t) d \mu=\int_{X} \frac{d}{d t} f(x, t) d \mu$

solution.

Let $\left(t_{n}\right)$ be a sequence with $\lim _{n} t_{n}=t$ and define the sequence $\left(g_{n}\right)$ of functions by
$g_{n}(x)=\frac{f\left(x, t_{n}\right)-f(x, t)}{t_{n}-t}$ then $\lim _{n} g_{n}(x)=\frac{d}{d t} f(x, t)$. By the Mean Value Theorem
there is $\theta_{n}(x)$ between t_{n} and t such that $g_{n}(x)=\frac{d}{d t} f\left(x, \theta_{n}(x)\right)$.
Now we have $\lim _{n} t_{n}=t$ so $\lim _{n} \theta_{n}(x)=t$ and $\lim _{n} g_{n}(x)=\frac{d}{d t} f(x, t)$. But $\left|g_{n}(x)\right| \leq|g(x)|$ by (c) then
we can apply Theorem.3.7 to $g_{n}(x)$ with

$$
\int_{X} g_{n}(x) \cdot d \mu=\frac{\int_{X} f\left(x, t_{n}\right) \cdot d \mu-\int_{X} f(x, t) \cdot d \mu}{t_{n}-t}
$$

to get $\lim _{n} \int_{X} g_{n}(x) \cdot d \mu=\frac{d}{d t} \int_{X} f(x, t) d \mu=\int_{X} \lim _{n} g_{n}(x) d \mu=\int_{X} \frac{d}{d t} f(x, t) d \mu$.

37 (Change of variable formula)

Let (X, \mathcal{F}, μ) be a measure space and let (Y, \mathcal{G}) be a measurable space: If $\varphi: X \longrightarrow Y$ is a measurable mapping from (X, \mathcal{F}) into (Y, \mathcal{G}) then:
(1) the set function $\nu: \mathcal{G} \longrightarrow[0, \infty]$ given by $G \in \mathcal{G}, \nu(G)=\mu\left(\varphi^{-1}(G)\right)$ is a measure on (Y, \mathcal{G})
(2) for every function $g: Y \longrightarrow \mathbb{C}, \nu$-integrable the function $g \circ \varphi$ is μ-integrable and

$$
\begin{aligned}
& (*) \int_{Y} g \cdot d \nu=\int_{X} g \circ \varphi \cdot d \mu \\
& (* *) \int_{E} g \cdot d \nu=\int_{\varphi^{-1}(E)} g \circ \varphi \cdot d \mu \forall E \in \mathcal{G} .
\end{aligned}
$$

solution.

Apply usual procedure:
start with g simple then g in \mathcal{M}_{+}and finally g integrable for ν.
38 Measure defined by an integral. (see exercise 31 for the proof)
Let (X, \mathcal{F}, μ) be a measure space and let $f \in \mathcal{M}_{+}$then
(a) the set function $\nu: \mathcal{F} \longrightarrow[0, \infty]$ given by: $A \in \mathcal{F}, \nu(A)=\int_{A} f \cdot d \mu$
is a positive measure on \mathcal{F} and we have:
(b) $\int_{X} g \cdot d \nu=\int_{X} f \cdot g \cdot d \mu$, for every $g \in \mathcal{M}_{+}$.

