Chapter 3

Measurable Functions

1. Preliminaries

Definition.1.1.

Let X, Y be non empty sets.
To each function $f: X \longrightarrow Y$ it corresponds the preimage function $f^{-1}: \mathcal{P}(Y) \longrightarrow \mathcal{P}(X)$ defined by: $B \in \mathcal{P}(Y), f^{-1}(B)=\{x \in X: f(x) \in B\}$. Also if \Im is any subfamily of $\mathcal{P}(Y)$ put $f^{-1}(\Im)=\left\{f^{-1}(B), B \in \Im\right\}$.

Proposition.1.2.

The preimage function has the following properties:
(a) $f^{-1}\left(\cup_{i} B_{i}\right)=\cup_{i} f^{-1}\left(B_{i}\right)$ and $f^{-1}\left(\cap_{i} B_{i}\right)=\cap_{i} f^{-1}\left(B_{i}\right)$
for any family $\left(B_{i}\right) \subset \mathcal{P}(Y)$
(b) $f^{-1}\left(B^{c}\right)=\left(f^{-1}(B)\right)^{c}$, for any $B \in \mathcal{P}(Y)$
(c) $B \subset C \Longrightarrow f^{-1}(B) \subset f^{-1}(C)$ for any B, C in $\mathcal{P}(Y)$.

Proof. straightforward.

Proposition.1.3.

Let $(X, \mathcal{F}),(Y, \mathcal{G})$ be measure spaces and $f: X \longrightarrow Y$ a function. Define the families:

$$
\begin{aligned}
& \Re_{f}=\left\{f^{-1}(G): G \in \mathcal{G}\right\}=f^{-1}(\mathcal{G}) \\
& \mathcal{B}_{f}=\left\{B \subset Y: f^{-1}(B) \in \mathcal{F}\right\}
\end{aligned}
$$

Then \Re_{f} is a σ-field on X and \mathcal{B}_{f} a σ-field on Y
Moreover we have $f^{-1}\left(\mathcal{B}_{f}\right) \subset \mathcal{F}$.
Proof. We prove first that \Re_{f} is a σ-field on X. $X \in \Re_{f}$ since $X=f^{-1}(Y)$ and $Y \in \mathcal{G}$.
Let $A \in \Re_{f}$ with $A=f^{-1}(G)$ for some $G \in \mathcal{G}$, then $A^{c}=f^{-1}\left(G^{c}\right)$ since $G^{c} \in \mathcal{G}$, we deduce that $A^{c} \in \Re_{f}$.
Let $\left(A_{n}\right)$ be a sequence in \Re_{f} with $A_{n}=f^{-1}\left(G_{n}\right)$ for some $G_{n} \in \mathcal{G}$;
by Proposition. $1.2(a)$ we have $\underset{n}{\cup} A_{n}=\cup_{n} f^{-1}\left(G_{n}\right)=f^{-1}\left(\underset{n}{\cup} G_{n}\right)$
since $\cup_{n} G_{n} \in \mathcal{G}$, we deduce that $\cup_{n}^{n} A_{n} \in \Re_{f}^{n}$. So \Re_{f} is a σ-field on X. The reader can do the remains by the same way.

2. Measurable Functions Properties

Definition.2.1.

Let $(X, \mathcal{F}),(Y, \mathcal{G})$ be measure spaces and $f: X \longrightarrow Y$ a function. We say that f is measurable if $f^{-1}(\mathcal{G}) \subset \mathcal{F}$. This means that:
$f^{-1}(G) \in \mathcal{F}$ for every $G \in \mathcal{G}$.

Theorem.2.2.

Let $f: X \longrightarrow Y$ be a function and \Im a family of subsets of Y.
Then we have $\sigma\left(f^{-1}(\Im)\right)=f^{-1}(\sigma(\Im))$.
This means that: the σ-field $\sigma\left(f^{-1}(\Im)\right)$ generated by $f^{-1}(\Im)$ coincides with the preimage of the σ-field $\sigma(\Im)$.
Proof. $\Im \subset \sigma(\Im) \Longrightarrow f^{-1}(\Im) \subset f^{-1}(\sigma(\Im))$ and $f^{-1}(\sigma(\Im))$ is a σ-field, since the preimage of a σ-field is a σ-field by Proposition.1.3.
So we deduce that $\sigma\left(f^{-1}(\Im)\right) \subset f^{-1}(\sigma(\Im))$. Now consider the σ-field
$\mathcal{B}_{f}=\left\{B \subset Y: f^{-1}(B) \in \sigma\left(f^{-1}(\Im)\right)\right\}$. If $B \in \mathcal{B}_{f}$, then $f^{-1}(B) \subset \sigma\left(f^{-1}(\Im)\right)$, so $f^{-1}\left(\mathcal{B}_{f}\right) \subset \sigma\left(f^{-1}(\Im)\right)$. But $\Im \subset \mathcal{B}_{f}$, and then $\sigma(\Im) \subset \mathcal{B}_{f}$, so we get $f^{-1}(\sigma(\Im)) \subset f^{-1}\left(\mathcal{B}_{f}\right) \subset \sigma\left(f^{-1}(\Im)\right)$.

Proposition.2.3.

Let $(X, \mathcal{F}),(Y, \mathcal{G})$ be measurable spaces and $f: X \longrightarrow Y$ a function. Suppose there is a family \Im of subsets of Y with $\sigma(\Im)=\mathcal{G}$ and satsfying $f^{-1}(\Im) \subset \mathcal{F}$.Then f is measurable with respect to $(X, \mathcal{F}),(Y, \mathcal{G})$.
Proof. Since $f^{-1}(\Im) \subset \mathcal{F}$ we have $\sigma\left(f^{-1}(\Im)\right) \subset \mathcal{F}$.
By Theorem.2.2 $\sigma\left(f^{-1}(\Im)\right)=f^{-1}(\sigma(\Im))$, but $\sigma(\Im)=\mathcal{G}$ and so $f^{-1}(\mathcal{G}) \subset \mathcal{F}$.

Examples.2.4.

(a) Let $f: X \longrightarrow \mathbb{R}$ be a function from (X, \mathcal{F}) into $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$.The Borel σ-field $\mathcal{B}_{\mathbb{R}}$ is defined in Proposition 3.6, chap.1. For f to be measurable it is enough that $f^{-1}(]-\infty, t[) \in \mathcal{F}$ (the intervals $]-\infty, t\left[\right.$ generates $\left.\mathcal{B}_{\mathbb{R}}\right)$
(b) Let X be a topological space with a countable base $\left(U_{n}\right)$, endowed with its Borel σ-field \mathcal{B}_{Y}. It is well known that \mathcal{B}_{Y} is generated by the family $\left(U_{n}\right)$ and any open set is the union of a subfamily of $\left(U_{n}\right)$. So for a function from (X, \mathcal{F}) into $\left(Y, \mathcal{B}_{Y}\right)$ to be measurable it is enough that $f^{-1}\left(U_{n}\right) \in \mathcal{F}$ for every n.
(c) Let X, Y be topological spaces endowed with their Borel σ-fields $\mathcal{B}_{X}, \mathcal{B}_{Y}$. A function $f: X \longrightarrow Y$ is measurable with respect to $\mathcal{B}_{X}, \mathcal{B}_{Y}$ iff $f^{-1}(G) \in \mathcal{B}_{X}$ for every open set $G \subset Y$. In particular any continuous function is measurable.
(d) Let $I_{A}: X \longrightarrow \mathbb{R}$ be the indicator function of the set A, i.e $I_{A}(x)=1$ if $x \in A$ and $I_{A}(x)=0$ if $x \notin A$. We have $I_{A}^{-1}\left(\mathcal{B}_{\mathbb{R}}\right)=\left\{A, A^{c}, X, \phi\right\}$, then I_{A} is measurable from (X, \mathcal{F}) into $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ iff $A \in \mathcal{F}$.
Now we state some important properties of measurable functions.

Proposition.2.5.

Let $(X, \mathcal{F}),(Y, \mathcal{G}),(Z, \mathcal{H})$ be measurable spaces and
$f: X \longrightarrow Y, g: Y \longrightarrow Z$ measurable functions. Then the composition function $g \circ f: X \longrightarrow Z$ is measurable from (X, \mathcal{F}) into (Z, \mathcal{H}).
Proof. We have $(g \circ f)^{-1}(\mathcal{H})=\left(f^{-1} \circ g^{-1}\right)(\mathcal{H})=f^{-1}\left(g^{-1}(\mathcal{H})\right)$
Since g is measurable $g^{-1}(\mathcal{H}) \subset \mathcal{G}$, so $f^{-1}\left(g^{-1}(\mathcal{H})\right) \subset f^{-1}(\mathcal{G})$. But f is measurable then $f^{-1}(\mathcal{G}) \subset \mathcal{F}$. We deduce that $(g \circ f)^{-1}(\mathcal{H}) \subset \mathcal{F}$ and $g \circ f$ is measurable.

Proposition.2.6.

Let $(X \times Y, \mathcal{F} \otimes \mathcal{G})$ be the product of the measurable spaces $(X, \mathcal{F}),(Y, \mathcal{G})$ (see Definition 3.4. Chap.1). Then the projection $\pi_{1}(x, y)=x$ is measurable from $(X \times Y, \mathcal{F} \otimes \mathcal{G})$ into (X, \mathcal{F}). Similarly the projection $\pi_{2}(x, y)=y$ is measurable from $(X \times Y, \mathcal{F} \otimes \mathcal{G})$ into (Y, \mathcal{G}).
Proof. By Definition 3.4 Chap. 1 the σ-field $\mathcal{F} \otimes \mathcal{G}$ contains the family $\{A \times B: A \in \mathcal{F}, \quad B \in \mathcal{G}\}$. We get $\pi_{1}^{-1}(A)=A \times Y \in \mathcal{F} \otimes \mathcal{G}$ for every $A \in \mathcal{F}$ and $\pi_{2}^{-1}(B)=X \times B \in \mathcal{F} \otimes \mathcal{G}$ for every $B \in \mathcal{G}$. So π_{1} and π_{2} are measurable.
Proposition.2.7.
Let (Z, \mathcal{H}) be a measurable space and let $f: Z \longrightarrow X \times Y$ be a function with $f_{1}=\pi_{1} \circ f: Z \longrightarrow X$ and $f_{2}=\pi_{2} \circ f: Z \longrightarrow Y$. Then f is measurable from (Z, \mathcal{H}) into $(X \times Y, \mathcal{F} \otimes \mathcal{G})$ if and only if f_{1} is measurable from (Z, \mathcal{H}) into (X, \mathcal{F}) and f_{2} is measurable from (Z, \mathcal{H}) into (Y, \mathcal{G}).
Proof. The <if $>$ part comes from the measurability of π_{1} and π_{2} (Proposition $\mathbf{2 . 6}$) and the measurability of the composition function (Proposition 2.5).
We prove the <only if> part:. Since the family $\{A \times B: A \in \mathcal{F}, B \in \mathcal{G}\}$ generates the product σ-field $\mathcal{F} \otimes \mathcal{G}$ it is enough to prove that $f^{-1}(A \times B) \in \mathcal{H}$ (Proposition 2.3). Since f_{1} and f_{2} are measurable we have
$f_{1}^{-1}(A)=\left(\pi_{1} \circ f\right)^{-1}(A)=f^{-1}(A \times Y) \in \mathcal{H}$
and $f_{2}^{-1}(A)=\left(\pi_{2} \circ f\right)^{-1}(B)=f^{-1}(X \times B) \in \mathcal{H}$
$f^{-1}(A \times Y) \cap f^{-1}(X \times B)=f^{-1}((A \times Y) \cap(X \times B))=f^{-1}(A \times B) \in \mathcal{H}$.

Remark. 2.8.

Let Let X be a topological space. Let us recall that the Borel σ-field of X is the σ-field generated by the family of all the open sets of X.
It is denoted by \mathcal{B}_{X}. Sets in \mathcal{B}_{X} are called Borel sets of X. If X, Y are topological spaces whose product $X \times Y$ is endowed with the product topology then on the space $X \times Y$ one may put two σ-fields that are $\mathcal{B}_{X} \otimes \mathcal{B}_{Y}$ and $\mathcal{B}_{X \otimes Y}$. An interesting question is when do we have $\mathcal{B}_{X \otimes Y}=\mathcal{B}_{X} \otimes \mathcal{B}_{Y}$. It is known that if X and Y are separable metric spaces then $\mathcal{B}_{X \otimes Y}=\mathcal{B}_{X} \otimes \mathcal{B}_{Y}$. This result is of particular importance when $X=Y=\mathbb{R}$:

Theorem.2.9.

The space \mathbb{R} is separable, since the countable set \mathbb{Q} of rational numbers is dense. So the set \mathbb{R}^{2} with the product topology is separable and we have $\mathcal{B}_{\mathbb{R}^{2}}=\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$.
As a consequence of this Theorem we have:
Proposition. 2.10.
Let $f, g: X \longrightarrow \mathbb{R}$ be measurable functions from (X, \mathcal{F}) into $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$. Then the following functions $f+g, f . g$, $\sup (f, g), \inf (f, g)$ are measurable.
Proof. Since the functions f, g are measurable, the function $\varphi: X \longrightarrow \mathbb{R}^{2}$ defined by $\varphi(x)=(f(x), g(x))$ is measurable with respect to \mathcal{F} and $\mathcal{B}_{\mathbb{R}^{2}}$ (Proposition.2.7). On the other hand the functions $S, P, M, m: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ given by: $S(u, v)=u+v$, $P(u, v)=u v, M(u, v)=\sup (u, v), m(u, v)=\inf (u, v)$ are continuous and so measurable with respect to $\mathcal{B}_{\mathbb{R}^{2}}$ and $\mathcal{B}_{\mathbb{R}}$. Now we have $S \circ \varphi=f+g, P \circ \varphi=f g$, $M \circ \varphi=\sup (f, g), m \circ \varphi=\inf (f, g)$; the conclusion comes from Proposition.2.5.

Corollary. The family $\mathcal{M}(X, \mathbb{R})$ of measurable functions from (X, \mathcal{F}) into $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ is a vector space on the field \mathbb{R} and even an algebra of functions.

Definition.2.11.

Let $\left\{f_{i}, i \in I\right\}$ be a family of functions defined on a set X such that each f_{i} : $X \longrightarrow E_{i}$ sends X into the measurable space $\left(E_{i}, \mathcal{F}_{i}\right)$. The σ-field generated by the family $\left\{f_{i}, i \in I\right\}$ is defined as the smallest σ-field \mathcal{F} on X making each function f_{i} measurable from (X, \mathcal{F}) into the space $\left(E_{i}, \mathcal{F}_{i}\right)$. We denote this σ-field \mathcal{F} by $\sigma\left\{f_{i}, i \in I\right\}$; in other words $\sigma\left\{f_{i}, i \in I\right\}$ is the smallest σ-field \mathcal{F} on X containing all the families $f_{i}^{-1}\left(\mathcal{F}_{i}\right), i \in I$.

Examples.2.12.

(a) Let X be a set and take $\left\{f_{i}, i \in I\right\}=\left\{I_{A}, A \in \mathcal{P}(X)\right\}$ where I_{A} is the indicator function, then $\sigma\left\{I_{A}, A \in \mathcal{P}(X)\right\}=\mathcal{P}(X)$.
(b) Let X be a topological space. The Baire σ-field on X is defined as the σ-field $\mathcal{B}_{0}(X)$ generated by all continuous functions $f_{i}: X \longrightarrow \mathbb{R}$, that is the smallest σ-field on X making each continuous function $f_{i}: X \longrightarrow \mathbb{R}$ measurable with respect to $\mathcal{B}_{0}(X)$ and $\mathcal{B}_{\mathbb{R}}$.
(c) If in Example (b) the space X is a metric space whose topology is defined by the distance d then $\mathcal{B}_{0}(X)$ coincides with the Borel σ-field \mathcal{B}_{X} on X.
Indeed we have $\mathcal{B}_{0}(X) \subset \mathcal{B}_{X}$ since \mathcal{B}_{X} makes each continuous function measurable as easily may be seen. On the other hand let F be a closed set in X and consider the continuous function $f: X \longrightarrow \mathbb{R}$ given by $f(x)=d(x, F)$. Then we have $F=\{x \in X: f(x)=0\}=f^{-1}(0) \in \mathcal{B}_{0}(X)$; so $\mathcal{B}_{0}(X)$ contains all the closed sets of X and then $\mathcal{B}_{X} \subset \mathcal{B}_{0}(X)$ since \mathcal{B}_{X} is generated by the family of closed sets in X (see Definition 3.5 Chap.1).
(d) Let $(X \times Y, \mathcal{F} \otimes \mathcal{G})$ be the product of the measurable spaces $(X, \mathcal{F}),(Y, \mathcal{G})$. Then the projection $\pi_{1}(x, y)=x$ and the projection $\pi_{2}(x, y)=y$ are measurable on $(X \times Y, \mathcal{F} \otimes \mathcal{G})$ (Proposition.2.6). Then $\pi_{1}^{-1}(A)=A \times Y \in \mathcal{F} \otimes \mathcal{G}$ for every $A \in \mathcal{F}$ and $\pi_{2}^{-1}(B)=X \times B \in \mathcal{F} \otimes \mathcal{G}$ for every $B \in \mathcal{G}$.
We deduce that $\sigma\left\{\pi_{1}, \pi_{2}\right\} \subset \mathcal{F} \otimes \mathcal{G}$. On the other hand we have:
$\pi_{1}^{-1}(A) \cap \pi_{2}^{-1}(B)=(A \times Y) \cap(X \times B)=A \times B \in \mathcal{F} \otimes \mathcal{G}$. So every set of the form $A \times B$ with $A \in \mathcal{F}$ and $B \in \mathcal{G}$ is in $\sigma\left\{\pi_{1}, \pi_{2}\right\}$. But $\sigma\{A \times B: A \in \mathcal{F}, B \in \mathcal{G}\}=$ $\mathcal{F} \otimes \mathcal{G}$, finally $\mathcal{F} \otimes \mathcal{G} \subset \sigma\left\{\pi_{1}, \pi_{2}\right\}$. Then $\mathcal{F} \otimes \mathcal{G}=\sigma\left\{\pi_{1}, \pi_{2}\right\}$.

3. Exercises

20. Let X be a non empty set. Determine the σ-field \mathcal{F} generated by the constant functions $f: X \longrightarrow \mathbb{R}$. Let \Im be the family of measurable functions from (X, \mathcal{F}) into $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$, prove that \Im is isomorphic to \mathbb{R}.
21. Let f be a measurable function from (X, \mathcal{F}) into $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$, prove that $|f|$ is measurable. Let E be a set not Lebesgue measurable (see section 5 for the definition of Lebesgue measurable sets). Consider the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x)=x I_{E^{c}}-x I_{E}$, prove that f is not Lebesgue measurable but $|f|$ is measurable.
22. Let $\left\{\left(X_{i}, \mathcal{F}_{i}\right), 1 \leq i \leq n\right\}$ be a finite family of measurable spaces and form the product set $X=\prod_{1}^{n} X_{i}=X_{1} \times X_{2} \times \cdots \times X_{n}$. We denote by $p_{i}: X \longrightarrow X_{i}$ the projection from X onto X_{i} given by $p_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{i}$. Consider the σ-field $\sigma\left\{p_{i}, 1 \leq i \leq n\right\}$ generated by the functions $\left\{p_{i}, 1 \leq i \leq n\right\}$ and denoted by $\mathcal{F}_{1} \otimes \mathcal{F}_{2} \otimes \cdots \otimes \mathcal{F}_{n}=\stackrel{n}{\otimes} \mathcal{F}_{i}$. The space $\left(X, \stackrel{n}{\otimes} \mathcal{F}_{i}\right)$ is called the product of the spaces $\left(X_{i}, \mathcal{F}_{i}\right), 1 \leq i \leq n$.
(a) Prove that ${ }_{1}^{\otimes} \mathcal{F}_{i}$ is generated by the subsets of X of the form
$A=A_{1} \times A_{2} \times \cdots \times A_{n}, A_{i} \in \mathcal{F}_{i} 1 \leq i \leq n$.
(b) Let (Y, \mathcal{G}) be a measurable space and let $g: Y \longrightarrow \prod_{1}^{n} X_{i}$ be a function, prove that g is measurable with respect to (Y, \mathcal{G}) and $\left(X, \underset{1}{\otimes} \mathcal{F}_{i}\right)$ if and only if $p_{i} \circ g$ is measurable from (Y, \mathcal{G}) into $\left(X_{i}, \mathcal{F}_{i}\right)$ for each $1 \leq i \leq n$.
23. Let X be a non empty set and let $\left\{f_{i}, i \in I\right\}$ be a family of functions defined on X such that each $f_{i}: X \longrightarrow E_{i}$ sends X into the measurable space $\left(E_{i}, \mathcal{B}_{i}\right)$. Suppose that X is endowed with the σ-field $\sigma\left\{f_{i}, 1 \leq i \leq n\right\}$ generated by the functions $\left\{f_{i}, 1 \leq i \leq n\right\}$ (see Definition 2.11). Let (Y, \mathcal{G}) be a measurable space and let $g: Y \longrightarrow X$, prove that g is measurable with respect to (Y, \mathcal{G}) and $\left(X, \sigma\left\{f_{i}, 1 \leq i \leq n\right\}\right)$ if and only if $f_{i} \circ g$ is measurable from (Y, \mathcal{G}) into $\left(E_{i}, \mathcal{B}_{i}\right)$ for each $1 \leq i \leq n$.

4. Measurable Functions with values in $\mathbb{R}, \overline{\mathbb{R}}, \mathbb{C}$

Definition.4.1

(a) The set \mathbb{R} is the real numbers system endowed with the Borel σ-field $\mathcal{B}_{\mathbb{R}}$.
(b) The set $\overline{\mathbb{R}}$ is defined as $\{\mathbb{R},-\infty,+\infty\}$. The σ-field we need on $\overline{\mathbb{R}}$ is given by $\sigma\left\{\mathcal{B}_{\mathbb{R}},-\infty, \infty\right\}$ and denoted by $\mathcal{B}_{\overline{\mathbb{R}}}$.
(c) It is well known that the set \mathbb{C} of complex numbers can be identified with the product space $\mathbb{R} \times \mathbb{R}$; so we can identify the Borel σ-field $\mathcal{B}_{\mathbb{C}}$ with $\mathcal{B}_{\mathbb{R} \times \mathbb{R}}$, which is $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$ by Theorem.2.9.

Notations. 4.2.

Let (X, \mathcal{F}) be a measurable space. In the sequel.we will use the following notations:
$\mathcal{M}(X, \mathbb{R})$ is the family of measurable functions f from (X, \mathcal{F}) into $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$.
$\mathcal{M}(X, \mathbb{C})$ is the family of measurable functions f from (X, \mathcal{F}) into $\left(\mathbb{C}, \mathcal{B}_{\mathbb{C}}\right)$
We already have seen that $\mathcal{M}(X, \mathbb{R})$ is a vector space on the field \mathbb{R} (see the Corollary of Proposition.2.10).
It is not difficult to prove the same for $\mathcal{M}(X, \mathbb{C})$
Arithmetic in $\overline{\mathbb{R}}$. 4.3 .
We will agree with the following conventions in $\overline{\mathbb{R}}=\{\mathbb{R},-\infty,+\infty\}$:
$0 \cdot(\pm \infty)=(\pm \infty) \cdot 0=0$
$(+\infty)+(+\infty)=+\infty$
$(-\infty)+(-\infty)=-\infty$
$a \pm(\pm \infty)= \pm \infty, \forall a \in \mathbb{R}$
$(-1) \cdot(\pm \infty)=(\mp \infty)$
Definition. 4.4.
Let (X, \mathcal{F}) be a measurable space.
A function $f: X \longrightarrow \overline{\mathbb{R}}$ is measurable from (X, \mathcal{F}) into $\left(\overline{\mathbb{R}}, \mathcal{B}_{\overline{\mathbb{R}}}\right)$ if: $f^{-1}(B) \in \mathcal{F}, \forall B \in \mathcal{B}_{\mathbb{R}}$, and $f^{-1}(+\infty) \in \mathcal{F}, f^{-1}(-\infty) \in \mathcal{F}$
this comes from the fact that $\mathcal{B}_{\overline{\mathbb{R}}}=\sigma\left\{\mathcal{B}_{\mathbb{R}},-\infty, \infty\right\}$ and Proposition 2.3.
We denote by $\mathcal{M}(X, \overline{\mathbb{R}})$ the the family of measurable functions f from (X, \mathcal{F}) into $\left(\overline{\mathbb{R}}, \mathcal{B}_{\overline{\mathbb{R}}}\right)$.
Proposition. 4.5.
The σ-field $\mathcal{B}_{\overline{\mathbb{R}}}$ is generated by all the intervals of the form $[-\infty, t[$.
Proof. Use the fact that $\mathcal{B}_{\mathbb{R}}$ is generated by all the open intervals by Proposition 3.6.Chap. 1

Corollary.

A function $f: X \longrightarrow \overline{\mathbb{R}}$ is measurable from (X, \mathcal{F}) into $\left(\overline{\mathbb{R}}, \mathcal{B}_{\overline{\mathbb{R}}}\right)$ if: $f^{-1}([-\infty, t[) \in \mathcal{F}, \forall t \in \mathbb{R}$.

Definition. 4.6.

Let $(X, \mathcal{F}),(Y, \mathcal{G})$ be measurable spaces and $E \subset X$ a subset of X.
If $f: X \longrightarrow Y$ is a function. We say that f is measurable on E if the restriction of f to E considered as a function from $(E, E \cap \mathcal{F})$ into (Y, \mathcal{G}) is measurable.
Example. 4.7.
If f, g are in $\mathcal{M}(X, \overline{\mathbb{R}})$, then the function $f+g$ is measurable on the set E with: $E^{c}=(\{f=\infty\} \cap\{g=-\infty\}) \cup(\{f=-\infty\} \cap\{g=\infty\})$
Let φ be the restriction of $f+g$ to E then we have
φ is well defined on E and $\{\varphi<t\}=\{f+g<t\} \cap E \in E \cap \mathcal{F}$.

5. Sequences of Measurable Functions

Definition. 5.1. (simple function)

Let $f: X \longrightarrow \mathbb{R}$ be a function from X into \mathbb{R}. The function f is simple if it takes a finite number of values, that is, f is simple if the set $f(X)$ is a finite subset of \mathbb{R}. So if $f(X)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $A_{i}=\left\{x: f(x)=a_{i}\right\}, i=$ $1,2, \ldots, n$, then $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is a partition of X and the function f can be written as $f(\cdot)=\sum_{1}^{n} a_{i} \cdot I_{A_{i}}(\cdot)$, where $I_{A_{i}}$ is the indicateur function of the set $A_{i}, i=1,2, \ldots, n$.

Proposition. 5.2

A simple function $f(\cdot)=\sum_{i=1}^{n} a_{i} \cdot I_{A_{i}}(\cdot)$ is measurable from (X, \mathcal{F}) into $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ iff $A_{i} \in \mathcal{F}, i=1,2, \ldots, n$.
Proof. We have $f^{-1}\left\{a_{i}\right\}=A_{i} \in \mathcal{F}, i=1,2, \ldots, n$; so if $B \in \mathcal{B}_{\mathbb{R}}$ and $n_{B}=\left\{i: a_{i} \in B\right\}$, we deduce that $f^{-1}(B)=\underset{i \in n_{B}}{\cup} A_{i} \in \mathcal{F}$.
Notation. 5.3. We denote by \mathcal{E} the family of measurable simple functions from (X, \mathcal{F}) into $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$

Proposition. 5.4.

Let s, t be in \mathcal{E} and $\lambda \in \mathbb{R}$, then:
the functions $s+t, s \cdot t, \lambda \cdot s, \sup (s, t), \inf (s, t)$ are in \mathcal{E}.
Proof. Write $s(\cdot)=\sum_{1}^{n} a_{i} \cdot I_{A_{i}}(\cdot), t(\cdot)=\sum_{1}^{m} b_{j} \cdot I_{B j}(\cdot)$, then we have:

$$
\begin{aligned}
& s+t=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(a_{i}+b_{j}\right) \cdot I_{A_{i} \cap B_{j}} \\
& s \cdot t=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(a_{i} b_{j}\right) \cdot I_{A_{i} \cap B_{j}}, \lambda \cdot s=\sum_{1}^{n}\left(\lambda a_{i}\right) \cdot I_{A_{i}}
\end{aligned}
$$

(so the family \mathcal{E} is an algebra on \mathbb{R}.)

$$
\sup (s, t)=\sum_{i=1}^{n} \sum_{j=1}^{m} \sup \left(a_{i}, b_{j}\right) \cdot I_{A_{i} \cap B_{j}}, \inf (s, t)=\sum_{i=1}^{n} \sum_{j=1}^{m} \inf \left(a_{i}, b_{j}\right) \cdot I_{A_{i} \cap B_{j}}
$$

Since $\left\{A_{i} \cap B_{j}, \quad 1 \leq i \leq n, 1 \leq j \leq m\right\}$ is a partition of X we get the result

Proposition. 5.5.

Let $\left(f_{n}\right)$ be a sequence of functions in $\mathcal{M}(X, \mathbb{R})$ or either in $\mathcal{M}(X, \overline{\mathbb{R}})$ then: the functions $\sup f_{n}$ and $\inf _{n} f_{n}$ are in $\mathcal{M}(X, \overline{\mathbb{R}})$.
Proof. For any $t \in \mathbb{R}$ we have $\left\{\sup _{n} f_{n} \leq t\right\}=\bigcap_{n}\left\{f_{n} \leq t\right\}$ whence the mesurability of $\sup _{n} f_{n}$. Since $\inf _{n} f_{n}=-\sup _{n}-f_{n}$ we deduce the mesurability of $\inf _{n} f_{n}$.

Corollary. 1.

Let $\left(f_{n}\right)$ be a sequence of functions in $\mathcal{M}(X, \mathbb{R})$ or either in $\mathcal{M}(X, \overline{\mathbb{R}})$ then: the functions $\lim \sup _{n} f_{n}$ and $\liminf _{n} f_{n}$ are measurable
Proof. Comes directly from the proposition above since $\limsup _{n} f_{n}=\inf _{n \geq 1} \sup _{k \geq n} f_{k}$ and $\liminf _{n} f_{n}=\sup _{n \geq 1} \inf _{k \geq n} f_{k}$

Corollary. 2.

Let $\left(f_{n}\right)$ be a sequence of functions in $\mathcal{M}(X, \mathbb{R})$ or either in $\mathcal{M}(X, \overline{\mathbb{R}})$ then: The set $C=\left\{x: \limsup _{n} f_{n}(x)=\liminf _{n} f_{n}(x)\right\}$ belongs to \mathcal{F}.
Proof. Observe that C is the convergence set of the sequence $\left(f_{n}\right)$. Put :

$$
\begin{aligned}
& C_{1}=\left(\left\{x: \limsup _{n} f_{n}(x)=\infty\right\} \cap\left\{x: \liminf _{n} f_{n}(x)=\infty\right\}\right) \\
& C_{2}=\left(\left\{x: \limsup _{n} f_{n}(x)=-\infty\right\} \cap\left\{x: \liminf _{n} f_{n}(x)=-\infty\right\}\right) \\
& C_{3}=\left\{x: \limsup _{n} f_{n}(x) \in \mathbb{R}\right\} \cap\left\{x: \limsup _{n} f_{n}(x)=\liminf _{n} f_{n}(x)\right\} \\
& \text { Then } C_{1} \text { and } C_{2} \text { and } C_{3} \text { are in } \mathcal{F} \text { and } C=C_{1} \cup C_{2} \cup C_{3} .
\end{aligned}
$$

Corollary. 3.
Let $\left(f_{n}\right)$ be a sequence of functions in $\mathcal{M}(X, \mathbb{R})$ or either in $\mathcal{M}(X, \overline{\mathbb{R}})$
Suppose that: $\lim _{n} f_{n}(x)=f(x) \in \overline{\mathbb{R}}$ exists for each $x \in X$. Then $f \in \mathcal{M}(X, \overline{\mathbb{R}})$.
Proof. The convergence set $C=\left\{x: \limsup _{n} f_{n}(x)=\liminf _{n} f_{n}(x)\right\}$ given in Corollary 2 is equal to X here.
So the function $f(x)$ is equal to $\limsup _{n} f_{n}(x)=\liminf _{n} f_{n}(x), \forall x \in X$. Then f is measurable by Corollary 1
The following theorem is fundamental and will be used in the construction of the integral of a measurable function.
Theorem. 5.6.
Let $f \in \mathcal{M}(X, \overline{\mathbb{R}})$ be such that $f(x) \in[0, \infty], \forall x \in X$.Then: there exists a sequence $\left(s_{n}\right)$ of positive measurable simple functions from (X, \mathcal{F}) into $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ with:
(i) $0 \leq s_{n} \leq s_{n+1}$
(ii) $\lim _{n} s_{n}(x)=f(x), \forall x \in X$.

Proof. For each $n \geq 1$ and each $x \in X$, define s_{n} by:

$$
\begin{aligned}
& s_{n}(x)=\frac{i-1}{2^{n}} \text { if } \frac{i-1}{2^{n}} \leq f(x)<\frac{i}{2^{n}}, i=1,2, \ldots, n 2^{n} \\
& s_{n}(x)=n \text { if } f(x) \geq n
\end{aligned}
$$

we can use a consolidated form for s_{n} :

$$
s_{n}(x)=\sum_{i=1}^{n 2^{n}} \frac{i-1}{2^{n}} I_{\left\{\frac{i-1}{2^{n}} \leq f(x)<\frac{i}{2^{n}}\right\}}+n I_{\{f(x) \geq n\}}
$$

recall that I_{A} is the function defined by $I_{A}(x)=1$ if $x \in A$ and $I_{A}(x)=0$ if $x \notin A$.
Then $\left(s_{n}\right)$ is an increasing sequence of positive simple functions (check it!).
Let us prove that $\lim _{n} s_{n}(x)=f(x), \forall x \in X$:
if $f(x)<\infty$ then for every $n>f(x)$ we have $0<f(x)-s_{n}(x)<\frac{1}{2^{n}}$, so $\lim _{n} s_{n}(x)=f(x)$
if $f(x)=\infty$ then $f(x) \geq n$ for every n and so we have $s_{n}(x)=n$ for all n whence $\lim _{n} s_{n}(x)=\infty$.

Definition. 5.7.

Let $f \in \mathcal{M}(X, \overline{\mathbb{R}})$. Define the positive measurable functions f^{+}, f^{-}by: $f^{+}=\sup (f, 0), f^{-}=-\inf (f, 0)$

Remark. 5.8.

It is easy to check that:
$f=f^{+}-f^{-}$
$|f|=f^{+}+f^{-}$

Proposition. 5.9.

Let $f \in \mathcal{M}(X, \overline{\mathbb{R}})$. Then there exists a sequence $\left(s_{n}\right)$ of measurable simple functions from (X, \mathcal{F}) into $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ with $\lim _{n} s_{n}(x)=f(x), \forall x \in X$.
Proof. We have $f=f^{+}-f^{-}$where f^{+}, f^{-}are simple positives.
By Theorem. 5.6.there exist simple positive functions $s_{n}^{\prime}, s_{n}^{\prime \prime}$ such that: $\lim _{n} s_{n}^{\prime}(x)=f^{+}(x), \forall x \in X$ and $\lim _{n} s_{n}^{\prime \prime}(x)=f^{-}(x), \forall x \in X$. Then $s_{n}=s_{n}^{\prime}-s_{n}^{\prime \prime}$ i^{n} measurable simple and $\lim _{n} s_{n}(x)=f^{+}(x)-f^{-}(x)=f(x), \forall x \in X$.

Corollary.

Let $f \in \mathcal{M}(X, \mathbb{R})$ and suppose f bounded. Then there is a sequence $\left(s_{n}\right)$ of measurable simple functions converging uniformly to f on X.
Proof. By the Proposition above it is enough to consider the case f positive. Since f is bounded there is n such that $n>f(x)$ for every $x \in X$. So there exists a sequence $\left(s_{n}\right)$ of positive measurable simple functions with $0 \leq f(x)-s_{m}(x)<\frac{1}{2^{m}}, \forall x \in X, \forall m>n$, from which we deduce the uniform convergence of s_{n} to f on X.

6. Convergence of Measurable Functions

Let us recall that if (X, \mathcal{F}, μ) is a measure space, a subset N of X is a null set if there is $A \in \mathcal{F}$, with $\mu(A)=0$ such that $N \subset A$.
In this section we describe different type of convergence of measurable functions and the relations between them.
Definition. 6.1.
Let \mathcal{P} be a property depending on a variable $x \in X$, that is \mathcal{P} may be true or false according to x. We say that \mathcal{P} is true almost every where if there is a null subset N of X such that \mathcal{P} is true for any x outside N.

Examples. 6.2.

(a) A function $f: X \longrightarrow \overline{\mathbb{R}}$ is said to be finite almost every where if there is a null subset N of X such that $f(x) \in \mathbb{R} \forall x \in X \backslash N$. If moreover $f \in \mathcal{M}(X, \overline{\mathbb{R}})$ then $\{f= \pm \infty\} \in \mathcal{F}$ and the condition of finiteness almost every where may be written simply as $\mu\{f= \pm \infty\}=0$.
(b).A function $f: X \longrightarrow \mathbb{R}$ is said to be bounded almost every where if there is a constant $M>0$ and a null subset N such that $|f(x)| \leq M, \forall x \in X \backslash N$. If moreover $f \in \mathcal{M}(X, \mathbb{R})$ then $\{|f|>M\} \in \mathcal{F}$ and the condition of boundedness almost every where may be written simply as $\mu\{|f|>M\}=0$.
(c). Let $f, g: X \longrightarrow \overline{\mathbb{R}}$ be functions. We say that $f=g$ almost every where if there is a null subset N such that $f(x)=g(x), \forall x \in X \backslash N$. If moreover $f \in \mathcal{M}(X, \overline{\mathbb{R}})$, the condition may be written as $\mu\{f \neq g\}=0$.
Abbreviation. almost every where with respect to μ is abbreviated to: μ-a.e
Definition. 6.3.
Let $f_{n}: X \longrightarrow \mathbb{R}$ be a sequence of functions. We say that f_{n} converges $\mu-a . e$ if the set $N=\left\{\limsup _{n} f_{n} \neq \liminf _{n} f_{n}\right\}$ is a null set. In other words f_{n} converges μ-a.e if for each $x \in X \backslash N$ the real sequence $f_{n}(x)$ converge to the real number $f(x)$, that is: $\forall \epsilon>0, \exists m(\epsilon, x) \geq 1$ such that $\forall n \geq m(\epsilon, x),\left|f_{n}(x)-f(x)\right|<\epsilon$.

Definition. 6.4.

Let $f_{n}: X \longrightarrow \mathbb{R}$ be a sequence of functions. We say that f_{n} is a Cauchy sequence μ-a.e if there is a null subset N such that for each $x \in X \backslash N$ the real sequence $f_{n}(x)$ is a Cauchy sequence in \mathbb{R}, that is satisfies the following condition:

$$
\forall \epsilon>0, \exists M(\epsilon, x) \geq 1 \text { such that } \forall n, m \geq M(\epsilon, x),\left|f_{n}(x)-f_{m}(x)\right|<\epsilon
$$

Proposition. 6.5.

Let $f_{n}: X \longrightarrow \mathbb{R}$ be a sequence of functions. The following conditions are equivalent:
(a) The sequence f_{n} converges to μ-a.e to a function $f: X \longrightarrow \mathbb{R}$
(b) f_{n} is a Cauchy sequence μ-a.e

Proof. For each x outside of a null set $f_{n}(x)$ is a Cauchy sequence in \mathbb{R}, so the Proposition results from the validity of the same properties in \mathbb{R}.

Now let us come to the convergence of measurable functions.

Proposition. 6.6.

Let f_{n} be a sequence of functions in $\mathcal{M}(X, \overline{\mathbb{R}})$ converging μ - a.e on X. Then there is $f \in \mathcal{M}(X, \overline{\mathbb{R}})$ such that f_{n} converges $\mu-a . e$ to f.
Conversely if there is $f: X \longrightarrow \overline{\mathbb{R}}$ such that f_{n} converges $\mu-$ a.e to f, then f is measurable on a set E with $\mu\left(E^{c}\right)=0$.
Proof. Take $E=\left\{x: \underset{n}{\limsup } f_{n}(x)=\liminf _{n} f_{n}(x)\right\}$ and take f defined by:

$$
f(x)=\liminf _{n} f_{n}(x) \text { for } x \in E \text { and } f(x)=0 \text { for } x \in E^{c}
$$

(see Definition 4.6 for the measurability of f on E).
Definition. 6.7. (uniform convergence $\mu-a . e$)
Let $f_{n}: X \longrightarrow \mathbb{R}$ be a sequence of functions. We say that f_{n} converges uniformly μ-a.e to the function $f: X \longrightarrow \mathbb{R}$ if there is a null set N such that f_{n} converges uniformly to f on $X \backslash N$, that is:
$\forall \epsilon>0, \exists M(\epsilon) \geq 1$ such that $\forall n \geq M(\epsilon),\left|f_{n}(x)-f(x)\right|<\epsilon, \forall x \in X \backslash N$
We say that f_{n} is a Cauchy sequence for the uniform convergence μ-a.e if there is a null set N such that:
$\forall \epsilon>0, \exists M(\epsilon) \geq 1$ such that $\forall n, m \geq M(\epsilon),\left|f_{n}(x)-f_{m}(x)\right|<\epsilon, \forall x \in$ $X \backslash N$
let us observe that the integer $M(\epsilon)$ does not depend on x.

Remark. 6.8.

In most of our discussion, especially in integration theory, we frequently use a complete measure space (X, \mathcal{F}, μ) as our basic space.
So in this case every null set is in \mathcal{F} and this avoids some cumbersome measurability character of functions.
The following Theorem localizes the points of the space X where the convergence of a sequence fails to be uniform. Let us start with an example:

Example. 6.9.

Consider the space $X=[0,1]$ endowed with the Lebesgue measure μ and let $f_{n}: X \longrightarrow \mathbb{R}$ be the sequence of functions given by $f_{n}(x)=x^{n}, x \in[0,1]$. The sequence converges pointwise to the function f given by $f(x)=0$ for $0 \leq x<1$, and $f(x)=1$ for $x=1$, but the convergence is not uniform (why?). However for $\epsilon>0$, we see that the sequence f_{n} converges uniformly on the interval $\left[0,1-\frac{\epsilon}{2}\right]$; intuitevely the points where the uniform convergence fails are localized in the set $B=\left[1-\frac{\epsilon}{2}, 1\right]$ and $\mu(B)<\epsilon$.
Theorem. 6.10. (Egorov)
Let (X, \mathcal{F}, μ) be a measure space, with $\mu(X)<\infty$. Let $f_{n}, f \in \mathcal{M}(X, \overline{\mathbb{R}})$ be functions finite μ-a.e.
Suppose that the sequence f_{n} converges μ-a.e to f on X. Then we have:
For every $\epsilon>0$ there is $B \in \mathcal{F}$ such that $\mu(B)<\epsilon$
and f_{n} converges uniformly to f on $X \backslash B$.
Proof. Without losing general hypothesis, we can assume that: f_{n}, f take values in \mathbb{R} and f_{n} converges everywhere to f on X.

Let $E_{n}^{m}=\bigcap_{j \geq n}\left\{\left|f_{j}-f\right|<\frac{1}{m}\right\}$, since f_{n}, f are measurable we get $E_{n}^{m} \in \mathcal{F}, \forall n, m$. Moreover it is clear that $E_{n}^{m} \subset E_{n+1}^{m} \subset \ldots \subset \cup_{n \geq 1}^{\cup} E_{n}^{m}$. Since f_{n} converges everywhere to f on X, we have $\cup_{n \geq 1} E_{n}^{m}=X, \forall m \geq 1$.
So $X \backslash E_{n}^{m} \supset X \backslash E_{n+1}^{m} \supset \ldots \supset \cap_{n \geq 1}^{\cap}\left(X \backslash E_{n}^{m}\right)=\phi$ for each $m \geq 1$. Since $\mu(X)<$ ∞ we deduce that $\lim _{n} \mu\left(X \backslash E_{n}^{m}\right)=0$; so for each $m \geq 1$ there is $n(m) \geq 1$ such that $\mu\left(X \backslash E_{n(m)}^{m}\right)<\frac{\epsilon}{2^{m}}$. Now put $B=\underset{m \geq 1}{\cup} X \backslash E_{n(m)}^{m}$; then we have:
$\mu(B) \leq \sum_{m \geq 1} \mu\left(X \backslash E_{n(m)}^{m}\right)<\sum_{m \geq 1} \frac{\epsilon}{2^{m}}=\epsilon$. So $\mu(B)<\epsilon$ and $X \backslash B=\cap_{m \geq 1} E_{n(m)}^{m}$, therefore $\left|f_{n}(x)-f(x)\right|<\frac{1}{m}, \forall x \in X \backslash B, \forall n>n(m)$ and then the uniform convergence of f_{n} to f on $X \backslash B$.

Remark. 6.11.

Egorov'Theorem is not valid in the case μ infinite as is shown by the following:
Take for (X, \mathcal{F}, μ) the space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ with μ the counting measure;
if $f_{n}=I_{\{1,2, \ldots, n\}}$ then $f_{n}(k)$ converges to 1 for each $k \in \mathbb{N}$; nevertheless there is no $F \subset \mathbb{N}$ such that $\mu(F)<\epsilon$ and f_{n} converges uniformly to 1 on $X \backslash F$ (indeed take $0<\epsilon<1$).

Remark. 6.12.

It is not difficult to prove the equivalence of the following assertions:
(a) f_{n} converges almost uniformly
(b) f_{n} is a Cauchy sequence for the almost uniform convergence.

Definition. 6.13.
Let (X, \mathcal{F}, μ) be a measure space, and let $f_{n}, f \in \mathcal{M}(X, \overline{\mathbb{R}})$
be functions finite μ-a.e.
(a) the sequence f_{n} converges almost uniformly if:
$\forall \epsilon>0 \exists B \in \mathcal{F}$ such that $\mu(B)<\epsilon$ and f_{n} converges uniformly to f on $X \backslash B$.
(b) the sequence f_{n} is a Cauchy sequence for the almost uniform convergence if: $\forall \epsilon>0 \exists B \in \mathcal{F}$ such that $\mu(B)<\epsilon$ and f_{n} is a Cauchy sequence for the uniform convergence on $X \backslash B$.
Here is a specific type of convergence of measurable functions:
Definition. 6.14.
Let $f_{n}, f \in \mathcal{M}(X, \overline{\mathbb{R}})$ be functions finite μ-a.e..
We say that the sequence $\left(f_{n}\right)$ converges in measure to f if:

$$
\forall \epsilon>0, \lim _{n} \mu\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}=0
$$

Notation: $f_{n} \xrightarrow{\mu} f$
Proposition. 6.15.
The almost uniform convergence implies:
(a) The convergence μ-a.e
(b) The convergence in measure

Proof. By almost uniform convergence we have:
$\forall k \geq 1, \exists F_{k} \in \mathcal{F}$, with $\mu\left(F_{k}\right)<\frac{1}{k}$, and f_{n} converges uniformly on $X \backslash F_{k}$.
Take $F=\underset{k}{\cap} F_{k}$ then $F \in \mathcal{F}, \mu(F)=0$. If $x \in X \backslash F$, there is k such that $x \in X \backslash F_{k}$, so $\lim _{n} f_{n}(x)=f(x)$ and proves (a).
By almost uniform convergence we have:
$\forall \delta>0, \exists F_{\delta} \in \mathcal{F}$, with $\mu\left(F_{\delta}\right)<\delta$, and f_{n} converges uniformly on $X \backslash F_{\delta}$.
Put $E_{n}(\epsilon)=\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}$, then $E_{n}(\epsilon)=E_{n}(\epsilon) \cap F_{\delta}+E_{n}(\epsilon) \cap$ $X \backslash F_{\delta}$; we deduce that $\mu\left(E_{n}(\epsilon)\right)<\delta+\mu\left(E_{n}(\epsilon) \cap X \backslash F_{\delta}\right)$. Now since f_{n} converges uniformly on $X \backslash F_{\delta}$ there is $N(\epsilon, \delta) \geq 1$ such that for $n \geq N(\epsilon, \delta)$, $\mu\left(E_{n}(\epsilon) \cap X \backslash F_{\delta}\right)=0$. This proves that $\forall \epsilon>0, \lim _{n} \mu\left(E_{n}(\epsilon)\right)=0$ whence $f_{n} \xrightarrow{\mu} f$.

Proposition. 6.16.

Let (X, \mathcal{F}, μ) be a measure space, with $\mu(X)<\infty$. Then:
The convergence μ-a.e implies the convergence in measure.
Proof. By Egorov Theorem (6.10) convergence μ - a.e implies almost uniform convergence from which the convergence in measure comes by Proposition.

6.15.

Proposition. 6.17.
If $f_{n} \xrightarrow{\mu} f$ then f_{n} is a Cauchy sequence for the convergence in measure that is:

$$
\forall \epsilon>0, \lim _{n, m} \mu\left\{x:\left|f_{n}(x)-f_{m}(x)\right|>\epsilon\right\}=0
$$

Moreover if also $f_{n} \xrightarrow{\mu} g$ then $f=g \mu$ a.e.
Proof. Since $\left|f_{n}(x)-f_{m}(x)\right| \leq\left|f_{n}(x)-f(x)\right|+\left|f(x)-f_{m}(x)\right|$, we deduce that:
$\left\{x:\left|f_{n}(x)-f_{m}(x)\right|>\epsilon\right\} \subset\left\{x:\left|f_{n}(x)-f(x)\right|>\frac{\epsilon}{2}\right\} \cup\left\{x:\left|f_{m}(x)-f(x)\right|>\frac{\epsilon}{2}\right\}$ and we have:

$$
\begin{aligned}
& \mu\left\{x:\left|f_{n}(x)-f_{m}(x)\right|>\epsilon\right\} \leq \\
& \quad \mu\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}+\mu\left\{x:\left|f_{m}(x)-f(x)\right|>\frac{\epsilon}{2}\right\} \\
& \text { so } \lim _{n, m} \mu\left\{x:\left|f_{n}(x)-f_{m}(x)\right|>\epsilon\right\} \leq \\
& \quad \lim _{n} \mu\left\{x:\left|f_{n}(x)-f(x)\right|>\frac{\epsilon}{2}\right\}+\lim _{m} \mu\left\{x:\left|f_{m}(x)-f(x)\right|>\frac{\epsilon}{2}\right\}=0
\end{aligned}
$$

now suppose $f_{n} \xrightarrow{\mu} g$; it is clear that
$\{x:|f(x)-g(x)|>0\}=\cup_{n}\left\{x:|f(x)-g(x)|>\frac{1}{n}\right\}$
and $\left\{x:|f(x)-g(x)|>\frac{1}{n}\right\} \subset$
$\left\{x:\left|f(x)-f_{k}(x)\right|>\frac{1}{2 n}\right\} \cup\left\{x:\left|f_{k}(x)-g(x)\right|>\frac{1}{2 n}\right\}, \forall k, n$; then
$\mu\left\{x:|f(x)-g(x)|>\frac{1}{n}\right\} \leq$
$\mu\left\{x:\left|f(x)-f_{k}(x)\right|>\frac{1}{2 n}\right\}+\mu\left\{x:\left|f_{k}(x)-g(x)\right|>\frac{1}{2 n}\right\}$
the right side goes to 0 as $k \longrightarrow \infty$, for each n since $f_{n} \xrightarrow{\mu} f$ and $f_{n} \xrightarrow{\mu} g$,
so $\mu\left\{x:|f(x)-g(x)|>\frac{1}{n}\right\}=0$ for all n and then
$\mu\{x:|f(x)-g(x)|>0\}=0$ whence $f=g \mu-a . e$.

Lemma. 6.18.

Every Cauchy sequence in measure f_{n} contains a subsequence $f_{n_{k}}$ satisfying Cauchy condition for the almost uniform convergence (Definition 6.13(b)).

Proof. Left to the reader

Theorem. 6.19.

Every Cauchy sequence in measure f_{n} converges in measure to a measurable function f
Proof. By Lemma 6.18, f_{n} contains a subsequence $f_{n_{k}}$ satisfying the Cauchy condition for the almost uniform convergence. So from Remark.6.12 the subsequence $f_{n_{k}}$ converges almost uniformly to some measurable function f and then $f_{n_{k}}$ converges in measure to f by Proposition. 6.15 (b). But f_{n} itself converges in measure to f, indeed we have:
$\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\} \subset\left\{x:\left|f_{n}(x)-f_{n_{k}}(x)\right|>\frac{\epsilon}{2}\right\} \cup\left\{x:\left|f(x)-f_{n_{k}}(x)\right|>\frac{\epsilon}{2}\right\}$ and $\mu\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\} \leq$
$\mu\left\{x:\left|f_{n}(x)-f_{n_{k}}(x)\right|>\frac{\epsilon}{2}\right\}+\mu\left\{x:\left|f(x)-f_{n_{k}}(x)\right|>\frac{\epsilon}{2}\right\}$
so if $n, k \longrightarrow \infty, \mu\left\{x:\left|f_{n}(x)-f_{n_{k}}(x)\right|>\frac{\epsilon}{2}\right\} \longrightarrow 0$, since f_{n} is Cauchy sequence in measure and $\mu\left\{x:\left|f(x)-f_{n_{k}}(x)\right|>\frac{\epsilon}{2}\right\} \longrightarrow 0$ because $f_{n_{k}}$ converges in measure to f

7. Exercises

24. (a) Prove that in any measure space the uniform convergence implies the convergence in measure.
(b) In the counting measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ the uniform convergence is equivalent to the convergence in measure.
25. In the space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ consider the sequence of indicator functions
$f_{n}=I_{\{1,2, \ldots, n\}}$; prove that f_{n} converges $\mu-a . e$ but does not converge in measure. What do we deduce about Proposition. 6.16.
26. Let $f_{n}, f \in \mathcal{M}(X, \overline{\mathbb{R}})$ be functions finite μ-a.e.. Suppose f_{n} converges pointwise to f and there is a positive measurable function g satisfying $\lim _{n} \mu\left\{g>\epsilon_{n}\right\}=0$ for some sequence of positive numbers ϵ_{n} with $\lim _{n} \epsilon_{n}=0$. Then if $\left|f_{n}\right| \leq g, \forall n$, prove that f_{n} converges in measure to f.
27. Let $f: X \longrightarrow \mathbb{R}$ be measurable in the space (X, \mathcal{F}, μ) and put:
$M(f)=\inf \{\alpha \geq 0: \quad \mu\{|f|>\alpha\}=0\}$, Prove that $|f| \leq M(f) \quad \mu-$ a.e.
Prove that $\lim _{n} M\left(f_{n}-f\right)=0$ iff $\lim _{n} f_{n}=f$ uniformly μ-a.e.
28 Let $f_{n}, f^{n}: X \longrightarrow \mathbb{R}$ be measurable functions in the space (X, \mathcal{F}, μ) and suppose that f_{n} converges in measure to $f ;$ if $g: \mathbb{R} \longrightarrow \mathbb{R}$ is a uniformly continuous function prove that the sequence $g \circ f_{n}$ converges in measure to $g \circ f$
