Chapter 4

INTEGRATION

1. Preliminaries

Introduction.

Let (X, \mathcal{F}, μ) be a measure space. This chapter concerns the Lebesgue integration process $\int_{X} f . d \mu$ of numerical measurable functions on X with respect to the measure μ. Such classes of functions have been introduced with their convergence properties in sections 1-3 of chapter 3 .
If X is the closed interval $[a, b]$ in the real system \mathbb{R}, it is also possible to define the Riemann integral $\int_{a}^{b} f . d x$ of some function $f:[a, b] \longrightarrow \mathbb{R}$ (e.g continuous function).
If the Lebesgue integration process is applied to a sequence of Riemann integrable functions, it leads to a kind of convergence properties less restrictive and easier in applications than those needed in the Riemann process framework. Let us recall:
Classes of functions.1.1. (see sections 1-3 of chapter 3.)
$\mathcal{E}=\{s: X \longrightarrow \mathbb{R}, s$ simple measurable $\}$
$\mathcal{E}_{+}=\{s \in \mathcal{E}: s$ positive $\}$
$\mathcal{M}_{+}=\{f: X \longrightarrow[0, \infty], f$ measurable $\}$
$\mathcal{M}(\mathbb{R})=\{f: X \longrightarrow \mathbb{R}, f$ measurable $\}$
$\mathcal{M}(\mathbb{C})=\{f: X \longrightarrow \mathbb{C}, f$ measurable $\}$
Let us recall that if $f \in \mathcal{M}_{+}$, there is an increasing sequence s_{n} in \mathcal{E}_{+} with: $\lim _{n} s_{n}(x)=f(x), \forall x \in X$.

2. Integration in \mathcal{E}_{+}

Definition.2.1.

Let $s \in \mathcal{E}_{+}$with $s(\cdot)=\sum_{1}^{n} a_{i} \cdot I_{A_{i}}(\cdot)$, where I_{A} is the Dirac function of the set A, and the sets $A_{i}, 1 \leq i \leq n$ form a partition of X in \mathcal{F}. The integral of s with respect to μ is defined by:

$$
\int_{X} s . d \mu=\sum_{1}^{n} a_{i} \cdot \mu\left(A_{i}\right)
$$

with the convention $0 \cdot \infty=0$.

Remark.2.2.

Suppose $s \in \mathcal{E}_{+}$with $s(\cdot)=\sum_{i=1}^{n} a_{i} . I_{A_{i}}(\cdot)=\sum_{j=1}^{m} b_{j} . I_{B_{j}}(\cdot)$, where $\left\{A_{i}, 1 \leq i \leq n\right\}$ and $\left\{B_{j}, 1 \leq j \leq m\right\}$ are partitions of X. Then we have:
$A_{i}=\left\{x \in X: s(x)=a_{i}\right\}$ and $B_{j}=\left\{x \in X: s(x)=b_{j}\right\}$
so $a_{i} \cdot I_{A_{i} \cap B_{j}}(\cdot)=b_{j} \cdot I_{A_{i} \cap B_{j}}(\cdot)$ for $1 \leq i \leq n, 1 \leq j \leq m$.
$a_{i} \cdot I_{A_{i}}(\cdot)=\sum_{j=1}^{m} a_{i} . I_{A_{i} \cap B_{j}}(\cdot)$ and $\sum_{i=1}^{n} a_{i} \cdot I_{A_{i}}(\cdot)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} . I_{A_{i} \cap B_{j}}(\cdot)$
likewise $\sum_{j=1}^{m} b_{j} \cdot I_{B_{j}}(\cdot)=\sum_{i=1}^{n} \sum_{j=1}^{m} b_{j} \cdot I_{A_{i} \cap B_{j}}(\cdot)$ and the terms in the two double sums are equivalent so $\sum_{i=1}^{n} a_{i} \cdot \mu\left(A_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} \cdot \mu\left(A_{i} \cap B_{j}\right)$ and $\sum_{j=1}^{m} b_{j} \cdot \mu\left(B_{j}\right)=\sum_{j=1}^{m} \sum_{i=1}^{n} b_{j} \cdot \mu\left(A_{i} \cap B_{j}\right)$ then $\sum_{i=1}^{n} a_{i} \cdot \mu\left(A_{i}\right)=\sum_{j=1}^{m} b_{j} \cdot \mu\left(B_{j}\right)$ we deduce that the integral $\int_{X} s . d \mu=\sum_{1}^{n} a_{i} \cdot \mu\left(A_{i}\right)$ is well defined.

Proposition.2.3.

Let s, t be in \mathcal{E}_{+}and $c \geq 0$ then we have:
(1) $\int_{X}(s+t) \cdot d \mu=\int_{X} s \cdot d \mu+\int_{X} t \cdot d \mu$ $\int_{X} c . s . d \mu=c . \int_{X} s . d \mu$
(2) If $s \leq t$ then $\int_{X} s . d \mu \leq \int_{X} t . d \mu$
(3) If $E \in \mathcal{F}$ and $s(\cdot)=\sum_{i=1}^{n} a_{i} \cdot I_{A_{i}}(\cdot)$ we have $s . I_{E}=\sum_{i=1}^{n} a_{i} . I_{A_{i} \cap E}(\cdot)$ and $\int_{X} s . I_{E} \cdot d \mu=\int_{E} s . d \mu=\sum_{1}^{n} a_{i} \cdot \mu\left(A_{i} \cap E\right)$
Proof. Put $s(\cdot)=\sum_{i=1}^{n} a_{i} \cdot I_{A_{i}}(\cdot), t(\cdot)=\sum_{j=1}^{m} b_{j} . I_{B_{j}}(\cdot)$, then
(1) $s+t=\sum_{i . j} \cdot\left(a_{i}+b_{j}\right) \cdot I_{A_{i} \cap B_{j}}, c . s=\sum_{i=1}^{n} c a_{i} \cdot I_{A_{i}}$
$\int_{X}(s+t) \cdot d \mu=\sum_{i . j} \cdot\left(a_{i}+b_{j}\right) \cdot \mu\left(A_{i} \cap B_{j}\right)=\sum_{i . j} \cdot a_{i} \cdot \mu\left(A_{i} \cap B_{j}\right)+\sum_{i . j} \cdot b_{j} \cdot \mu\left(A_{i} \cap B_{j}\right)$
but $\sum_{i=1}^{n} a_{i} \cdot \sum_{j=1}^{m} \mu\left(A_{i} \cap B_{j}\right)=\sum_{i=1}^{n} a_{i} \cdot \mu\left(A_{i}\right)=\int_{X} s . d \mu$
and $\sum_{j=1}^{m} b_{j} \cdot \sum_{i=1}^{n} \mu\left(A_{i} \cap B_{j}\right)=\sum_{j=1}^{m} b_{j} \cdot \mu\left(B_{j}\right)=\int_{X} t . d \mu$
so $\int_{X}(s+t) . d \mu=\int_{X} s . d \mu+\int_{X} t . d \mu$, similarly $\int_{X} c . s . d \mu=c . \int_{X} s . d \mu$
(2) If $s \leq t$, then $t-s \geq 0$ and $t=s+(t-s)$
so $\int_{X} t \cdot d \mu=\int_{X} s . d \mu+\int_{X}(t-s) \cdot d \mu \geq \int_{X} s . d \mu$. Point (3) is obvious.
Theorem.2.4.
Let $\left(s_{n}\right)$ be an increasing sequence in \mathcal{E}_{+}.
If $r \in \mathcal{E}_{+}$is such that $r \leq \sup . s_{n}$, then:

$$
\int_{X} r \cdot d \mu \leq \sup _{n} . \int_{X} s_{n} \cdot d \mu
$$

Proof. Since s_{n} is increasing, the sequence $\int_{X} s_{n} \cdot d \mu$ is increasing in $[0, \infty]$ by Proposition 5.2.3(2) so $\sup _{n} \int_{X} s_{n} . d \mu$ exists in $[0, \infty]$. Let $0<c<1$ and put $E_{n}=\left\{s_{n} \geq c r\right\}$. Since $s_{n} \leq s_{n+1}$ we have $E_{n} \subset E_{n+1}$. On the other hand for $x \in X$ we have $\operatorname{c.r}(x)<r(x) \leq \sup . s_{n}(x)$, therefore there is n with $s_{n}(x) \geq \operatorname{c.r}(x)$ and this gives $X=\bigcup_{n}^{n} E_{n}$. Now put $r=\sum_{i} \alpha_{i} . I_{A_{i}}$ and taking integrals, we obtain $\int_{X} s_{n} \cdot d \mu \geq \int_{X}$ c.r. $I_{E_{n}} \cdot d \mu$ (since $s_{n} \geq$ c.r. $I_{E_{n}}$ on X), then $\int_{X} s_{n} \cdot d \mu \geq c \cdot \sum_{i} \alpha_{i} \cdot \mu\left(A_{i} \cap E_{n}\right), \forall n$. This implies $\sup _{n} . \int_{X} s_{n} \cdot d \mu \geq$ $\lim _{n} .\left(c \cdot \sum_{i} \alpha_{i} \cdot \mu\left(A_{i} \cap E_{n}\right)\right)=c \cdot \sum_{i} \alpha_{i} \cdot \mu\left(A_{i}\right)=c . \int_{X} r . d \mu$, because $\mu\left(A_{i} \cap E_{n}\right)$ goes to $\mu\left(A_{i}\right)$ since E_{n} is increasing to X. Making $c \longrightarrow 1$ we get the proof.

Corollary.

Let s_{n}, t_{n} be two increasing sequences in \mathcal{E}_{+}such that $\sup _{n} . s_{n}=\sup _{n} . t_{n}$ then $\sup _{n} . \int_{X} s_{n} \cdot d \mu=\sup _{n} . \int_{X} t_{n} \cdot d \mu$
Proof. We have $\sup _{n} . s_{n}=\sup _{n} . t_{n} \Longrightarrow s_{k} \leq \sup _{n} . t_{n}, \forall k$; from the Theorem we get $\int_{X} s_{k} \cdot d \mu \leq \sup _{n} . \int_{X} t_{n} \cdot d \mu$, this gives $\sup _{k} . \int_{X} s_{k} \cdot d \mu \leq \sup _{n} . \int_{X} t_{n} \cdot d \mu$. By the same way we prove the reverse inequality

Now we are in a position to extend the integration process from the class \mathcal{E}_{+} to the class $\mathcal{M}_{+}=\{f: X \longrightarrow[0, \infty], f$ measurable $\}$.

3. Integration in \mathcal{M}_{+}

Definition.3.1.

Let $f \in \mathcal{M}_{+}$, we know by Theorem. 5.6. that for some increasing sequence s_{n} in \mathcal{E}_{+}we have $\lim _{n} . s_{n}(x)=f(x), \forall x \in X$.
We define the integral of f with respect to μ by $\int_{X} f \cdot d \mu=\sup _{n} . \int_{X} s_{n} \cdot d \mu$.
This integral is well defined, that is, it does not depend on the sequence s_{n} in \mathcal{E}_{+}converging to f (corollary of Theorem.2.4.).

Definition.3.2.

Let $f \in \mathcal{M}_{+}$and $E \in \mathcal{F}$. We define the integral of f over E by:
$\int_{E} f . d \mu=\int_{X} f \cdot I_{E} \cdot d \mu$
where $\left(f . I_{E}\right)(x)=f(x)$ for $x \in E$ and $\left(f . I_{E}\right)(x)=0$ for $x \in E^{c}$

Proposition.3.3.

The integral in \mathcal{M}_{+}has the following properties:
If $f, g \in \mathcal{M}_{+}, c \geq 0$, and $E, F \in \mathcal{F}$, then:
(1) $\int_{X}(f+g) \cdot d \mu=\int_{X} f \cdot d \mu+\int_{X} g \cdot d \mu$
$\int_{X} c . f . d \mu=c . \int_{X} f . d \mu$
(2) If $f \leq g$ then $\int_{X} f . d \mu \leq \int_{X} g \cdot d \mu$ and $\int_{E} f \cdot d \mu \leq \int_{E} g \cdot d \mu$
(3) $E \subset F \Longrightarrow \int_{E} f . d \mu \leq \int_{F} f . d \mu$
(4) If $f=0$ on E then $\int_{E} f \cdot d \mu=0$ even if $\mu(E)=\infty$.
(5) If $\mu(E)=0$ then $\int_{E} f . d \mu=0$ even if $f=\infty$ on E.

Proof. All properties are consequence of Definitions 3.1-3.2.

Theorem.3.4.

Let $f \in \mathcal{M}_{+}$then we have:

$$
\int_{X} f . d \mu=\sup \cdot\left\{\int_{X} s . d \mu: s \in \mathcal{E}_{+} \text {and } s \leq f\right\}
$$

Proof. If $s \in \mathcal{E}_{+}$and $s \leq f$ then $\int_{X} s . d \mu \leq \int_{X} f . d \mu$
so $\sup _{n}\left\{\int_{X} s . d \mu: s \in \mathcal{E}_{+}\right.$and $\left.s \leq f\right\} \leq \int_{X} f . d \mu$.
But by Definition 5.3.1.we have $\int_{X} f . d \mu=\sup _{n}\left\{\int_{X} s_{n} . d \mu, s_{n} \in \mathcal{E}_{+}\right.$and $\left.s_{n} \leq f\right\}$ from this we deduce the proof of the Theorem.
Theorem.3.5. (Beppo-Levy monotone convergence Theorem)
Let $\left(f_{n}\right)$ be an increasing sequence in \mathcal{M}_{+}, then:
$\lim _{n} f_{n}=f \in \mathcal{M}_{+}$and $\int_{X} f . d \mu=\lim _{n} \int_{X} f_{n} d \mu$, in other words:

$$
\lim _{n} \int_{X} f_{n} d \mu=\int_{X} \lim _{n} f_{n} d \mu
$$

Proof. We know that $\lim _{n} f_{n}=f \in \mathcal{M}_{+}$(see chapter 4, section 2) and since $\left(f_{n}\right)$
is increasing we have $\int_{X} f_{n} d \mu \leq \int_{X} f_{n+1} d \mu \leq \int_{X} f . d \mu, \forall n$. So $a=\lim _{n} \int_{X} f_{n} d \mu$ exists
and $a \leq \int_{X} f . d \mu$. Let $s \in \mathcal{E}_{+}$with $s \leq f$ and for $0<c<1$ put $E_{n}=\left\{f_{n} \geq c . s\right\}$.
We have $E_{n} \subset E_{n+1}$ since $f_{n} \leq f_{n+1}$ and $\cup E_{n}=X$ because $c . s<f=\sup _{n} f_{n}$. On the other hand $f_{n} \geq 0 \Longrightarrow f_{n} \geq$ c.s. $I_{E_{n}}, \forall n$.
Now put $s=\sum_{i} \alpha_{i} . I_{A_{i}}$ and taking integrals, we obtain $\int_{X} f_{n} \cdot d \mu \geq \int_{X} c . s . I_{E_{n}} \cdot d \mu$ (since $f_{n} \geq$ c.s. $I_{E_{n}}$ on X), then $\int_{X} f_{n} . d \mu \geq c . \sum_{i} \alpha_{i} . \mu\left(A_{i} \cap E_{n}\right), \forall n$. This implies $a=\lim _{n} . \int_{X} f_{n} \cdot d \mu \geq \lim _{n} .\left(c \cdot \sum_{i} \alpha_{i} \cdot \mu\left(A_{i} \cap E_{n}\right)\right)=c \cdot \sum_{i} \alpha_{i} \cdot \mu\left(A_{i}\right)=c \cdot \int_{X} s d \mu$, because $\mu\left(A_{i} \cap E_{n}\right)$ goes to $\mu\left(A_{i}\right)$ since E_{n} is increasing to X. Making $c \longrightarrow 1$ we get $a \geq \int_{X} s d \mu$ for all $s \in \mathcal{E}_{+}$with $s \leq f$, so $a \geq \sup \left\{\int_{X} s d \mu, s \in \mathcal{E}_{+}, s \leq f\right\}=$ $\int_{X} f . d \mu$ by Theorem.5.3.4, then $a=\int_{X} f . d \mu$.
Remark. Theorem.3.5.is not valid in general for decreasing sequences $\left(f_{n}\right)$ as is shown by the following example: let $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu\right)$ be the Borel measure space and $f_{n}=I_{] n, \infty}\left[\right.$, then f_{n} decreases to 0 but $\lim _{n} . \int_{X} f_{n} \cdot d \mu=\infty$.

Lemma 3.6. (Fatou Lemma)

Let $\left(f_{n}\right)$ be any sequence in \mathcal{M}_{+}, then:
$\int_{X} \liminf _{n} f_{n} d \mu \leq \liminf _{n} \int_{X} f_{n} d \mu$
Proof. Put $F_{k}=\inf _{n \geq k} f_{n}$ then F_{k} is increasing in \mathcal{M}_{+}to $\lim _{n} \inf f_{n}$,
so by Theorem.5.3.5, $\lim _{k} . \int_{X} F_{k} \cdot d \mu=\int_{X} \liminf _{n} f_{n} d \mu$.
But $F_{k} \leq f_{n}, \forall n \geq k$, which implies $\int_{X} F_{k} \cdot d \mu \leq \inf _{n \geq k} \int_{X} f_{n} d \mu$ and then making $k \longrightarrow \infty$ we get $\lim _{k} \int_{X} F_{k} \cdot d \mu=\int_{X} \liminf _{n} f_{n} d \mu \leq \liminf _{k} \inf _{n} \int_{X} f_{n} d \mu=$ $\liminf _{n} \int_{X} f_{n} d \mu$.

4. Exercises

29.(a) Let $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ be the counting measure on \mathbb{N}.

If $f: \mathbb{N} \longrightarrow\left[0, \infty\left[\right.\right.$ is given by $f(i)=a_{i} i \in \mathbb{N}$ prove that:

$$
\int_{\mathbb{N}} f . d \mu=\sum_{i} a_{i}
$$

(b) Let $\mu=\delta_{x_{0}}$ be the Dirac measure on the power set $\mathcal{P}(X)$ of X.
then for any $f: X \longrightarrow\left[0, \infty\left[, \int_{X} f . d \mu=f\left(x_{0}\right)\right.\right.$.
30.Let $\left(f_{n}\right)$ be any sequence in \mathcal{M}_{+}, prove that $\sum_{n} f_{n} \in \mathcal{M}_{+}$and:

$$
\int_{X} \sum_{n} f_{n} d \mu=\sum_{n} \int_{X} f_{n} \cdot d \mu
$$

(Hint $\sum_{1}^{n} f_{i}$ increases to $\sum_{n} f_{n}$ and use Theorem.3.5).
31.Let $f \in \mathcal{M}_{+}$
(a) Prove that the set function $\nu: A \longrightarrow \int_{A} f . d \mu$, defined on \mathcal{F} is a positive measure
(b) If $g \in \mathcal{M}_{+}$prove that $\int_{X} g . d \nu=\int_{X} f . g . d \mu$
(Hint: check (b) for $g \in \mathcal{E}_{+}$and apply Theorem 3.5 for $g \in \mathcal{M}_{+}$)
32. Let $\left(f_{n}\right)$ be a sequence in \mathcal{M}_{+}with $\lim _{n} f_{n}(x)=f(x), \forall x \in X$ for some $f \in \mathcal{M}_{+}$.Suppose $\sup _{n} \int_{X} f_{n} . d \mu<\infty$, and prove that $\int_{X} f . d \mu<\infty$

(Apply Fatou Lemma 3.6)

33.Let $\left(f_{n}\right)$ be a decreasing sequence in \mathcal{M}_{+}such that

$$
\int_{X} f_{n_{0}} \cdot d \mu<\infty, \text { for some } n_{0} \geq 1
$$

Prove that $\lim _{n} \int_{X} f_{n} d \mu=\int_{X} \lim _{n} f_{n} d \mu$
(Hint: apply Theorem 3.5 to the increasing positive sequence $\left(f_{n_{0}}-f_{n}\right) n \geq n_{0}$)
34.Let the interval $] 0,1$ [of real numbers be endowed with Lebesgue measure. Apply Fatou Lemma to the following sequence:

$$
f_{n}(x)=n, 0 \leq x \leq \frac{1}{n} \text { and } f_{n}(x)=0,1>x>\frac{1}{n}
$$

5. Integration of Complex Functions

Definition.5.1.

Let $\mathcal{L}_{1}(\mu)$ be the subset of $\mathcal{M}(X, \mathbb{C})$ defined by:

$$
\mathcal{L}_{1}(\mu)=\left\{f \in \mathcal{M}(X, \mathbb{C}): \int_{X}|f| . d \mu<\infty\right\}
$$

where $\mathcal{M}(X, \mathbb{C})=\{f: X \longrightarrow \mathbb{C} f$ measurable $\}$ (see Definitions 1.1 and 1.2) if $f=u+i v \in \mathcal{L}_{1}(\mu)$ we define the integral of f by:

$$
\int_{X} f . d \mu=\int_{X} u \cdot d \mu+i \int_{X} v . d \mu=\int_{X} u^{+} . d \mu-\int_{X} u^{-} . d \mu+i \int_{X} v^{+} . d \mu-i \int_{X} v^{-} . d \mu
$$

this integral is well defined since $u^{+}, u^{-}, v^{+}, v^{-}$are less then $|f|$.
If f is real valued, we have $v=0$ and $\int_{X} f . d \mu=\int_{X} u^{+} . d \mu-\int_{X} u^{-} . d \mu$

Definition.5.2.

If $f \in \mathcal{M}(X, \overline{\mathbb{R}})$ we define the integral of f by: $\int_{X} f . d \mu=\int_{X} f^{+} . d \mu-\int_{X} f^{-} . d \mu$ provided that $\int_{X} f^{+} . d \mu<\infty$ or $\int_{X} f^{-} . d \mu<\infty$

Proposition.5.3.

$\mathcal{L}_{1}(\mu)$ is a vector space on the field \mathbb{C} and we have

$$
\int_{X}(\alpha f+\beta g) \cdot d \mu=\alpha \int_{X} f \cdot d \mu+\beta \int_{X} g \cdot d \mu
$$

Proof. Use the following facts:
$|\alpha f+\beta g| \leq|\alpha| \cdot|f|+|\beta| .|g|$ and
$f=u+i v=u^{+}-u^{-}+i v^{+}-i v^{-}, g=z+i w=z^{+}-z^{-}+i w^{+}-i w^{-}$
then apply Definition 5.1.

Lemma.5.4.

Let f, g be in $\mathcal{L}_{1}(\mu)$ such that $f=g \mu$-a.e. then $\int_{X} f . d \mu=\int_{X} g . d \mu$
Proof. Let $E=\{x: f(x)=g(x)\}$ then $\mu\left(E^{c}\right)=0$
on the other hand we have $\int_{E^{c}} f \cdot d \mu=\int_{E^{c}} g \cdot d \mu=0$ by point (5) Proposition $\mathbf{3 . 3}$ applied to the integrals of $f^{+}, f^{-}, g^{+}, g^{-}$, since $f \cdot I_{E}=g \cdot I_{E}$ we deduce that $\int_{E} f \cdot d \mu=\int_{E} g \cdot d \mu$ that is $\int_{X} f \cdot d \mu=\int_{X} g \cdot d \mu$.
By the same way one can prove:

Proposition.5.5.

(1) If f, g are real valued in $\mathcal{L}_{1}(\mu)$ and $f \leq g . \mu-a . e$. then $\int_{X} f . d \mu \leq \int_{X} g . d \mu$
(2) $\left|\int_{X} f . d \mu\right| \leq \int_{X}|f| . d \mu$ for all f in $\mathcal{L}_{1}(\mu)$.
(3) If $\in \mathcal{M}_{+}$and $\int_{E} f . d \mu=0$ then $f=0 \mu-a . e$. on E
(4) If $f \in \mathcal{L}_{1}(\mu)$ and $\int_{E} f . d \mu=0$ for all $E \in \mathcal{F}$ then $f=0 \mu$-a.e.
(5) If $f \in \mathcal{M}(X, \overline{\mathbb{R}})$ and $\int_{X}|f| \cdot d \mu<\infty$ then $\mu\{|f|=+\infty\}=0$,
i.e f is finite $\mu-a . e$.

Corollary.
Let f, g be in $\mathcal{L}_{1}(\mu)$:
(a) $\int_{E} f . d \mu=\int_{E} g \cdot d \mu \forall E \in \mathcal{F} \Longrightarrow f=g . \mu-$ a.e.
(b) If f, g are real valued then $\int_{E} f . d \mu \leq \int_{E} g \cdot d \mu, \forall E \in \mathcal{F} \Longrightarrow f \leq g \cdot \mu-a . e$.

6. The Banach Space $L_{1}(\mu)$

Definition 6.1

The binary relation $f=g \quad \mu$-a.e is an equivalence relation on $\mathcal{L}_{1}(\mu)$
Let $L_{1}(\mu)$ be the quotient of $\mathcal{L}_{1}(\mu)$ by this equivalence relation, that is $L_{1}(\mu)$ is the set of equivalence classes in $\mathcal{L}_{1}(\mu)$.
It is well known that $L_{1}(\mu)$ is a vector space on \mathbb{R} with the operations defined by: $\operatorname{class}(x)+\operatorname{class}(y)=\operatorname{class}(x+y)$ and $\alpha . \operatorname{class}(x)=\operatorname{class}(\alpha . x)$.
In the sequel we consider elements of $L_{1}(\mu)$ as functions although they are classes of functions.
If $f \in L_{1}(\mu)$, formula $\|f\|=\int_{X}|f| d \mu$ defines a norm on $L_{1}(\mu)$
Theorem.6.2
Endowed with the norm $\|f\|=\int_{X}|f| d \mu$ the space $L_{1}(\mu)$ is a Banach space.
Proof. Let $\left(f_{n}\right)$ be a Cauchy sequence in $L_{1}(\mu)$ then we have:
$\forall j \geq 1, \exists N_{j} \geq 1$ such that $n, m \geq N_{j} \Longrightarrow\left\|f_{n}-f_{m}\right\|<\frac{1}{2^{j}}$
let us define the strictly increasing subsequence $n_{1}<n_{2}<n_{3}<\ldots$ by the following recipe:
$n_{1}=N_{1}, n_{2}=\max \left(n_{1}+1, N_{2}\right), \ldots, n_{j}=\max \left(n_{j-1}+1, N_{j}\right), \ldots$
then we have: $\left\|f_{n_{j+1}}-f_{n_{j}}\right\|<\frac{1}{2^{j}}, . . \forall j=1,2, \ldots$
now consider the functions: $g_{k}=\sum_{j=1}^{k}\left|f_{n_{j+1}}-f_{n_{j}}\right| \quad$ and $\quad g=\sum_{j=1}^{\infty}\left|f_{n_{j+1}}-f_{n_{j}}\right|$

$$
\left\|g_{k}\right\| \leq \sum_{j=1}^{k}\left\|f_{n_{j+1}}-f_{n_{j}}\right\| \leq \sum_{j=1}^{k} \frac{1}{2^{j}} \leq \sum_{j=1}^{\infty} \frac{1}{2^{j}}<1 \text { and also }\|g\|<1
$$

so g is integrable $\Longrightarrow g$ is finite μ-a.e
let us define the function $f: X \longrightarrow \mathbb{R}$ by $f(x)=f_{n_{1}}(x)+\sum_{j=1}^{\infty}\left(f_{n_{j+1}}(x)-f_{n_{j}}(x)\right)$ then
we have obviously $f(x)=\lim _{i \longrightarrow \infty} . f_{n_{j}}(x)$
now let us observe that the sequence $\left(f_{n_{j}}\right)$ is cauchy since it is a subsequence of $\left(f_{n}\right)$ which is cauchy so
$\forall \epsilon>0, . . \exists N_{\epsilon} \geq 1: n_{j}, m \geq N \Longrightarrow\left\|f_{n_{j}}-f_{m}\right\|=\int_{X}\left|f_{n_{j}}-f_{m}\right| \cdot d \mu<\epsilon$
by Fatou lemma 3.6 applied for n_{j} we get $\int_{X} . \liminf _{n_{j}}\left|f_{n_{j}}-f_{m}\right| \cdot d \mu=\int_{X}\left|f-f_{m}\right| \cdot d \mu \leq$ $\liminf _{n_{j}} \int_{X} .\left|f_{n_{j}}-f_{m}\right| . d \mu \leq \limsup _{n_{j}} \int_{X} .\left|f_{n_{j}}-f_{m}\right| . d \mu<\epsilon$. So $f \in L_{1}(\mu)$ and $\lim _{m} . \int_{X}\left|f-f_{m}\right| \cdot d \mu=0$

Now we give one of the most famous convergence theorem of Lebesgue integration theory

Theorem.6.3 (Lebesgue's dominated convergence theorem)

Let $\left(f_{n}\right)$ be a sequence in $L_{1}(\mu)$ such that:
(a) f_{n} converges $\mu-a . e$ to a function f
(b) there is g in $L_{1}(\mu)$ such that $\forall n \geq 1 \quad\left|f_{n}\right| \leq|g| \mu$-a.e

Then the function f is in $L_{1}(\mu)$ and $\lim _{n} \int_{X}\left|f_{n}-f\right| d \mu=0$
in particular $\lim _{n} \int_{X} f_{n} d \mu=\int_{X} f d \mu$
Proof. Put $E=\left\{x: f_{n}(x)\right.$ converges to $\left.f(x)\right\} \cup\left\{\bigcup_{n}\left\{\left|f_{n}\right| \leq|g|\right\}\right\}$
then $\mu\left(E^{c}\right)=0$
We can assume that f_{n} converges everywhere to a function f and that $\left|f_{n}\right| \leq|g|$ everywhere $\forall n \geq 1$
(if necessary replace f_{n} by $F_{n}=f_{n} \bar{I}_{E}$ and g by $G=g I_{E}$)
first since $\left|f_{n}\right| \leq|g|$ everywhere $\forall n \geq 1$ and f_{n} converges everywhere to f we deduce that

$$
|f| \leq|g| \text { and }\left|f_{n}-f\right| \leq 2 g \text { so } 2 g-\left|f_{n}-f\right| \geq 0
$$

applying Fatou lemma $\mathbf{3 . 6}$ to the function $2 g-\left|f_{n}-f\right|$ we get:
$\int_{X} . \liminf _{n}\left[2 g-\left|f_{n}-f\right|\right] \cdot d \mu=\int_{X}\left[2 g .-\limsup _{n}\left|f_{n}-f\right|\right] . d \mu=\int_{X} 2 g \cdot d \mu \leq$
$\liminf _{n} \int_{X}\left[2 g-\left|f_{n}-f\right|\right] \cdot d \mu=\int_{X} 2 g \cdot d \mu-. \limsup . \int_{n}\left|f_{n}-f\right| \cdot d \mu$ and so $\int_{X} 2 g \cdot d \mu \leq$ $\int_{X} 2 g . d \mu-. \lim \sup _{n} \int_{X}\left|f_{n}-f\right| . d \mu$, this gives $0 \leq-. \limsup _{n} . \int_{X}\left|f_{n}-f\right| . d \mu$ that is $\limsup _{n} \int_{X}\left|f_{n}-f\right| . d \mu=0$

Theorem.6.4 (Bounded convergence theorem)

Suppose $\mu(X)<\infty$. Let $\left(f_{n}\right)$ be a sequence in $L_{1}(\mu)$ such that
$\left|f_{n}\right| \leq M \quad \mu-a . e$ for some constant $M>0$ then the conclusions of Theorem 6.3 are valid.

Application.6.5 (continuity of integrals depending on a parameter)

Let T be an interval of \mathbb{R} and $f: X \times T \longrightarrow \mathbb{R}$ a function such that:
(a) for each $t \in T$ the function $x \longrightarrow f(x, t)$ is in $L_{1}(\mu)$
(b) there is g in $L_{1}(\mu)$ such that $|f(x, t)| \leq|g(x)| \quad \mu$-a.e for all $t \in T$
then we have $\lim _{t \rightarrow t_{0}} \int_{X} f(x, t) d \mu=\int_{X} f\left(x, t_{0}\right) d \mu$

Application.6.6 (Derivative of integrals depending on a parameter)

Let T be an open set of \mathbb{R} and $f: X \times T \longrightarrow \mathbb{R}$ a function such that:
(a) for each $t \in T$ the function $x \longrightarrow f(x, t)$ is in $L_{1}(\mu)$
(b) the function $t \longrightarrow f(x, t)$ derivable on T for each $x \in X$
(c) there is $g \in L_{1}(\mu)\left|\frac{d}{d t} f(x, t)\right| \leq|g(x)| \quad \mu-a . e$ for all $t \in T$

Then the function $t \longrightarrow \int_{X} f(x, t) d \mu$ is differentiable on T
and $\frac{d}{d t} \int_{X} f(x, t) d \mu=\int_{X} \frac{d}{d t} f(x, t) d \mu$

Application.6.7 (Change of variable formula)

Let (X, \mathcal{F}, μ) be a measure space and let (Y, \mathcal{G}) be a measurable space: If $\varphi: X \longrightarrow Y$ is a measurable mapping from (X, \mathcal{F}) into (Y, \mathcal{G}) then:
(1) the set function $\nu: \mathcal{G} \longrightarrow[0, \infty]$ given by $G \in \mathcal{G}, \nu(G)=\mu\left(\varphi^{-1}(G)\right)$ is a measure on (Y, \mathcal{G})
(2) for every function $g: Y \longrightarrow \mathbb{C}, \nu$-integrable the function $g \circ \varphi$ is μ-integrable and

$$
\begin{aligned}
& (*) \int_{Y} g \cdot d \nu=\int_{X} g \circ \varphi \cdot d \mu \\
& (* *) \int_{E} g \cdot d \nu=\int_{\varphi^{-1}(E)} g \circ \varphi \cdot d \mu \forall E \in \mathcal{G} .
\end{aligned}
$$

As a particular case take $(Y, \mathcal{G})=\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ and $\varphi: X \longrightarrow \mathbb{R}, \mu$-integrable put $\nu(B)=\hat{\mu}(B)=\mu\left(\varphi^{-1}(B)\right)$ for $B \in \mathcal{B}_{\mathbb{R}}$
then we get $\operatorname{from}(* *): \int_{\varphi^{-1}(B)} \varphi \cdot d \mu=\int_{B} t \cdot d \hat{\mu}$

Application.6.8

Let (X, \mathcal{F}, μ) be a measure space and let $f \in \mathcal{M}_{+}$then the set function $\nu: \mathcal{F} \longrightarrow[0, \infty]$ given by: $A \in \mathcal{F}, \nu(A)=\int_{A} f . d \mu$
is a positive measure on \mathcal{F} and we have:

$$
\int_{X} g \cdot d \nu=\int_{X} f \cdot g \cdot d \mu, \text { for every } g \in \mathcal{M}_{+}
$$

7. The L_{p}-Spaces

Let (X, \mathcal{F}, μ) be a measure space. This section concerns a short description of the L_{p}-spaces with some important convexity inequalities.

Definition 7.1

Let $\mathcal{L}_{p}(\mu)$ be the subset of $\mathcal{M}(X, \mathbb{C})$ defined by:

$$
\mathcal{L}_{p}(\mu)=\left\{f \in \mathcal{M}(X, \mathbb{C}): \int_{X}|f|^{p} . d \mu<\infty\right\}
$$

for some real number $0<p<\infty$.

Definition 7.2

Two real positive numbers $0<p, q<1$ such that $p+q=p q$ or equivalently $\frac{1}{p}+\frac{1}{q}=1$ are called conjugate exponents. If $p \longrightarrow 1$ then $q \longrightarrow \infty$ so $1, \infty$ are considered as conjugate exponents.

Theorem 7.3

Let $f, g \in \mathcal{M}_{+}$and let $0<p, q<1$ be conjugate exponents then we have:
(1) Hölder's inequality: $\int_{X} f . g \cdot d \mu \leq\left\{\int_{X} f^{p} . d \mu\right\}^{\frac{1}{p}} \cdot\left\{\int_{X} g^{q} . d \mu\right\}^{\frac{1}{q}}$
(2) Minkowski's inequality: $\left\{\int_{X}(f+g)^{p} \cdot d \mu\right\}^{\frac{1}{p}} \leq\left\{\int_{X} f^{p} \cdot d \mu\right\}^{\frac{1}{p}}+\left\{\int_{X} g^{p} \cdot d \mu\right\}^{\frac{1}{p}}$

Remark: Using Minkowski's inequality it is not difficult to prove that $\mathcal{L}_{p}(\mu)$ is a vector space over \mathbb{C}.
Definition 7.4 Let $0<p<\infty$ be a positive real number
The binary relation $f=g \quad \mu-a . e$ is an equivalence relation on $\mathcal{L}_{p}(\mu)$
Let $L_{p}(\mu)$ be the quotient of $\mathcal{L}_{p}(\mu)$ by this equivalence relation, that is $L_{p}(\mu)$ is the set of equivalence classes in $\mathcal{L}_{p}(\mu)$.
It is well known that $L_{p}(\mu)$ is a vector space on \mathbb{R} with the operations defined by: $\operatorname{class}(x)+\operatorname{class}(y)=\operatorname{class}(x+y)$ and $\alpha \cdot \operatorname{class}(x)=\operatorname{class}(\alpha \cdot x)$.
In the sequel we consider elements of $L_{p}(\mu)$ as functions although they are classes of functions.
Theorem 7.5
If $f \in L_{p}(\mu)$, formula $\|f\|_{p}=\left\{\int_{X}|f|^{p} d \mu\right\}^{\frac{1}{p}}$
defines a norm on $L_{p}(\mu)$ and with respect to this norm $L_{p}(\mu)$ is a Banach space. (mimic the proof made for L_{1} Theorem 6.2)
Definition 7.6 The Hilbert Space $L_{2}(\mu)$
For $p=2$ it is not difficult to see that the norm $\|f\|_{2}=\left\{\int_{X}|f|^{2} d \mu\right\}^{\frac{1}{2}}$ is induced by the inner product $\langle f, g\rangle=\int_{X} f \cdot \bar{g} \cdot d \mu$, which makes $L_{2}(\mu)$ a Hilbert
space. space.

8. The Space L_{∞}

Definition 8.1 Let (X, \mathcal{F}, μ) be a measure space.
Let $f \in \mathcal{M}_{+}$we define the essential supremum of f by:
ess $-\sup f=\left\{\begin{array}{c}\alpha \geq 0: \mu[f>\alpha]=0 \\ \infty \text { if } \mu[f>\alpha]>0, \forall \alpha \geq 0\end{array}\right\}$
if $f \in \mathcal{M}(X, \mathbb{C})$ we put $N_{\infty}(f)=$ ess $-\sup |f|$

Remark.

For $f \in \mathcal{M}(X, \mathbb{C})$ we have:

$$
\alpha \in\{\alpha \geq 0: \mu[|f|>\alpha]=0\} \Longleftrightarrow|f| \leq \alpha \quad \mu-a . e
$$

Lemma.8.2

For $f \in \mathcal{M}(X, \mathbb{C})$ we have:

$$
\mu\left[|f|>N_{\infty}(f)\right]=0, \text { that is }|f| \leq N_{\infty}(f) \quad \mu-a . e
$$

Definition 8.3

Let $\mathcal{L}_{\infty}(\mu)$ be the subset of $\mathcal{M}(X, \mathbb{C})$ defined by:

$$
\mathcal{L}_{\infty}(\mu)=\left\{f \in \mathcal{M}(X, \mathbb{C}): N_{\infty}(f)<\infty\right\}
$$

It is easy to prove that the binary relation $f=g \quad \mu$-a.e is an equivalence relation on $\mathcal{L}_{\infty}(\mu)$ and $N_{\infty}(f)=N_{\infty}(g)$ if $f=g \quad \mu$-a.e
Let $L_{\infty}(\mu)$ be the quotient of $\mathcal{L}_{\infty}(\mu)$ by this equivalence relation, that is $L_{\infty}(\mu)$ is the set of equivalence classes in $\mathcal{L}_{\infty}(\mu)$.
Also one can prove that $L_{\infty}(\mu)$ is a vector space on \mathbb{R} with the operations defined by: $\operatorname{class}(f)+\operatorname{class}(g)=\operatorname{class}(f+g)$ and $\alpha \cdot \operatorname{class}(f)=\operatorname{class}(\alpha . f)$.
In the sequel we consider elements of $L_{\infty}(\mu)$ as functions although they are classes of functions and

Definition 8.3

For any f in $L_{\infty}(\mu)$ define $\|f\|_{\infty}$ by $N_{\infty}(h)$ where h is any function satisfying $f=h \mu-a . e$ then $L_{\infty}(\mu)$ is a vector space on \mathbb{C} and $\|f\|_{\infty}$ is a norm on $L_{\infty}(\mu)$:

Theorem 8.4

$L_{\infty}(\mu)$ endowed with the norm $\|f\|_{\infty}$ defined above is a Banach space.
An important property of the sequences $\left(f_{n}\right)$ in the spaces L_{p} is the following:
Theorem 8.5
Let $\left(f_{n}\right)$ be a cauchy sequence in L_{p} that is a sequence $\left(f_{n}\right)$
satisfying $\lim _{m, n}\left\|f_{n}-f_{m}\right\|_{p}=0$ then:
(1) For $1 \leq p<\infty$, the sequence $\left(f_{n}\right)$ contains a subsequence $\left(f_{n_{j}}\right)$
converging μ-a.e to a function $f \in L_{p}$
(2) For $p=\infty$ the sequence $\left(f_{n}\right)$ itself converges uniformly μ-a.e to a function $f \in L_{\infty}$.

9. Duality of the L_{p}-Spaces

Recall.

1 Let X, Y be normed spaces. A linear operator T from a normed space X into a normed space Y is said to be bounded if there is a constant $M>0$ such that:

$$
\|T(x)\| \leq M .\|x\|, \forall x \in X
$$

This definition means that if B is a bounded subset of X, the set $\{T(x), x \in B\}$ is bounded in Y. For instance if $B=\{x:\|x\| \leq 1\}$ then $\|T(x)\| \leq M, \forall x \in B$. 2 Let T be a bounded operator from X into Y. Define:

$$
\begin{aligned}
& \|T\|=\sup \left\{\frac{\|T(x)\|}{\|x\|}: x \in X, x \neq 0\right\} \\
& m_{1}=\sup \{\|T(x)\|: x \in X,\|x\|=1\} \\
& m_{2}=\sup \{\|T(x)\|: x \in X,\|x\|<1\} \\
& m_{3}=\sup \{\|T(x)\|: x \in X,\|x\| \leq 1\}
\end{aligned}
$$

Then $m_{1}=m_{2}=m_{3}=\|T\|<\infty$ and we have:
$\|T(x)\| \leq\|T\|\|x\|, \forall x \in X$
3 If X is a normed space the strong dual of X is the Banach space X^{*} of continuous linear functionals on X. If $x \in X$ and $x^{*} \in X^{*}$, we denote $x^{*}(x)$ by $\left\langle x^{*}, x\right\rangle$.

Definition 9.1

Let (X, \mathcal{F}, μ) be a measure space and let $1 \leq p, q \leq \infty$ be conjugate exponents.
For g fixed in L_{q} let us define the functional φ_{g} on L_{p} by:

$$
\varphi_{g}: L_{p} \longrightarrow \mathbb{C}, \quad f \in L_{p} \quad \varphi_{g}(f)=\int_{X} f \cdot g \cdot d \mu
$$

It is clear that φ_{g} is well defined and we have:
Theorem 9.2
(a) φ_{g} is linear continuous on L_{p} for any $1 \leq p \leq \infty$.

Moreover if $p>1$ we have $\left\|\varphi_{g}\right\|=\|g\|_{q}$
where $\left\|\varphi_{g}\right\|=\sup \left\{\left\|\varphi_{g}(f)\right\|: f \in L_{p},\|f\| \leq 1\right\}$
(b) If μ is σ-finite (Definition 3.3 Chapter 2) then we have $\left\|\varphi_{g}\right\|=\|g\|_{\infty}$ for $p=1$.
Theorem 9.3 (L_{p} Duality)
Let (X, \mathcal{F}, μ) be a measure space with $\mu \sigma$-finite
and let $\varphi: L_{p} \longrightarrow \mathbb{C}$ be a continuous linear functional on L_{p}
If $1 \leq p<\infty$ there is a unique $g \in L_{q}$, for q conjugate exponent of p such that

$$
\varphi(f)=\int_{X} f . g . d \mu \forall f \in L_{p} \text { and }\|\varphi\|=\|g\|_{q}
$$

In other words the strong dual $\left(L_{p}\right)^{*}$ of L_{p} is linearly isometric to L_{q} for q conjugate exponent of p.

Remark

(a) For $p=1$ Theorem 9.3 is not true in general if μ is not σ-finite
as is shown by the following example:
take $X=\{a, b\}, \mu(a)=1, \mu(\phi)=0, \mu(b)=\mu(X)=\infty$
then μ is not σ-finite. In this case we have
$L_{1}=\{f:\{a, b\} \longrightarrow \mathbb{C}$, such that $f(b)=0\}=\mathbb{C}$
so $L_{1}=\left(L_{1}\right)^{*}=\mathbb{C}$, but $L_{\infty}=\left\{\begin{array}{c}f:\{a, b\} \longrightarrow \mathbb{C} \text {, such that } \\ \sup (f(a), f(b))<\infty\end{array}\right\}=\mathbb{C}^{2}$.
(b) The Theorem 9.3 is not true in general for the space L_{∞} even if μ is finite in other words we have $L_{1} \subset\left(L_{\infty}\right)^{*}$ and the inclusion is strict in general. Here is an example:
(c) Let $[0,1]$ the unit interval endowed with the Lebesgue μ and let $C[0,1]$ be the space of real continuous functions on $[0,1]$ equipped with the uniform norm $\|f\|=\sup \{|f(x)|, x \in[0,1]\}$. Let us observe that if f, g are continuous
and satisfying $f=g \quad \mu$-a.e then $f=g$ everywhere, indeed let $F \subset[0,1]$ be measurable with $\mu(F)=0$ and $f(x)=g(x) \forall x \in[0,1] \backslash F$, so the set $A=\{x \in[0,1]:|f(x)-g(x)|>0\}=F$, but A is open by the continuity of f, g, then since $\mu(F)=0$ the equality $A=F$ implies $F=\phi$ and so $f=g$ everywhere on $[0,1]$. Consequently the class of f for the equivalence relation $f=g \quad \mu$-a.e is reduced to only f. Since any $f \in C[0,1]$ is bounded we have $C[0,1] \subset L_{\infty}$.

Now let us consider the linear functional $\varphi: C[0,1] \longrightarrow \mathbb{R}$ given by $\varphi(f)=$ $f(0), \varphi$ is continuous since $|\varphi(f)| \leq\|f\|=\sup \{|f(x)|, x \in[0,1]\}$ and $\|\varphi\| \leq 1$. By Hahn-Banach Theorem, φ can be extented to a continuous linear functional on all of L_{∞}; if there were some $g \in L_{1}$ such that $\varphi(f)=\int_{[0,1]} f . g . d \mu \forall f \in L_{\infty}$, we would have $f(0)=\int_{[0,1]} f \cdot g \cdot d \mu \forall f \in C[0,1]$.
Taking $f(x)=\cos (n x)$ we get $f(0)=1=\int_{[0,1]} \cos (n x) \cdot g \cdot d \mu \quad \forall n \geq 1$, this leads to a contradiction since by the Riemann-Lebesgue Lemma ,(see Theorem 10.6 below) we have $\lim _{n \longrightarrow \infty} \cdot \int_{a}^{b} f(x) \cos (n x) \cdot d x=0$.

10. Riemann Integral and Lebesgue Integral

In this section we consider a bounded function $f:[a, b] \longrightarrow \mathbb{R}$, defined on the interval $[a, b]$ with values in \mathbb{R}.

10.1 Definition (Darboux sums)

Let $\pi=\left\{I_{1}, I_{2}, \ldots, I_{n}\right\}$ be a finite partition of $[a, b]$ into intervals.
Put $m=\inf \{f(x), x \in[a, b]\}$ and $M=\sup \{f(x), x \in[a, b]\}$
$m_{k}=\inf \left\{f(x), x \in I_{k}\right\}$ and $M_{k}=\sup \left\{f(x), x \in I_{k}\right\}, 1 \leq k \leq n$.
We define the lower and upper Darboux sums of f
with respect to the partition π by:

$$
\underline{S}_{\pi}(f)=\sum_{k=1}^{k=n} m_{k} \cdot \lambda\left(I_{k}\right) \text { and } \bar{S}_{\pi}=\sum_{k=1}^{k=n} M_{k} \cdot \lambda\left(I_{k}\right)
$$

where $\lambda(I)$ is the lengh of the interval I.

10.2 Definition (Lower integral and Upper integral)

The Lower integral of f is defined by:

$$
\underline{S}(f)=\sup \underline{S}_{\pi}(f)
$$

The Upper integral of f is defined by:

$$
\bar{S}(f)=\inf \bar{S}_{\pi}
$$

where the sup and inf are taken over the finite partitions π of $[a, b]$.
It is clear that $\underline{S}(f) \leq \bar{S}(f)$. We say that f is integrable if $\underline{S}(f)=\bar{S}(f)$.
We define the Riemann integral of f on $[a, b]$ by $\int_{a}^{b} f(x) d x=\underline{S}(f)=\bar{S}(f)$.

10.3 Theorem

A bounded function $f:[a, b] \longrightarrow \mathbb{R}$ is Riemann integrable if and only if it is continuous $\mu-a . e$, in this case the Riemann integral is equal to the Lebesgue integral, that is we have:

$$
\int_{a}^{b} f(x) d x=\int_{[a, b]} f d \mu, \text { where } \mu \text { is the Lebesgue measure on }[a, b] \text {. }
$$

10.4 Theorem

Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable functions and assume that f_{n} converges uniformly to f on $[a, b]$. Then f is Riemann integrable

$$
\text { and } \lim _{n} \int_{a}^{b} f_{n} d x=\int_{a}^{b} f d x
$$

If we replace uniform convergence by pointwise convergence, then the above Theorem shows that the limit function f does not have to be Riemann integrable. Therefore the above theorem is not true if we replace uniform convergence by pointwise convergence. There is however a version of the above theorem for pointwise convergence if we add the hypothesis that the limit function is Riemann integrable. This theorem is called Arzela's Theorem for the Riemann integral, which is a special case of the Bounded Convergence Theorem of Lebesgue for the Lebesgue integral.
10.5 Theorem (Arzela's Theorem). Let $f, f_{n}:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable functions and assume that f_{n} converges pointwise to f on $[a, b]$. If there exists M such that $\left|f_{n}(x)\right| \leq M$ for all $n \geq 1$. Then $\lim _{n} \int_{a}^{b} f_{n} d x=\int_{a}^{b} f d x$.

10.6 Theorem (Riemann-Lebesgue Lemma)

If f is an intégrable function on the interval $[a, b]$, then :

$$
\lim _{n \longrightarrow \infty} \cdot \int_{a}^{b} f(x) \cos (n x) \cdot d x=0 \text { and } \lim _{n \longrightarrow \infty} \cdot \int_{a}^{b} f(x) \sin (n x) \cdot d x=0
$$

The proof is easy if f is bounded or if f is C^{1} using intégration by parts.

