Chapter 4

INTEGRATION

1. Preliminaries

Introduction.
Let (X, F,u) be a measure space. This chapter concerns the Lebesgue in-

tegration process / f.du of numerical measurable functions on X with respect

X
to the measure p. Such classes of functions have been introduced with their
convergence properties in sections 1-3 of chapter 3.
If X is the closed interval [a, b] in the real system R, it is also possible to define
b

the Riemann integral /f.dx of some function f : [a,b] — R (e.g continuous
a

function).

If the Lebesgue integration process is applied to a sequence of Riemann inte-

grable functions, it leads to a kind of convergence properties less restrictive and

easier in applications than those needed in the Riemann process framework. Let

us recall:

Classes of functions.1.1. (see sections 1-3 of chapter 3.)

€ ={s: X — R, s simple measurable}

& ={s €& spositive}

My ={f:X —[0,00], f measurable}

M@R)={f: X — R, f measurable}

M(C)={f:X — C, f measurable}
Let us recall that if f € M, there is an increasing sequence s,, in €4
with: 1i7rlnsn (x) = f(z), Vo € X.

2. Integration in &,

Definition.2.1. .
Let s € £ with s(-) = >"a;.1a, (+), where I4 is the Dirac function of the set A,

1
and the sets A;,1 < i < n form a partition of X in F.
The integral of s with respect to p is defined by:

/3~dM = 21:%/1 (4i)
X
with the convention 0 - co = 0.

Remark.2.2. N .
Suppose s € £, with s(-) = > a;.1a, () = > bj.Ip, (-), where {A;,1 <i < n}
i=1 j=1

and {B;,1 < j < m} are partitions of X. Then we have:



Ai={zeX: s(z)=a;}and Bj={zr € X : s(z)=0,}

s0 a;.Ia;,nB; (-) = bjla,np, (-) for 1 <i<n,1 <j <m.

0, () = SarLaon, () and Sada, ()= 5 5 e lao, O
j=1 i=1

i=1j=

likewise ) b;.Ip, () = > > b;j.la,ns, (-) and the terms in the two double sums

j=1 i=1j=1
are equivalent so > a;.pu (A4;) = > > ai.pu(A4; N By)
z:lm n ==t n m
and zzlbj 4 (By) = lejlbj 1t (A; N Bj) then Z:lai.u (A;) = ij w(Bj)
j= j=li i= j=1

we deduce that the integral /s.d,u =Y a;.u(4;) is well defined.
1

X
Proposition.2.3.
Let s,¢ be in £&; and ¢ > 0 then we have:

(1) /(s +1t).dy= /s.du + /t.du
X X X
/c.s.d,u = c./s.d,u

X X

(2) If s <t then /s.du < /t.du
X X

B EeFand s(-) = > a;.1a, (1) we have s.Jg = > a;.1a,np (-) and
iz i=1

/S.IE.du = /s.du =Y a;.u(4;NE)
X E !

Proof. Put s(-) = > a;. 4, (-), t(-) = > b;.0p, (-), then
i=1 j=1

(1) s+t =>(a;i +bj) Ia,np,, c.s = ) caila,

i.J i=1

% -J 2] 2]

but SSan S (A0 By) = S anp (Ad) :/s.du
=1 =1 i=1

X
j=1 i=1 j=1 e
so/(s+t ).dp = /sdp—i—/td,u,51mllarly/csdﬂ—c/sdﬂ
X X

()Ifs<t thent—s>0andt—s+(t—s)



S0 /t.du = /s.du + / (t—s).du> /s.du. Point (3) is obvious.l
X X b'e X
Theorem.2.4.
Let (sp) be an increasing sequence in &, .
If r € & is such that r < sup.s,,, then:
n

/r.du < sup./sn.dp

X X

Proof. Since s, is increasing, the sequence / Sn.dp is increasing in [0, 00|
b's

by Proposition 5.2.3(2) so sup./sn.du exists in [0,00]. Let 0 < ¢ < 1 and

X
put E, = {s, >cr}. Since s, < sp4+1 we have E,, C E,41. On the other

hand for « € X we have c.r (z) < r(x) < sup.s,(z), therefore there is n

with s, () > ecr(xz) and this gives X = UE” Now put r = > a;.Ig,

and taking integrals, we obtain /Sn.du > /c.r.IE".du (since s, > c.r.ig,
X X

on X), then [s,.du > ¢> o;.pu(A;NE,),Vn. This implies sup. [ s,.dy >
X ‘ "ox

lim . <C.ZO&¢.,U, (A; N En)) = cy op(4;) = c./r.d,u, because p(A4; NEy,)
n i i
X
goes to u (4;) since E,, is increasing to X. Making ¢ — 1 we get the proof.l
Corollary.
Let s,,t, be two increasing sequences in £ such that sup.s,, = sup.t,
n n
then sup./sn.du = sup./tn.du
n n

X X
Proof. We have sup.s,, = sup.t,, =— s < sup.t,, Vk; from the Theorem we

n n n

get /sk.du < sup./tn.du, this gives sup./sk.du < sup./tn.du. By the same
n k n

X X X b'e
way we prove the reverse inequality.ll

Now we are in a position to extend the integration process from the class £
to the class My = {f: X — [0,00], f measurable}.



3. Integration in M

Definition.3.1.
Let f € M4, we know by Theorem. 5.6. that for some increasing sequence
Sp, in &4 we have lim.s,, (z) = f (z), Vo € X.
n

We define the integral of f with respect to p by /f.d,u = Sup./sn.d,u.
X "X
This integral is well defined, that is, it does not depend on the sequence s,, in
&4 converging to f (corollary of Theorem.2.4. ).
Definition.3.2.
Let f € M4 and F € F. We define the integral of f over E by:

/ fodp = / f.Ip.dp

gfhere (f;;) () = f(z) for x € F and (f.Ig) (z) =0 for x € E°

Proposition.3.3.
The integral in M has the following properties:
If f,ge My,c>0,and FE,F € F, then:

(1) /(f+9) .du=/f~du+/g~du
X

X X
X/c.f.d,u = c.k/f.d,u
(2) If f < g then /f.du < /g.d,u and /f.du < /g.d,u
X X E E

BYECF = [fdu< [ fdu
[m=]
(4) If f =0 on E then /f.dﬂzOeven if u(F) = oo.
B

(5) If 4 (E) =0 then /f.du: 0 even if f = 0o on E.
B

Proof. All properties are consequence of Definitions 3.1-3.2.1

Theorem.3.4.
Let f € M, then we have:

/f.dﬂ:sup. /s.du: se€frands< f
X

X

Proof. If s € £; and s < f then /s.du < /f.du
X X



SO sup. /s.du: se&yands< f S/f.d,u.
X

But by Definition 5.3.1.we have /f.du = sup. /sn.du, sp €&y and s, < f

X X
from this we deduce the proof of the Theorem.H

Theorem.3.5. (Beppo-Levy monotone convergence Theorem)
Let (f,) be an increasing sequence in M, then:

hmfn = fe M, and /f dp = hm/fn dp, in other words:

hm/fn dp = /hm fndu

Proof. We know that limf, = f € M, (see chapter 4, section 2) and since
n
(/fn)

is increasing we have /fn du < /fn+1 dp < /f.d,u, Vn. So a = lim/fn du
. X X X ! X

exists

andag/f.d,u. Let s € £ with s < fand for 0 < c< 1put E, = {f, > c.s}.

We haveXEn C E, 41 since f,, < fna1 and UE, = X because c.s < f = sup f,.

On the other hand f,, > 0 —> fo > c.5.1n, , V. "

Now put s = Y «a;.l4, and taking integrals, we obtain /fn.du > /c.s.IE”.d,u
i
X

(since f, > c.s.Ig, on X), then /fn.du > ey ;. (4; N Ey), Vn. This implies

a= lim./fn.d,u > lim. <C.Zo¢¢.u (4; ﬂEn)> =cYy o pu(4;) = c./sd,u7 be-
3 1 X
cause p (A4; N E,) goes to 1 (A;) since E,, is increasing to X. Making ¢ — 1 we

getaZ/sduforalls€5+withsgf,soazsup /sdu,se&r,sgf =
X X

/f.d,u by Theorem.5.3.4, then a = /f.du.l

Remark. Theorem.3.5.is not valid in general for decreasing sequences (f,,) as
is shown by the following example: let (R, Bg, ) be the Borel measure space

and fp, = I}, o[, then f,, decreases to 0 but lim./fn.du =oc.l



Lemma 3.6. (Fatou Lemma)
Let (f,) be any sequence in M, then:

/lim inff,, du < lim inf/fn du
X X
Proof. Put Fj, = 1I;fk fn then Fj is increasing in M to liminff,,

so by Theorem.5.3.5, lilgn./Fk.d/i = /lim inf f,, dp.
X X

But Fj, < f,,Vn > k, which implies /Fk.du < ngfk/fn dp and then
X X

making k — oo we get liin./Fk.d,u = /liminffn dp < h;?ligfk/f" dy =
n A (P
X X X

liminf/fn du.1
X

4. Exercises

29.(a) Let (N, P (N), 1) be the counting measure on N.
If f:N—[0,00[ is given by f (i) = a; ¢ € N prove that:

/f.du =2 a;
N

(b) Let p = 04, be the Dirac measure on the power set P (X) of X.
then for any f: X — [0, 00|, /f.d,u = f (o).

b
30.Let (f,,) be any sequence in M, prove that Y f,, € M, and:
/an dp = Z/fn.du
X

n

(Hint > f; increases to > f, and use Theorem.3.5).
1 n

31.Let f € My

a) Prove that the set function v : A — [ f.du, defined on F is a positive
m
A

measure

(b) If g € M. prove that /g.dy = /f.g.d,u
X b
(Hint: check (b) for g € £4 and apply Theorem 3.5 for g € M)



32.Let (f,) be a sequence in My with limf, (z) = f(z), Vo € X for some

f € M, .Suppose sup/fn.du < 00, and prove that /f.du < o0

X X
(Apply Fatou Lemma 3.6)

33.Let (f5) be a decreasing sequence in M such that

/fno.du < 00, for some ng > 1

Prove that lim/fn dp = /lim fndp

X X
(Hint: apply Theorem 3.5 to the increasing positive sequence (fr, — fn) 7 > o)

34.Let the interval ]0, 1] of real numbers be endowed with Lebesgue measure.
Apply Fatou Lemma to the following sequence:
fo@) =n0<z<land f,(z)=01>2>1

5. Integration of Complex Functions

Definition.5.1.
Let £; (i) be the subset of M (X, C) defined by:

£ () = fGM(X,C):/\fI-du<oo

X
where M (X,C) = {f X — C f measurable} (see Definitions 1.1 and 1.2)
if f=wu+1v e Ly (u) we define the integral of f by:

/f.duz/udu—!—z/vdu /*d,u /uﬁdu—ki/v*.du—i/v’.du
X X

thls integral is Well deﬁned since u+ u ,v*, v~ are less then |f].

If f is real valued, we have v = 0 and /f.du = /u+.du — /u_.d,u
X X X
Definition.5.2.

If f € M (X,R) we define the integral of f by: /f.d,u = /f‘*‘.du - /f_.du
X X X

provided that /f“‘.du < 0o or /f‘.du < 0o

X X
Proposition.5.3.
L1 (p) is a vector space on the field C and we have

/(Oéf+59) dp = a/f-dwrﬁ/g-du
X X

X



Proof. Use the following facts:

laf + Bg| <lal.[f[+15].]g| and

f=utiv=ut —u +ivt —iv",g=z+iw=2" — 27 +iwt —iw~
then apply Definition 5.1.H
Lemma.5.4.

Let f,g be in £1 () such that f = g u — a.e. then /f.du = /g.du
X X
Proof. Let E={x: f(z) =g (x)} then u(E°) =0

on the other hand we have /f du = /g dp = 0 by point (5) Proposition 3.3

EC
applied to the integrals of f+ f=,97,97, since f.Igr = g.Ir we deduce that

/f.du = /g.du that is /f.du = /g.du.l
E E X

X

By the same way one can prove:
Proposition.5.5.

(1) If f, g are real valued in £4 (1) and f < g.uu — a.e. then /f.d,u < /g.du
X

(2) /f.d,u < /\f| dp for all fin £y (u).
X

X

(3) If e My and/f.du:()thenf:O,ufa.e.onE
DI fels(n and/f.d,u:OforallEe]:thensz,u—a.e.

(5) If f € M (X,R) and /\f|.dp,<oothen p{lf] = +oc} =0,

i.e f is finite p — a.e.

Corollary.
Let f,g be in L1 (p):

(a) /f.du:/g.dﬂVE6]-':>f:g.u—a.e.
E E

(b) If f, g are real valued then /f.du < /g.d,u, VE € F = f<g.u—a.e.
E



6. The Banach Space L; ()

Definition 6.1

The binary relation f =g p — a.e is an equivalence relation on £ ()

Let Ly (i) be the quotient of £1 (1) by this equivalence relation, that is Ly ()
is the set of equivalence classes in £q () .

It is well known that L; (p) is a vector space on R with the operations defined
by: class(z) +class(y) =class(z + y) and «.class(x) =class(a.z) .

In the sequel we consider elements of L () as functions although they are
classes of functions.

If f €Ly (u), formula || f|| = / |f|dp defines a norm on Ly (u)
X

Theorem.6.2
Endowed with the norm || f|| = / |f|dp the space L (i) is a Banach space.
Proof. Let (f,) be a Cauchy Seoﬁlence in Ly (u) then we have:
Vj >1,3N; > 1 such that n,m > N; = ||fn — ful < 2%
let us define the strictly increasing subsequence n; < no < ng < .... by the

following recipe:
ny = Nl,ng = max (’I'Ll + I,NQ) yeeeey Ny = INAX (nj_l + I,Nj) yees

1 .
then we have: ||fn.+1 — fn7|| < —.,..Vj =1,2,..
o0
now consider the functions: g = Z | Ty fnj| and g= > ’ Jnjor — fnj’
j=1

k o 1
llgll < _El | fryir = Fs|| < Z g z 57 < Land also [lg <1
j: = :
so ¢ is integrable = g is ﬁnite w—a.e
let us define the function f : X — Rby f (z) = fo, (@)+ > (fa,.s (2) — fn, (2))
j=1

then
we have obviously f (z) = lim .f,, ()
1—>00

now let us observe that the sequence ( fnj) is cauchy since it is a subsequence
of (f,) which is cauchy so

Ve>0,.3N. >1:n;,m>N=>||fn, = fu| :/ | fr, = fn| -dpp < €
X
by Fatou lemma 3.6 applied for n; we get / Jim inf |fnj — fm| dp = / |f = fml] -dp <
X " X

hmmf |fn] fm| dp < limsup/ . |fn]. — fm| dp < €. So f € Ly (u) and
T X

lim./ |f—fm|.du:0.l
mJx

Now we give one of the most famous convergence theorem of Lebesgue inte-
gration theory



Theorem.6.3 (Lebesgue’s dominated convergence theorem)
Let (f.) be a sequence in L; (i) such that:

(a) fn converges p — a.e to a function f

(b) there is g in L; (p) such that Vn >1 |f,]| <|g| u—a.e

Then the function f is in Ly (@) and lim/ |fn—fldu=0
nJx
in particular lim/ fndu= / fdu
n X X

Proof. Put E = {z: f, (z) converges to f (z)} U {% {Ifn] < \g|}}

then p (E€) =0

We can assume that f,, converges everywhere to a function f

and that |f,| < |g| everywhere Vn > 1

(if necessary replace f, by F,, = f,Ig and g by G = glg)

first since |f,| < |g| everywhere Vn > 1 and f, converges everywhere to f we
deduce that

Ifl <lgland |f, — f] <2gs02g—[fn—f]>0
applying Fatou lemma 3.6 to the function 2¢g — |f,, — f | we get:

/ Jiminf [2g — |f, — f]] .dp = / [29. —limsup | f, — f@ dp = / 2g.du <
x D'e n X
liminf./ 29 — |fn— fl] dp = / 2g.dp—.lim sup./ |fn — f|.dpand so/ 2g.du <
n X X n X X
/ 2g.dp— lim sup./ |frn — f|-dp, this gives 0 < —.lim sup./ |fn — f|.du that
X n X n X

is limsup./ |fn— fl.dp=0.10
n X

Theorem.6.4 (Bounded convergence theorem)

Suppose p (X) < co. Let (fy) be a sequence in Ly (p1) such that

|[ful < M p— a.e for some constant M > 0 then the conclusions of Theorem
6.3 are valid.

Application.6.5 (continuity of integrals depending on a parameter)

Let T be an interval of R and f : X x T'— R a function such that:
(a) for each t € T the function x — f (z,¢) is in Ly (u)
(b) there is g in L; (p)such that|f (z,t)| < |g(x)] p—a.eforallt €T

then we have hm f(z,t) du = /f x,tg) du

e
Application.6.6 (Derivative of integrals depending on a parameter)
Let T be an open set of R and f : X x T'— R a function such that:

(a) for each t € T the function x — f (z,t) is in Ly (p)
(b) the function ¢ — f (z,t) derivable on T for each z € X

d
(c) there is g € Ly (u) 'dtf(x,t) <l|g(z)] p—aeforallteT

10



Then the function ¢ — /f (z,t) dp is differentiable on T
X

d d
and 4 [ £ ) du= [ 51 (a.0) do
X X

Application.6.7 (Change of variable formula)

Let (X, F,u) be a measure space and let (Y, G) be a measurable space:

If p: X — Y is a measurable mapping from (X, F) into (Y, G) then:

(1) the set function v : G — [0,00] given by G € G, v (G) = p (¢~ (G))

is a measure on (Y, G)

(2) for every function g : Y — C, v—integrable the function goy is u—integrable
and

(%) /g.du = /g o w.di

Y X

(xx) /g.du = / gowp.duVE €G.
E e HE)
As a particular case take (Y,G) = (R, Bgr) and ¢ : X — R, u—integrable
put v (B) = i (B) = pu (¢~ (B)) for B € B

then we get from(xx) : / p.dy = /t.dﬂ

= 1(B) B
Application.6.8
Let (X, F, u) be a measure space and let f € M then

the set function v : F — [0, 00] given by: A € F,v (A4) = /f.du
A

is a positive measure on F and we have:

/g.dz/ = /f.g.du, for every g € M.
X

X

7. The L,-Spaces

Let (X, F, 1) be a measure space. This section concerns a short description
of the L,-spaces with some important convexity inequalities.
Definition 7.1
Let £, (1) be the subset of M (X, C) defined by:

£y = FeMX.C): [IfF dp < o0
X

for some real number 0 < p < occ.

11



Definition 7.2

Two real positive numbers 0 < p,q < 1 such that p + ¢ = pq or equivalently
1 1

— + — =1 are called conjugate exponents. If p — 1 then ¢ — oo so 1,00 are

p
considered as conjugate exponents.

Theorem 7.3
Let f,g € M4 and let 0 < p,q < 1 be conjugate exponents then we have:
1 1
p q
(1) Holder’s inequality: /f.g.du < /fp.du ) /gq,dﬂ
X X X
1 1
p p p
(2) Minkowski’s inequality: /(f +g)? du < /fp.d,u + /gp.d,u
X X b'e

Remark: Using Minkowski’s inequality it is not difficult to prove that £, (u)
is a vector space over C.

Definition 7.4 Let 0 < p < oo be a positive real number

The binary relation f =g p — a.e is an equivalence relation on £, (1)

Let L, (1) be the quotient of £, (1) by this equivalence relation, that is L, (1)
is the set of equivalence classes in £, (1) .

It is well known that L, (1) is a vector space on R with the operations defined
by: class(z) +class(y) =class(z + y) and «.class(x) =class(a.z) .

In the sequel we consider elements of L, () as functions although they are
classes of functions.

Theorem 7.5

1
1 1 € Ly ), formata 1, = { [ 17 }?

defines a norm on L, (1) and with respect to this norm L, (1) is a Banach space.
(mimic the proof made for L; Theorem 6.2)
Definition 7.6 The Hilbert Space Ly (1)

N —

For p = 2 it is not difficult to see that the norm |[/f|, = {/ f|2du} is
X

induced by the inner product (f,g) = / f-g.dp , which makes Lo (1) a Hilbert
X

space.

8. The Space L

Definition 8.1 Let (X,F, u) be a measure space.

Let f € M, we define the essential supremum of f by:
B B a>0:pu[f>al=0

ess Squ_{ oo if pu[f >a] >0,Ya>0

12



if f e M(X,C) we put Ny (f) = ess —sup|f]
Remark.
For f € M (X,C) we have:
ac{a>0:pl|fl|>a]=0} = |f|<a p—ae
Lemma.8.2
For f € M (X,C) we have:
pllfl > Neo (f)] = 0, that is | f| < Noo (f) p—a.e

Definition 8.3
Let Lo () be the subset of M (X, C) defined by:
Loo (1) = {f € M(X,C) : N (f) < o0}

It is easy to prove that the binary relation f = g u — a.e is an equivalence
relation on Lo () and N (f) = N (9) if f =g p—a.e
Let Lo (1) be the quotient of Lo, (1) by this equivalence relation, that is Lo (1)
is the set of equivalence classes in Lo ().
Also one can prove that L. (@) is a vector space on R with the operations
defined by: class(f) +class(g) =class(f + g) and a.class(f) =class(a.f).
In the sequel we consider elements of Lo, () as functions although they are
classes of functions and
Definition 8.3

For any fin Lo (p) define || f|| . by Noo (h) where h is any function satisfying
[ =h p—a.ethen Lo (1) is a vector space on C and || f||  is a norm on Lo (1) :

Theorem 8.4
L (1) endowed with the norm | f||, defined above is a Banach space.

An important property of the sequences (f,,) in the spaces L, is the following:
Theorem 8.5

Let (fy) be a cauchy sequence in L, that is a sequence (f,)

satisfying Lllné [ fn. = fmll, = 0 then:

(1) For 1 < p < o0, the sequence (f,,) contains a subsequence ( fnj)
converging u — a.e to a function f € L,

(2) For p = oo the sequence (f,) itself
converges uniformly p — a.e to a function f € L.

9. Duality of the L,-Spaces

Recall.
1 Let X, Y be normed spaces. A linear operator T' from a normed space X into
a normed space Y is said to be bounded if there is a constant M > 0 such that:

1T (@) < M-|Jlz]|, Ve € X

This definition means that if B is a bounded subset of X, the set {T' (x),z € B}
is bounded in Y. For instance if B = {z : ||z| < 1} then ||T (2)| < M,Vz € B.
2 Let T be a bounded operator from X into Y. Define:

13



T
1T :sup{| ||(33)|| xe X,z # 0}
x

my = sup{[|T (2)|| : = € X, ||zf| = 1}

my = sup{[|T (2)|| : = € X, [J=f| < 1}

mg = sup{|[T (z)|| : z € X, [l=]| <1}
Then m; = mg = m3 = ||T|| < oo and we have:

1T @) < T[]}, Ve € X
3 If X is a normed space the strong dual of X is the Banach space X* of
continuous linear functionals on X. If x € X and z* € X*, we denote z* (z) by
(x*, x).
Definition 9.1
Let (X, F, 1) be a measure space and let 1 < p, ¢ < 0o be conjugate exponents.
For g fixed in L, let us define the functional ¢, on L, by:

gLy —C, felL, wg(f)=/Xf-g-du
It is clear that ¢, is well defined and we have:

Theorem 9.2
(a) ¢, is linear continuous on L, for any 1 < p < oo.

Moreover if p > 1 we have H@QH = lgll,

where ||, || = sup {||¢, (/)] : f € Ly, /]| < 1}
(b) If p is o—finite (Definition 3.3 Chapter 2) then we have
[eqll = llgllc for p=1.
Theorem 9.3 (L, Duality)
Let (X,F, ) be a measure space with p o—finite
and let ¢ : L, — C be a continuous linear functional on L,
If 1 < p < oo there is a unique g € L, for ¢ conjugate exponent of p such that

o (f) = /X f.g.dp Vf € L and |lgl| = |lg]],

In other words the strong dual (L,)" of L, is linearly isometric to L, for ¢
conjugate exponent of p.
Remark
(a) For p=1 Theorem 9.3 is not true in general if y is not o—finite
as is shown by the following example:
take X = {a,b}, p(a) =1, n(¢) =0, p(b) = p(X) = o0
then p is not o—finite. In this case we have

Ly ={f:{a,b} — C,such that f (b)) =0} =C

_ . | f:{a,b} — C,such that | -,

so L1 = (L1) —(C,butLoo—{ sup (£ (a), f (b)) < o0 }—(C.
(b) The Theorem 9.3 is not true in general for the space Lo, even if p is finite

in other words we have Ly C (Lo )" and the inclusion is strict in general.
Here is an example:
(c) Let [0,1] the unit interval endowed with the Lebesgue p and let C'[0, 1]
be the space of real continuous functions on [0,1] equipped with the uniform
norm || f|| = sup{|f (x)|,x € [0,1]}. Let us observe that if f, g are continuous
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and satisfying f = g p© — a.e then f = g everywhere, indeed let F' C [0, 1]
be measurable with p(F) = 0 and f(z) = g(z) Vz € [0,1]\F, so the set
A={zxel0,1]:]|f(x)—g(z)| >0} = F, but A is open by the continuity of
f,g, then since p(F) = 0 the equality A = F implies FF = ¢ and so f = ¢
everywhere on [0,1]. Consequently the class of f for the equivalence relation
f =g p—aeisreduced to only f. Since any f € C'[0,1] is bounded we have
C[0,1] € Lo

Now let us consider the linear functional ¢ : C'[0,1] — R given by ¢ (f) =
f(0), ¢ is continuous since [¢ (f)| < |[f[| = sup {|f ()|, = € [0,1]} and []| < 1.
By Hahn-Banach Theorem, ¢ can be extented to a continuous linear functional

on all of Lu.; if there were some g € Ly such that ¢ (f) = / fgduVf € Ly,
[0,1]

we would have f (0) = fgduVfeC|o,1].
[0,1]

Taking f (z) = cos(nz) we get f(0) =1 = / cos (nx).g.dpy Vn > 1, this
[0,1]
leads to a contradiction since by the Riemann-Lebesgue Lemma ,(see The-

orem 10.6 below) we have lim / f(x) cos(nx).dx =0.

10. Riemann Integral and Lebesgue Integral

In this section we consider a bounded function f : [a,b] — R,defined on
the interval [a, b] with values in R.

10.1 Definition (Darboux sums)

Let m = {I1, I3, ..., I,;} be a finite partition of [a, b] into intervals.
Put m =inf {f (z),z € [a,b]} and M =sup{f (z),z € [a,b]}

mg =inf {f (z),z € It} and My =sup{f (z),z € I;}, 1 <k <n.
We define the lower and upper Darboux sums of f

with respect to the partition 7 by:
k=n

S (f) = _meA(I) and S, ZMk
k=1
where A (I) is the lengh of the 1nterva1 I

10.2 Definition (Lower integral and Upper integral)
The Lower integral of f is defined by:
S(f) = supSs (/)
The Upper integral of f is defined by:
S(f) =inf S,
where the sup and inf are taken over the finite partitions 7 of [a,b] .
It is clear that S(f) < S (f). We say that f is integrable if S(f) = S (f).
b

We define the Riemann integral of f on [a,b] by /f (x) de =S(f) = S (f).
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10.3 Theorem
A bounded function f : [a,b] — R is Riemann integrable if and only if it is
continuous g — a.e, in this case the Riemann integral is equal to the Lebesgue
integral, that is we have:

b

/f (x) dx = / f dp, where p is the Lebesgue measure on [a, b].
[a,b]

10.4 Theorem
Let fp:[a,b] = R be Riemann integrable functions and assume that f,, converges
uniformly to f on [a,b]. Then f is Riemann integrable

andhm/ fndz—/fdx

If we replace uniform convergence by pointwise convergence, then the above
Theorem shows that the limit function f does not have to be Riemann inte-
grable. Therefore the above theorem is not true if we replace uniform con-
vergence by pointwise convergence. There is however a version of the above
theorem for pointwise convergence if we add the hypothesis that the limit func-
tion is Riemann integrable. This theorem is called Arzela’s Theorem for the
Riemann integral, which is a special case of the Bounded Convergence Theorem
of Lebesgue for the Lebesgue integral.

10.5 Theorem (Arzela’s Theorem). Let f, f,:[a,b] — R be Riemann inte-
grable functions and assume that f,, converges pointwise to f on [a,b]. If there

exists M such that |f, ()| < M for all n > 1.Then 1im/ fondx= / f da.

10.6 Theorem (Riemann-Lebesgue Lemma)

If f is an intégrable function on the interval [a, b], then :
b
lim . [ f(z)cos(nz).dez=0and lim / f(z)sin(nz).de =0

a
The proof is easy if f is bounded or if f is C' using intégration by parts.
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