SOLUTIONS TO SOME EXERCISES

24. (a) Prove that in any measure space the uniform convergence implies the convergence in measure.

(b) In the counting measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ the uniform convergence is equivalent to the convergence in measure.

solution.

(a) Let $f_n, f : X \longrightarrow \mathbb{R}$ be measurable in the space (X, \mathcal{F}, μ) such that f_n converges uniformly to f

then we have $\forall \epsilon > 0, \exists N_{\epsilon}$ such that $\forall n \ge N_{\epsilon}, |f_n(x) - f(x)| < \epsilon$ for all $x \in X$ this implies $\{x : |f_n(x) - f(x)| > \epsilon\} = \phi, \forall n \ge N_{\epsilon}$

that is $\lim_{n} \mu(|f_n - f| > \epsilon) = 0$ so f_n converges in measure to f. The result is true if f_n converges uniformly $\mu - a.e$ to f.

(b) use the fact that for the counting measure we have: $A \subset \mathbb{N}$ and $\mu(A) = 0 \Longrightarrow A = \phi$.

25. In the space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ consider the sequence of indicator functions

 $f_n = I_{\{1,2,\dots,n\}}$; prove that f_n converges $\mu - a.e$ but does not converge in measure. solution.

The sets $\{1, 2, ..., n\}$ increase to \mathbb{N} as $n \longrightarrow \infty$ and so $I_{\{1, 2, ..., n\}}$ converges to 1 for any $x \in \mathbb{N}$.

On the other hand for $\epsilon > 0$ $\{|I_{\{1,2,\dots,n\}} - 1| > \epsilon\} = \{x \in \mathbb{N} : x > n\} = \{n+1, n+2, n+3, \dots\}$ which gives $\mu\{|I_{\{1,2,\dots,n\}} - 1| > \epsilon\} = \infty \quad \forall n.\blacksquare$

26. Let $f_n, f \in \mathcal{M}(X, \mathbb{R})$ and suppose f_n converges pointwise to f and there is a positive measurable function g satisfying $\lim_n \mu \{g > \epsilon_n\} = 0$ for some sequence of positive numbers ϵ_n with $\lim_n \epsilon_n = 0$. Then if $|f_n| \leq g, \forall n$, prove that f_n converges in measure to f.

solution.

We have to prove that $n \to \infty \Longrightarrow \mu(|f_n - f| > \epsilon) \to 0, \forall \epsilon > 0$ Since $|f_n| \le g$ and f_n converges pointwise to f we deduce that $|f| \le g$ so $|f_n - f| \le 2g$. Let $\epsilon > 0$, since $\lim_n \epsilon_n = 0$ there is $N \ge 1$ with $2\epsilon_n < \epsilon, \forall n \ge N$. Now we have $(|f_n - f| > \epsilon) \subset (2g > \epsilon) \subset (2g > 2\epsilon_n) = (g > \epsilon_n), \forall n \ge N$ we deduce that $\lim_n \mu(|f_n - f| > \epsilon) \le \lim_n \mu\{g > \epsilon_n\} = 0$. So f_n converges in measure to f.

27. Let $f: X \longrightarrow \mathbb{R}$ be measurable in the space (X, \mathcal{F}, μ) and put: $M(f) = \inf \{ \alpha \ge 0 : \mu \{ |f| > \alpha \} = 0 \}$, Prove that $|f| \le M(f) \ \mu - a.e.$ Prove that $\lim_{n} M(f_n - f) = 0$ iff $\lim_{n} f_n = f$ uniformly $\mu - a.e.$

solution.

We have to prove that $\mu \{|f| > M(f)\} = 0$ If $M(f) = \infty$ the result is true.

Suppose M(f) finite then we have $\{|f| > M(f)\} = \bigcup_{n} \{|f| > M(f) + \frac{1}{n}\}$

but
$$M(f) < M(f) + \frac{1}{n} \Longrightarrow \exists \alpha_n \in \{\alpha \ge 0 : \mu\{|f| > \alpha\} = 0\}$$

with $M(f) < \alpha_n < M(f) + \frac{1}{n}$ so $\left\{|f| > M(f) + \frac{1}{n}\right\} \subset \{|f| > \alpha_n\}$ and then
 $\mu\left\{|f| > M(f) + \frac{1}{n}\right\} \le \mu\{|f| > \alpha_n\} = 0, \forall n, \text{ we deduce } \mu\{|f| > M(f)\} =$
 $\mu\left(\bigcup_n\left\{|f| > M(f) + \frac{1}{n}\right\}\right) \le \sum_n \mu\left\{|f| > M(f) + \frac{1}{n}\right\} = 0.$

28 Let $f_n, f : X \longrightarrow \mathbb{R}$ be measurable functions in the space (X, \mathcal{F}, μ) and suppose that f_n converges in measure to f; if $g : \mathbb{R} \longrightarrow \mathbb{R}$ is a uniformly continuous function prove that the sequence $g \circ f_n$ converges in measure to $g \circ f$

solution.

We have to prove that $n \longrightarrow \infty \Longrightarrow \mu (|g \circ f_n - g \circ f| > \epsilon) \longrightarrow 0, \forall \epsilon > 0$ g uniformly continuous implies: (*) $\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall (x, y) \in \mathbb{R} \times \mathbb{R} \quad |x - y| < \delta \Longrightarrow |g(x) - g(y)| < \epsilon$ (**) f_n converges in measure to $f \Longrightarrow \mu (|f_n - f| > \alpha) \longrightarrow 0, \forall \alpha > 0$ (*) $\Longrightarrow \forall \epsilon > 0 \quad \exists \delta > 0 \quad \text{such that } (|g \circ f_n - g \circ f| > \epsilon) \subset (|f_n - f| > \delta)$ then applying μ we get $\mu (|g \circ f_n - g \circ f| > \epsilon) \le \mu (|f_n - f| > \delta)$ then applying μ we get $\mu (|g \circ f_n - g \circ f| > \epsilon) \le \mu (|f_n - f| > \delta)$ (**) $\Longrightarrow \lim_n \mu (|f_n - f| > \delta) = 0$ so we deduce $\lim_n \mu (|g \circ f_n - g \circ f| > \epsilon) = 0, \forall \epsilon > 0. \blacksquare$

29.(a) Let $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ be the counting measure on \mathbb{N} . If $f: \mathbb{N} \longrightarrow [0, \infty[$ is given by $f(i) = a_i \ i \in \mathbb{N}$ prove that: $\int_{\mathbb{N}} f.d\mu = \sum_{i} a_{i}$

(b) Let $\mu = \delta_{x_0}$ be the Dirac measure on the power set $\mathcal{P}(X)$ of X.

then for any
$$f: X \longrightarrow [0, \infty[, \int_X f.d\mu = f(x_0)]$$
.

solution. $f : \mathbb{N} \longrightarrow [0, \infty[$

(a) Suppose f simple function of the form $\sum_{1}^{n} a_i I_{\{i\}}$ then $\int_{-1}^{n} f d\mu = \sum_{1}^{n} a_i \mu_{\{i\}}$

but $\mu \{i\} = 1$ since μ is the counting measure so $\int_{\mathbb{N}} f d\mu = \sum_{1}^{n} a_{i}$

now take f of the form $f = \sum_{i=1}^{N} a_i I_{\{i\}}$ which is the limit pointwise of the increasing sequence $\varphi_n = \sum_{1}^{n} a_i I_{\{i\}}$, by Beppo-Levy theorem we get

$$\int_{\mathbb{N}} f.d\mu = \lim_{n} \int_{\mathbb{N}} \varphi_{n}.d\mu = \lim_{n} \sum_{1}^{n} a_{i} = \sum_{i} a_{i}.$$

(b) Recall that Dirac measure is defined on $\mathcal{P}(X)$ by $\delta_{x_0}(A) = I_A(x_0) = \left\{ \begin{array}{c} 1 \text{ if } x_0 \in A \\ 0 \text{ if } x_0 \notin A \end{array} \right\}$

$$\delta_{x_0} \left(A \right) = I_A \left(x_0 \right) = \left\{ \begin{array}{c} 1 \text{ if } x_0 \in A \\ 0 \text{ if } x_0 \notin A \end{array} \right\}$$

so we have $\delta_{x_0}(A) = \int I_A d\delta_{x_0}$ and generalize this formula by usual procedure

to get for any $f: X \longrightarrow [0, \infty[, \int_{X} f.d\delta_{x_0} = f(x_0).\blacksquare$

30.Let (f_n) be any sequence in \mathcal{M}_+ , prove that $\sum_n f_n \in \mathcal{M}_+$ and:

$$\int_{X} \sum_{n} f_n \, d\mu = \sum_{n} \int_{X} f_n . d\mu$$

solution. $\sum_{i=1}^{n} f_i$ increases to $\sum_{n} f_n$ and use Beppo-Levy Theorem, see the recall. **31.**Let $f \in \mathcal{M}_+$

(a) Prove that the set function $\nu : A \longrightarrow \int f d\mu$, defined on \mathcal{F} is a positive measure

(b) If
$$g \in \mathcal{M}_+$$
 prove that $\int_X g.d\nu = \int_X f.g.d\mu$

solution.

(a) Let (A_n) be a pairwise disjoint sequence of sets in \mathcal{F}

we have to prove that $\int_{\underset{n}{\cup}A_{n}} f.d\mu = \sum_{n} \int_{A_{n}} f.d\mu$

since the sets A_n are pairwise disjoint we have $I_{\bigcup A_n} = \sum_n I_{A_n}$ and $f \ge 0$ then

$$f.I_{\bigcup A_n} = \sum_n f.I_{A_n}$$
, so we get $\int_X f.I_{\bigcup A_n}.d\mu = \int_X \sum_n f.I_{A_n}.d\mu = \sum_n \int_{A_n} f.d\mu$

where the last equality comes from **Beppo-Levy** Theorem **3.5** (see recall 1) (b) check (b) for $g \in \mathcal{E}_+$ and apply Beppo-Levy Theorem for $g \in \mathcal{M}_+$.

32.Let (f_n) be a sequence in \mathcal{M}_+ with $\lim_n f_n(x) = f(x), \forall x \in X$ for some $f \in \mathcal{M}_+$. Suppose $\sup_n \int_{\mathcal{M}} f_n d\mu < \infty$, and prove that $\int_{\mathcal{M}} f d\mu < \infty$

solution.

(Apply Fatou Lemma 3.6 see recall 1)

$$\int_{X} \liminf_{n} f_n \, d\mu \leq \liminf_{n} \iint_{X} f_n \, d\mu \text{ with } \liminf_{n} f_n = \lim_{n} f_n \, (x) = f \, (x), \, \forall x \in X \text{ for}$$

some $f \in \mathcal{M}_+$ so $\iint_{X} f.d\mu \leq \liminf_{n} \iint_{X} f_n \, d\mu \leq \sup_{n} \iint_{X} f_n.d\mu < \infty.$

33.Let (f_n) be a decreasing sequence in \mathcal{M}_+ such that

$$\int_{X} f_{n_0} d\mu < \infty, \text{ for some } n_0 \ge 1$$

Prove that $\lim_{n \to X} \int_{X} f_n d\mu = \int_{X} \lim_{n \to X} f_n d\mu$

solution.

apply Theorem **3.5** (Recall 1) to the increasing positive sequence $(f_{n_0} - f_n)$ $n \ge n_0$ indeed we have $f_{n_0} < f_{n_0} \rightarrow f_{n_0}$ for $f_{n_0} < f_{n_0} \rightarrow f_{n_0}$ and so

indeed we have $f_{n+1} \leq f_n \implies f_{n_0} - f_n \leq f_{n_0} - f_{n+1}, \forall n \geq n_0$ and so $\lim_n (f_{n_0} - f_n) = f_{n_0} - f$

by Theorem **3.5** we deduce $\lim_{n \to X} \int_{X} (f_{n_0} - f_n) d\mu = \int_{X} f_{n_0} d\mu - \lim_{n \to X} \int_{X} f_n d\mu = \int_{X} f_{n_0} d\mu - \int_{X} f d\mu$ since $f \in \mathcal{M}_+$ by the fact $\int_{X} f_{n_0} d\mu < \infty$, we get $\lim_{n \to X} \int_{X} f_n d\mu = \int_{X} f d\mu$ **34.**Let the interval [0,1] of real numbers be endowed with Lebesgue measure. (Apply Fatou Lemma 3.6 see recall 1) to the following sequence:

 $f_n(x) = n, 0 \le x \le \frac{1}{n}$ and $f_n(x) = 0, \frac{1}{n} < x < 1.$

solution.

$$\int_{X} \liminf_{n} f_n \, d\mu \leq \liminf_{n} \iint_{X} f_n \, d\mu \text{ with } \liminf_{n} f_n = \sup_{n} \inf_{k \geq n} f_k = 0 \text{ and } \iint_{X} f_n \, d\mu = 1, \forall n$$
whence $0 \leq \liminf_{n} \iint_{X} f_n \, d\mu \leq 1.$

35 (continuity of integrals depending on a parameter)

Let T be an interval of \mathbb{R} and $f: X \times T \longrightarrow \mathbb{R}$ a function such that:

- (a) for each $t \in T$ the function $x \longrightarrow f(x, t)$ is in $L_1(\mu)$
- (b) there is g in $L_1(\mu)$ such that $|f(x,t)| \le |g(x)| \quad \mu a.e$ for all $t \in T$

if
$$\lim_{t \to t_0} f(x,t) = f(x,t_0)$$
 then we have $\lim_{t \to t_0} \int_X f(x,t) d\mu = \int_X f(x,t_0) d\mu$

solution.

Consider the function $h: T \longrightarrow \mathbb{R}$ given by $h(t) = \int_{Y} f(x, t) d\mu$

we have to prove that $\lim_{t \to t_0} h(t) = h(t_0)$

that is the function h is continuous on T which is equivalent to: for any sequence (t_n) with $\lim_n t_n = t_0$ we have $\lim_n h(t_n) = h(t_0)$ let us observe that the functions u_n defined by $u_n(x) = f(x, t_n)$

satisfies **Theorem.3.7** by (b) and $\lim_{n} u_n(x) = f(x, t_0)$, so $\int_{U} u_n d\mu = h(t_n)$

converges to
$$\int_{X} \lim_{n} ..u_n(x) ..d\mu = \int_{X} f(x, t_0) ..d\mu = h(t_0) .\blacksquare$$

36 (Derivative of integrals depending on a parameter)

- Let T be an open set of \mathbb{R} and $f: X \times T \longrightarrow \mathbb{R}$ a function such that:
 - (a) for each $t \in T$ the function $x \longrightarrow f(x, t)$ is in $L_1(\mu)$
 - (b) the function $t \longrightarrow f(x,t)$ derivable on T for each $x \in X$

(c) there is
$$g \in L_1(\mu) \left| \frac{a}{dt} f(x,t) \right| \le |g(x)| \quad \mu - a.e \text{ for all } t \in T$$

Then the function $t \longrightarrow \int_{Y} f(x,t) d\mu$ is differentiable on T

and
$$\frac{d}{dt} \int_{X} f(x,t) \ d\mu = \int_{X} \frac{d}{dt} f(x,t) \ d\mu$$

solution.

Let (t_n) be a sequence with $\lim_{n \to \infty} t_n = t$ and define the sequence (g_n) of functions by

$$g_n(x) = \frac{f(x,t_n) - f(x,t)}{t_n - t}$$
 then $\lim_n g_n(x) = \frac{d}{dt}f(x,t)$. By the Mean Value Theorem

there is $\theta_n(x)$ between t_n and t such that $g_n(x) = \frac{d}{dt} f(x, \theta_n(x))$.

Now we have $\lim_{n \to \infty} t_n = t$ so $\lim_{n \to \infty} \theta_n(x) = t$ and $\lim_{n \to \infty} g_n(x) = \frac{d}{dt} f(x, t)$. But $|g_n(x)| \le |g(x)|$ by (c) then $|g_n(x)| \le |g(x)|^n$ by (c) then we can apply **Theorem.3.7** to $g_n(x)$ with

$$\int_{X} g_n(x) . d\mu = \frac{\int_{X} f(x, t_n) . d\mu - \int_{X} f(x, t) . d\mu}{t_n - t}$$

to get
$$\lim_{n \to X} \int_{X} g_n(x) \, d\mu = \frac{d}{dt} \int_{X} f(x,t) \, d\mu = \int_{X} \lim_{n \to X} g_n(x) \, d\mu = \int_{X} \frac{d}{dt} f(x,t) \, d\mu. \blacksquare$$

37 (Change of variable formula)

Let (X, \mathcal{F}, μ) be a measure space and let (Y, \mathcal{G}) be a measurable space: If $\varphi: X \longrightarrow Y$ is a measurable mapping from (X, \mathcal{F}) into (Y, \mathcal{G}) then: (1) the set function $\nu : \mathcal{G} \longrightarrow [0, \infty]$ given by $G \in \mathcal{G}, \nu(G) = \mu(\varphi^{-1}(G))$ is a measure on (Y, \mathcal{G})

(2) for every function $g: Y \longrightarrow \mathbb{C}$, ν -integrable the function $g \circ \varphi$ is μ -integrable and

$$(*) \int_{Y} g.d\nu = \int_{X} g \circ \varphi.d\mu$$
$$(**) \int_{E} g.d\nu = \int_{\varphi^{-1}(E)} g \circ \varphi.d\mu \ \forall E \in \mathcal{G}.$$

solution.

Apply usual procedure: start with g simple then g in \mathcal{M}_+ and finally g integrable for ν .

38 Measure defined by an integral. (see exercise 31 for the proof) Let (X, \mathcal{F}, μ) be a measure space and let $f \in \mathcal{M}_+$ then

(a) the set function $\nu : \mathcal{F} \longrightarrow [0, \infty]$ given by: $A \in \mathcal{F}, \nu(A) = \int f d\mu$

is a positive measure on ${\mathcal F}$ and we have:

(b)
$$\int_X g.d\nu = \int_X f.g.d\mu$$
, for every $g \in \mathcal{M}_+$.