
Chapter 4

INTEGRATION

1. Preliminaries

Introduction.
Let (X;F ; �) be a measure space. This chapter concerns the Lebesgue in-

tegration process
Z
X

f:d� of numerical measurable functions on X with respect

to the measure �. Such classes of functions have been introduced with their
convergence properties in sections 1-3 of chapter 3.
If X is the closed interval [a; b] in the real system R, it is also possible to de�ne

the Riemann integral

bZ
a

f:dx of some function f : [a; b] �! R (e.g continuous

function).
If the Lebesgue integration process is applied to a sequence of Riemann inte-
grable functions, it leads to a kind of convergence properties less restrictive and
easier in applications than those needed in the Riemann process framework. Let
us recall:

Classes of functions.1.1. (see sections 1-3 of chapter 3.)
E = fs : X �! R, s simple measurableg
E+ = fs 2 E : s positiveg
M+ = ff : X �! [0;1] , f measurableg
M (R) = ff : X �! R, f measurableg
M (C) = ff : X �! C, f measurableg

Let us recall that if f 2 M+, there is an increasing sequence sn in E+
with: lim

n
sn (x) = f (x), 8x 2 X.

2. Integration in E+

De�nition.2.1.
Let s 2 E+ with s (�) =

nP
1
ai:IAi (�), where IA is the Dirac function of the set A;

and the sets Ai; 1 � i � n form a partition of X in F .
The integral of s with respect to � is de�ned by:Z

X

s:d� =
nP
1
ai:� (Ai)

with the convention 0 � 1 = 0:

Remark.2.2.
Suppose s 2 E+ with s (�) =

nP
i=1

ai.IAi
(�) =

mP
j=1

bj :IBj
(�), where fAi; 1 � i � ng

and fBj ; 1 � j � mg are partitions of X. Then we have:
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Ai = fx 2 X : s (x) = aig and Bj = fx 2 X : s (x) = bjg
so ai:IAi\Bj (�) = bj :IAi\Bj (�) for 1 � i � n; 1 � j � m:

ai:IAi (�) =
mP
j=1

ai:IAi\Bj (�) and
nP
i=1

ai.IAi (�) =
nP
i=1

mP
j=1

ai:IAi\Bj (�)

likewise
mP
j=1

bj :IBj
(�) =

nP
i=1

mP
j=1

bj :IAi\Bj
(�) and the terms in the two double sums

are equivalent so
nP
i=1

ai:� (Ai) =
nP
i=1

mP
j=1

ai:� (Ai \Bj)

and
mP
j=1

bj :� (Bj) =
mP
j=1

nP
i=1

bj :� (Ai \Bj) then
nP
i=1

ai:� (Ai) =
mP
j=1

bj :� (Bj)

we deduce that the integral
Z
X

s:d� =
nP
1
ai:� (Ai) is well de�ned.

Proposition.2.3.
Let s; t be in E+ and c � 0 then we have:

(1)

Z
X

(s+ t) :d� =

Z
X

s:d�+

Z
X

t:d�

Z
X

c:s:d� = c:

Z
X

s:d�

(2) If s � t then
Z
X

s:d� �
Z
X

t:d�

(3) If E 2 F and s (�) =
nP
i=1

ai.IAi
(�) we have s:IE =

nP
i=1

ai:IAi\E (�) andZ
X

s:IE :d� =

Z
E

s:d� =
nP
1
ai:� (Ai \ E)

Proof. Put s (�) =
nP
i=1

ai.IAi
(�), t (�) =

mP
j=1

bj :IBj
(�), then

(1) s+ t =
P
i:j

: (ai + bj) :IAi\Bj
, c:s =

nP
i=1

cai.IAiZ
X

(s+ t) :d� =
P
i:j

: (ai + bj) :� (Ai \Bj) =
P
i:j

:ai:� (Ai \Bj)+
P
i:j

:bj :� (Ai \Bj)

but
nP
i=1

ai:
mP
j=1

� (Ai \Bj) =
nP
i=1

ai:� (Ai) =

Z
X

s:d�

and
mP
j=1

bj :
nP
i=1

� (Ai \Bj) =
mP
j=1

bj :� (Bj) =

Z
X

t:d�

so
Z
X

(s+ t) :d� =

Z
X

s:d�+

Z
X

t:d�, similarly
Z
X

c:s:d� = c:

Z
X

s:d�

(2) If s � t; then t� s � 0 and t = s+ (t� s)
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so
Z
X

t:d� =

Z
X

s:d�+

Z
X

(t� s) :d� �
Z
X

s:d�: Point (3) is obvious.�

Theorem.2.4.
Let (sn) be an increasing sequence in E+.

If r 2 E+ is such that r � sup
n
:sn, then:Z

X

r:d� � sup
n
:

Z
X

sn:d�

Proof. Since sn is increasing, the sequence
Z
X

sn:d� is increasing in [0;1]

by Proposition 5.2.3(2) so sup
n
:

Z
X

sn:d� exists in [0;1]. Let 0 < c < 1 and

put En = fsn � crg. Since sn � sn+1 we have En � En+1. On the other
hand for x 2 X we have c:r (x) < r (x) � sup

n
:sn (x), therefore there is n

with sn (x) � c:r (x) and this gives X =
[
n

En. Now put r =
P
i

�i.IAi

and taking integrals, we obtain
Z
X

sn:d� �
Z
X

c:r:IEn :d� (since sn � c:r:IEn

on X), then
Z
X

sn:d� � c:
P
i

�i:� (Ai \ En) ;8n: This implies sup
n
:

Z
X

sn:d� �

lim :
n

�
c:
P
i

�i:� (Ai \ En)
�
= c:

P
i

�i:� (Ai) = c:

Z
X

r:d�, because � (Ai \ En)

goes to � (Ai) since En is increasing to X. Making c �! 1 we get the proof.�
Corollary.
Let sn; tn be two increasing sequences in E+ such that sup

n
:sn = sup

n
:tn

then sup
n
:

Z
X

sn:d� = sup
n
:

Z
X

tn:d�

Proof. We have sup
n
:sn = sup

n
:tn =) sk � sup

n
:tn, 8k; from the Theorem we

get
Z
X

sk:d� � sup
n
:

Z
X

tn:d�, this gives sup
k
:

Z
X

sk:d� � sup
n
:

Z
X

tn:d�. By the same

way we prove the reverse inequality.�
Now we are in a position to extend the integration process from the class E+

to the classM+ = ff : X �! [0;1] , f measurableg :

3



3. Integration in M+

De�nition.3.1.
Let f 2M+, we know by Theorem. 5.6. that for some increasing sequence

sn in E+ we have lim
n
:sn (x) = f (x), 8x 2 X.

We de�ne the integral of f with respect to � by
Z
X

f:d� = sup
n
:

Z
X

sn:d�:

This integral is well de�ned, that is, it does not depend on the sequence sn in
E+ converging to f (corollary of Theorem.2.4. ).
De�nition.3.2.
Let f 2M+ and E 2 F . We de�ne the integral of f over E by:Z
E

f:d� =

Z
X

f:IE :d�

where (f:IE) (x) = f (x) for x 2 E and (f:IE) (x) = 0 for x 2 Ec

Proposition.3.3.
The integral inM+ has the following properties:

If f; g 2M+, c � 0, and E;F 2 F , then:

(1)

Z
X

(f + g) :d� =

Z
X

f:d�+

Z
X

g:d�

Z
X

c:f:d� = c:

Z
X

f:d�

(2) If f � g then
Z
X

f:d� �
Z
X

g:d� and
Z
E

f:d� �
Z
E

g:d�

(3) E � F =)
Z
E

f:d� �
Z
F

f:d�

(4) If f = 0 on E then
Z
E

f:d� = 0 even if � (E) =1:

(5) If � (E) = 0 then
Z
E

f:d� = 0 even if f =1 on E:

Proof. All properties are consequence of De�nitions 3.1-3.2.�
Theorem.3.4.
Let f 2M+ then we have:Z
X

f:d� = sup :

8<:
Z
X

s:d� : s 2 E+ and s � f

9=;
Proof. If s 2 E+ and s � f then

Z
X

s:d� �
Z
X

f:d�
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so sup
n
:

8<:
Z
X

s:d� : s 2 E+ and s � f

9=; �
Z
X

f:d�.

But by De�nition 5.3.1.we have
Z
X

f:d� = sup
n
:

8<:
Z
X

sn:d�; sn 2 E+ and sn � f

9=;
from this we deduce the proof of the Theorem.�
Theorem.3.5. (Beppo-Levy monotone convergence Theorem)
Let (fn) be an increasing sequence inM+; then:

lim
n
fn = f 2M+ and

Z
X

f:d� = lim
n

Z
X

fn d�, in other words:

lim
n

Z
X

fn d� =

Z
X

lim
n
fn d�

Proof. We know that lim
n
fn = f 2 M+ (see chapter 4, section 2) and since

(fn)

is increasing we have
Z
X

fn d� �
Z
X

fn+1 d� �
Z
X

f:d�; 8n. So a = lim
n

Z
X

fn d�

exists

and a �
Z
X

f:d�. Let s 2 E+ with s � f and for 0 < c < 1 put En = ffn � c:sg :

We have En � En+1 since fn � fn+1 and [
n
En = X because c:s < f = sup

n
fn:

On the other hand fn � 0 =) fn � c:s:IEn ;8n:

Now put s =
P
i

�i.IAi and taking integrals, we obtain
Z
X

fn:d� �
Z
X

c:s:IEn :d�

(since fn � c:s:IEn on X), then
Z
X

fn:d� � c:
P
i

�i:� (Ai \ En) ;8n: This implies

a = lim
n
:

Z
X

fn:d� � lim :
n

�
c:
P
i

�i:� (Ai \ En)
�
= c:

P
i

�i:� (Ai) = c:

Z
X

s d�, be-

cause � (Ai \ En) goes to � (Ai) since En is increasing to X. Making c �! 1 we

get a �
Z
X

s d� for all s 2 E+ with s � f , so a � sup

8<:
Z
X

s d�; s 2 E+; s � f

9=; =

Z
X

f:d� by Theorem.5.3.4, then a =
Z
X

f:d�:�

Remark. Theorem.3.5.is not valid in general for decreasing sequences (fn) as
is shown by the following example: let (R;BR; �) be the Borel measure space

and fn = I]n;1[, then fn decreases to 0 but lim
n
:

Z
X

fn:d� =1:�
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Lemma 3.6. (Fatou Lemma)
Let (fn) be any sequence inM+; then:Z

X

lim inf
n

fn d� � lim inf
n

Z
X

fn d�

Proof. Put Fk = inf
n�k

fn then Fk is increasing inM+ to lim inf
n

fn,

so by Theorem.5.3.5, lim
k
:

Z
X

Fk:d� =

Z
X

lim inf
n

fn d�:

But Fk � fn;8n � k, which implies
Z
X

Fk:d� � inf
n�k

Z
X

fn d� and then

making k �! 1 we get lim
k
:

Z
X

Fk:d� =

Z
X

lim inf
n

fn d� � lim
k
inf
n�k

Z
X

fn d� =

lim inf
n

Z
X

fn d�:�

4. Exercises

29.(a) Let (N;P (N) ; �) be the counting measure on N.
If f : N �! [0;1[ is given by f (i) = ai i 2 N prove that:Z
N

f:d� =
P
i

ai

(b) Let � = �x0 be the Dirac measure on the power set P (X) of X.

then for any f : X �! [0;1[,
Z
X

f:d� = f (x0) :

30.Let (fn) be any sequence inM+; prove that
P
n
fn 2M+ and:Z

X

P
n
fn d� =

P
n

Z
X

fn:d�

(Hint
nP
1
fi increases to

P
n
fn and use Theorem.3.5).

31.Let f 2M+

(a) Prove that the set function � : A �!
Z
A

f:d�, de�ned on F is a positive

measure

(b) If g 2M+ prove that
Z
X

g:d� =

Z
X

f:g:d�

(Hint: check (b) for g 2 E+ and apply Theorem 3.5 for g 2M+)
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32.Let (fn) be a sequence in M+ with lim
n
fn (x) = f (x), 8x 2 X for some

f 2M+:Suppose sup
n

Z
X

fn:d� <1, and prove that
Z
X

f:d� <1

(Apply Fatou Lemma 3.6)

33.Let (fn) be a decreasing sequence inM+ such thatZ
X

fn0 :d� <1, for some n0 � 1

Prove that lim
n

Z
X

fn d� =

Z
X

lim
n
fn d�

(Hint: apply Theorem 3.5 to the increasing positive sequence (fn0 � fn) n � n0)
34.Let the interval ]0; 1[ of real numbers be endowed with Lebesgue measure.
Apply Fatou Lemma to the following sequence:
fn (x) = n; 0 � x � 1

n and fn (x) = 0; 1 > x >
1
n :

5. Integration of Complex Functions

De�nition.5.1.
Let L1 (�) be the subset ofM (X;C) de�ned by:

L1 (�) =

8<:f 2M (X;C) :
Z
X

jf j :d� <1

9=;
whereM (X;C) = ff : X �! C f measurableg (see De�nitions 1.1 and 1.2)
if f = u+ iv 2 L1 (�) we de�ne the integral of f by:Z

X

f:d� =

Z
X

u:d�+ i

Z
X

v:d� =

Z
X

u+:d��
Z
X

u�:d�+ i

Z
X

v+:d�� i
Z
X

v�:d�

this integral is well de�ned since u+; u�; v+; v� are less then jf j.

If f is real valued, we have v = 0 and
Z
X

f:d� =

Z
X

u+:d��
Z
X

u�:d�

De�nition.5.2.

If f 2M
�
X;R

�
we de�ne the integral of f by:

Z
X

f:d� =

Z
X

f+:d��
Z
X

f�:d�

provided that
Z
X

f+:d� <1 or
Z
X

f�:d� <1

Proposition.5.3.
L1 (�) is a vector space on the �eld C and we haveZ

X

(�f + �g) :d� = �

Z
X

f:d�+ �

Z
X

g:d�
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Proof. Use the following facts:
j�f + �gj � j�j : jf j+ j�j : jgj and
f = u+ iv = u+ � u� + iv+ � iv�, g = z + iw = z+ � z� + iw+ � iw�

then apply De�nition 5.1.�
Lemma.5.4.

Let f; g be in L1 (�) such that f = g �� a:e: then
Z
X

f:d� =

Z
X

g:d�

Proof. Let E = fx : f (x) = g (x)g then � (Ec) = 0

on the other hand we have
Z
Ec

f:d� =

Z
Ec

g:d� = 0 by point (5) Proposition 3.3

applied to the integrals of f+; f�; g+; g�, since f:IE = g:IE we deduce thatZ
E

f:d� =

Z
E

g:d� that is
Z
X

f:d� =

Z
X

g:d�:�

By the same way one can prove:
Proposition.5.5.

(1) If f; g are real valued in L1 (�) and f � g:�� a:e: then
Z
X

f:d� �
Z
X

g:d�

(2)

������
Z
X

f:d�

������ �
Z
X

jf j :d� for all f in L1 (�).

(3) If 2M+ and
Z
E

f:d� = 0 then f = 0 �� a:e: on E

(4) If f 2 L1 (�) and
Z
E

f:d� = 0 for all E 2 F then f = 0 �� a:e:

(5) If f 2M
�
X;R

�
and

Z
X

jf j :d� <1 then � fjf j = +1g = 0,

i.e f is �nite �� a:e:
Corollary.
Let f; g be in L1 (�):

(a)

Z
E

f:d� =

Z
E

g:d� 8E 2 F =) f = g:�� a:e:

(b) If f; g are real valued then
Z
E

f:d� �
Z
E

g:d�, 8E 2 F =) f � g:�� a:e:
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6. The Banach Space L1 (�)

De�nition 6.1
The binary relation f = g �� a:e is an equivalence relation on L1 (�)
Let L1 (�) be the quotient of L1 (�) by this equivalence relation, that is L1 (�)
is the set of equivalence classes in L1 (�) :
It is well known that L1 (�) is a vector space on R with the operations de�ned
by: class(x)+class(y) =class(x+ y) and �:class(x) =class(�:x) :
In the sequel we consider elements of L1 (�) as functions although they are
classes of functions.

If f 2 L1 (�), formula kfk =
Z
X

jf j d� de�nes a norm on L1 (�)

Theorem.6.2
Endowed with the norm kfk =

Z
X

jf j d� the space L1 (�) is a Banach space.
Proof. Let (fn) be a Cauchy sequence in L1 (�) then we have:

8j � 1;9Nj � 1 such that n;m � Nj =) kfn � fmk <
1

2j
let us de�ne the strictly increasing subsequence n1 < n2 < n3 < :::: by the
following recipe:
n1 = N1; n2 = max (n1 + 1; N2) ; ::::; nj = max (nj�1 + 1; Nj) ; :::

then we have:


fnj+1 � fnj

 < 1

2j
; ::8j = 1; 2; :::

now consider the functions: gk =
kP
j=1

��fnj+1 � fnj �� and g =
1P
j=1

��fnj+1 � fnj ��
kgkk �

kP
j=1



fnj+1 � fnj

 � kP
j=1

1

2j
�

1P
j=1

1

2j
< 1 and also kgk < 1

so g is integrable =) g is �nite �� a:e
let us de�ne the function f : X �! R by f (x) = fn1 (x)+

1P
j=1

�
fnj+1 (x)� fnj (x)

�
then
we have obviously f (x) = lim

i�!1
:fnj (x)

now let us observe that the sequence
�
fnj
�
is cauchy since it is a subsequence

of (fn) which is cauchy so

8� > 0; ::9N� � 1 : nj ;m � N =)


fnj � fm

 = Z

X

��fnj � fm�� :d� < �
by Fatou lemma 3.6 applied for nj we get

Z
X

:lim inf
nj

��fnj � fm�� :d� = Z
X

jf � fmj :d� �

lim inf
nj

:

Z
X

:
��fnj � fm�� :d� � lim sup

nj

Z
X

:
��fnj � fm�� :d� < �: So f 2 L1 (�) and

lim
m
:

Z
X

jf � fmj :d� = 0:�

Now we give one of the most famous convergence theorem of Lebesgue inte-
gration theory
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Theorem.6.3 (Lebesgue�s dominated convergence theorem)
Let (fn) be a sequence in L1 (�) such that:
(a) fn converges �� a:e to a function f
(b) there is g in L1 (�) such that 8n � 1 jfnj � jgj �� a:e

Then the function f is in L1 (�) and lim
n

Z
X

jfn � f j d� = 0

in particular lim
n

Z
X

fn d� =

Z
X

f d �

Proof. Put E = fx : fn (x) converges to f (x)g [
n
[
n
fjfnj � jgjg

o
then � (Ec) = 0
We can assume that fn converges everywhere to a function f
and that jfnj � jgj everywhere 8n � 1
(if necessary replace fn by Fn = fnIE and g by G = gIE)
�rst since jfnj � jgj everywhere 8n � 1 and fn converges everywhere to f we
deduce that
jf j � jgj and jfn � f j � 2g so 2g � jfn � f j � 0

applying Fatou lemma 3.6 to the function 2g � jfn � f j we get:Z
X

:lim inf
n

[2g � jfn � f j] :d� =
Z
X

�
2g:� lim sup

n
jfn � f j

�
:d� =

Z
X

2g:d� �

lim inf
n

:

Z
X

[2g � jfn � f j] :d� =
Z
X

2g:d��:lim sup
n

:

Z
X

jfn � f j :d� and so
Z
X

2g:d� �Z
X

2g:d�� :lim sup
n

:

Z
X

jfn � f j :d�; this gives 0 � �:lim sup
n

:

Z
X

jfn � f j :d� that

is lim sup
n

:

Z
X

jfn � f j :d� = 0:�

Theorem.6.4 (Bounded convergence theorem)
Suppose � (X) <1. Let (fn) be a sequence in L1 (�) such that
jfnj � M � � a:e for some constant M > 0 then the conclusions of Theorem
6.3 are valid.

Application.6.5 (continuity of integrals depending on a parameter)

Let T be an interval of R and f : X � T �! R a function such that:
(a) for each t 2 T the function x �! f (x; t) is in L1 (�)
(b) there is g in L1 (�)such thatjf (x; t)j � jg (x)j �� a:e for all t 2 T

then we have lim
t!t0

Z
X

f (x; t) d� =

Z
X

f (x; t0) d�

Application.6.6 (Derivative of integrals depending on a parameter)

Let T be an open set of R and f : X � T �! R a function such that:
(a) for each t 2 T the function x �! f (x; t) is in L1 (�)
(b) the function t �! f (x; t) derivable on T for each x 2 X

(c) there is g 2 L1 (�)
���� ddtf (x; t)

���� � jg (x)j �� a:e for all t 2 T
10



Then the function t �!
Z
X

f (x; t) d� is di¤erentiable on T

and
d

dt

Z
X

f (x; t) d� =

Z
X

d

dt
f (x; t) d�

Application.6.7 (Change of variable formula)
Let (X;F ; �) be a measure space and let (Y;G) be a measurable space:
If ' : X �! Y is a measurable mapping from (X;F) into (Y;G) then:
(1) the set function � : G �! [0;1] given by G 2 G; � (G) = �

�
'�1 (G)

�
is a measure on (Y;G)
(2) for every function g : Y �! C, ��integrable the function g�' is ��integrable
and

(�)
Z
Y

g:d� =

Z
X

g � ':d�

(��)
Z
E

g:d� =

Z
'�1(E)

g � ':d� 8E 2 G.

As a particular case take (Y;G) = (R;BR) and ' : X �! R, ��integrable
put � (B) = �̂ (B) = �

�
'�1 (B)

�
for B 2 BR

then we get from(��) :
Z

'�1(B)

':d� =

Z
B

t:d�̂

Application.6.8
Let (X;F ; �) be a measure space and let f 2M+ then

the set function � : F �! [0;1] given by: A 2 F ; � (A) =
Z
A

f:d�

is a positive measure on F and we have:Z
X

g:d� =

Z
X

f:g:d�, for every g 2M+:

7. The Lp-Spaces

Let (X;F ; �) be a measure space. This section concerns a short description
of the Lp-spaces with some important convexity inequalities.
De�nition 7.1
Let Lp (�) be the subset ofM (X;C) de�ned by:

Lp (�) =

8<:f 2M (X;C) :
Z
X

jf jp :d� <1

9=;
for some real number 0 < p <1:

11



De�nition 7.2
Two real positive numbers 0 < p; q < 1 such that p + q = pq or equivalently
1

p
+
1

q
= 1 are called conjugate exponents. If p �! 1 then q �!1 so 1;1 are

considered as conjugate exponents.

Theorem 7.3
Let f; g 2M+ and let 0 < p; q < 1 be conjugate exponents then we have:

(1) Hölder�s inequality:
Z
X

f:g:d� �

8<:
Z
X

fp:d�

9=;
1

p
:

8<:
Z
X

gq:d�

9=;
1

q

(2)Minkowski�s inequality:

8<:
Z
X

(f + g)
p
:d�

9=;
1

p
�

8<:
Z
X

fp:d�

9=;
1

p
+

8<:
Z
X

gp:d�

9=;
1

p

Remark: Using Minkowski�s inequality it is not di¢ cult to prove that Lp (�)
is a vector space over C:
De�nition 7.4 Let 0 < p <1 be a positive real number
The binary relation f = g �� a:e is an equivalence relation on Lp (�)
Let Lp (�) be the quotient of Lp (�) by this equivalence relation, that is Lp (�)
is the set of equivalence classes in Lp (�) :
It is well known that Lp (�) is a vector space on R with the operations de�ned
by: class(x)+class(y) =class(x+ y) and �:class(x) =class(�:x) :
In the sequel we consider elements of Lp (�) as functions although they are
classes of functions.
Theorem 7.5

If f 2 Lp (�), formula kfkp =
�Z

X

jf jp d�
�1
p

de�nes a norm on Lp (�) and with respect to this norm Lp (�) is a Banach space.
(mimic the proof made for L1 Theorem 6.2)
De�nition 7.6 The Hilbert Space L2 (�)

For p = 2 it is not di¢ cult to see that the norm kfk2 =
�Z

X

jf j2 d�
�1
2 is

induced by the inner product hf; gi =
Z
X

f:�g:d� , which makes L2 (�) a Hilbert

space.

8. The Space L1

De�nition 8.1 Let (X;F ; �) be a measure space.
Let f 2M+ we de�ne the essential supremum of f by:

ess� sup f =
�

� � 0 : � [f > �] = 0
1 if � [f > �] > 0;8� � 0

�

12



if f 2M (X;C) we put N1 (f) = ess� sup jf j
Remark.
For f 2M (X;C) we have:
� 2 f� � 0 : � [jf j > �] = 0g () jf j � � �� a:e

Lemma.8.2
For f 2M (X;C) we have:
� [jf j > N1 (f)] = 0, that is jf j � N1 (f) �� a:e

De�nition 8.3
Let L1 (�) be the subset ofM (X;C) de�ned by:
L1 (�) = ff 2M (X;C) : N1 (f) <1g

It is easy to prove that the binary relation f = g � � a:e is an equivalence
relation on L1 (�) and N1 (f) = N1 (g) if f = g �� a:e
Let L1 (�) be the quotient of L1 (�) by this equivalence relation, that is L1 (�)
is the set of equivalence classes in L1 (�) :
Also one can prove that L1 (�) is a vector space on R with the operations
de�ned by: class(f)+class(g) =class(f + g) and �:class(f) =class(�:f) :
In the sequel we consider elements of L1 (�) as functions although they are
classes of functions and
De�nition 8.3
For any f in L1 (�) de�ne kfk1 byN1 (h) where h is any function satisfying

f = h ��a:e then L1 (�) is a vector space on C and kfk1 is a norm on L1 (�) :

Theorem 8.4
L1 (�) endowed with the norm kfk1 de�ned above is a Banach space.
An important property of the sequences (fn) in the spaces Lp is the following:

Theorem 8.5
Let (fn) be a cauchy sequence in Lp that is a sequence (fn)
satisfying lim

m;n
: kfn � fmkp = 0 then:

(1) For 1 � p <1, the sequence (fn) contains a subsequence
�
fnj
�

converging �� a:e to a function f 2 Lp
(2) For p =1 the sequence (fn) itself
converges uniformly �� a:e to a function f 2 L1:

9. Duality of the Lp-Spaces

Recall.
1 Let X;Y be normed spaces. A linear operator T from a normed space X into
a normed space Y is said to be bounded if there is a constant M > 0 such that:

kT (x)k �M: kxk ;8x 2 X

This de�nition means that if B is a bounded subset of X, the set fT (x) ; x 2 Bg
is bounded in Y . For instance if B = fx : kxk � 1g then kT (x)k �M;8x 2 B.
2 Let T be a bounded operator from X into Y . De�ne:

13



kTk = sup
�
kT (x)k
kxk : x 2 X;x 6= 0

�
m1 = sup fkT (x)k : x 2 X; kxk = 1g
m2 = sup fkT (x)k : x 2 X; kxk < 1g
m3 = sup fkT (x)k : x 2 X; kxk � 1g

Then m1 = m2 = m3 = kTk <1 and we have:
kT (x)k � kTk kxk ;8x 2 X

3 If X is a normed space the strong dual of X is the Banach space X� of
continuous linear functionals on X. If x 2 X and x� 2 X�, we denote x� (x) by
hx�; xi.
De�nition 9.1
Let (X;F ; �) be a measure space and let 1 � p; q � 1 be conjugate exponents.
For g �xed in Lq let us de�ne the functional 'g on Lp by:

'g : Lp �! C, f 2 Lp 'g (f) =

Z
X

f:g:d�

It is clear that 'g is well de�ned and we have:

Theorem 9.2
(a) 'g is linear continuous on Lp for any 1 � p � 1:
Moreover if p > 1 we have



'g

 = kgkq
where



'g

 = sup�

'g (f)

 : f 2 Lp; kfk � 1	
(b) If � is ���nite (De�nition 3.3 Chapter 2) then we have

'g

 = kgk1 for p = 1:

Theorem 9.3 (Lp Duality)
Let (X;F ; �) be a measure space with � ���nite
and let ' : Lp �! C be a continuous linear functional on Lp
If 1 � p <1 there is a unique g 2 Lq, for q conjugate exponent of p such that
' (f) =

Z
X

f:g:d� 8f 2 Lp and k'k = kgkq
In other words the strong dual (Lp)

� of Lp is linearly isometric to Lq for q
conjugate exponent of p.
Remark
(a) For p = 1 Theorem 9.3 is not true in general if � is not ���nite
as is shown by the following example:
take X = fa; bg, � (a) = 1; � (�) = 0, � (b) = � (X) =1
then � is not ���nite. In this case we have
L1 = ff : fa; bg �! C; such that f (b) = 0g = C

so L1 = (L1)
�
= C, but L1 =

�
f : fa; bg �! C; such that
sup (f (a) ; f (b)) <1

�
= C2:

(b) The Theorem 9.3 is not true in general for the space L1 even if � is �nite
in other words we have L1 � (L1)

� and the inclusion is strict in general.
Here is an example:
(c) Let [0; 1] the unit interval endowed with the Lebesgue � and let C [0; 1]
be the space of real continuous functions on [0; 1] equipped with the uniform
norm kfk = sup fjf (x)j ; x 2 [0; 1]g. Let us observe that if f; g are continuous
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and satisfying f = g � � a:e then f = g everywhere, indeed let F � [0; 1]
be measurable with � (F ) = 0 and f (x) = g (x) 8x 2 [0; 1] nF , so the set
A = fx 2 [0; 1] : jf (x)� g (x)j > 0g = F , but A is open by the continuity of
f ,g, then since � (F ) = 0 the equality A = F implies F = � and so f = g
everywhere on [0; 1] : Consequently the class of f for the equivalence relation
f = g �� a:e is reduced to only f . Since any f 2 C [0; 1] is bounded we have
C [0; 1] � L1:
Now let us consider the linear functional ' : C [0; 1] �! R given by ' (f) =

f (0), ' is continuous since j' (f)j � kfk = sup fjf (x)j ; x 2 [0; 1]g and k'k � 1:
By Hahn-Banach Theorem, ' can be extented to a continuous linear functional

on all of L1; if there were some g 2 L1 such that ' (f) =
Z
[0;1]

f:g:d� 8f 2 L1,

we would have f (0) =
Z
[0;1]

f:g:d� 8f 2 C [0; 1] :

Taking f (x) = cos (nx) we get f (0) = 1 =

Z
[0;1]

cos (nx) :g:d� 8n � 1, this

leads to a contradiction since by the Riemann-Lebesgue Lemma ,(see The-

orem 10.6 below) we have lim
n�!1

:

Z b

a

f (x) cos (nx) :d x = 0:

10. Riemann Integral and Lebesgue Integral

In this section we consider a bounded function f : [a; b] �! R;de�ned on
the interval [a; b] with values in R:

10.1 De�nition (Darboux sums)
Let � = fI1; I2; :::; Ing be a �nite partition of [a; b] into intervals.
Put m = inf ff (x) ; x 2 [a; b]g and M = sup ff (x) ; x 2 [a; b]g
mk = inf ff (x) ; x 2 Ikg and Mk = sup ff (x) ; x 2 Ikg, 1 � k � n:
We de�ne the lower and upper Darboux sums of f
with respect to the partition � by:

S� (f) =
k=nX
k=1

mk:� (Ik) and S� =
k=nX
k=1

Mk:� (Ik)

where � (I) is the lengh of the interval I:

10.2 De�nition (Lower integral and Upper integral)
The Lower integral of f is de�ned by:
S(f) = supS� (f)

The Upper integral of f is de�ned by:
S (f) = inf S�

where the sup and inf are taken over the �nite partitions � of [a; b] :
It is clear that S(f) � S (f). We say that f is integrable if S(f) = S (f) :

We de�ne the Riemann integral of f on [a; b] by

bZ
a

f (x) dx =S(f) = S (f) :
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10.3 Theorem
A bounded function f : [a; b] �! R is Riemann integrable if and only if it is
continuous � � a:e, in this case the Riemann integral is equal to the Lebesgue
integral, that is we have:

bZ
a

f (x) dx =

Z
[a;b]

f d �, where � is the Lebesgue measure on [a; b] :

10.4 Theorem
Let fn:[a; b]! R be Riemann integrable functions and assume that fn converges
uniformly to f on [a; b]. Then f is Riemann integrable

and lim
n

Z b

a

fn d x =

Z b

a

f d x

If we replace uniform convergence by pointwise convergence, then the above
Theorem shows that the limit function f does not have to be Riemann inte-
grable. Therefore the above theorem is not true if we replace uniform con-
vergence by pointwise convergence. There is however a version of the above
theorem for pointwise convergence if we add the hypothesis that the limit func-
tion is Riemann integrable. This theorem is called Arzela�s Theorem for the
Riemann integral, which is a special case of the Bounded Convergence Theorem
of Lebesgue for the Lebesgue integral.

10.5 Theorem (Arzela�s Theorem). Let f; fn:[a; b] ! R be Riemann inte-
grable functions and assume that fn converges pointwise to f on [a; b]. If there

exists M such that jfn (x)j �M for all n � 1.Then lim
n

Z b

a

fn d x =

Z b

a

f d x:

10.6 Theorem (Riemann-Lebesgue Lemma)
If f is an intégrable function on the interval [a; b], then :

lim
n�!1

:

Z b

a

f (x) cos (nx) :d x = 0 and lim
n�!1

:

Z b

a

f (x) sin (nx) :d x = 0

The proof is easy if f is bounded or if f is C1 using intégration by parts.
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