Chapter 4

INTEGRATION

1. Preliminaries

Introduction.

Let (X, \mathcal{F}, μ) be a measure space. This chapter concerns the Lebesgue integration process $\int_X f.d\mu$ of numerical measurable functions on X with respect to the measure μ . Such classes of functions have been introduced with their convergence properties in sections **1-3** of chapter **3**.

If X is the closed interval [a, b] in the real system \mathbb{R} , it is also possible to define b

the Riemann integral $\int_{a} f dx$ of some function $f : [a, b] \longrightarrow \mathbb{R}$ (e.g continuous

function).

If the Lebesgue integration process is applied to a sequence of Riemann integrable functions, it leads to a kind of convergence properties less restrictive and easier in applications than those needed in the Riemann process framework. Let us recall:

Classes of functions.1.1. (see sections 1-3 of chapter 3.)

 $\begin{aligned} \mathcal{E} &= \{s : X \longrightarrow \mathbb{R}, s \text{ simple measurable} \} \\ \mathcal{E}_{+} &= \{s \in \mathcal{E} : s \text{ positive} \} \\ \mathcal{M}_{+} &= \{f : X \longrightarrow [0, \infty], f \text{ measurable} \} \\ \mathcal{M}(\mathbb{R}) &= \{f : X \longrightarrow \mathbb{R}, f \text{ measurable} \} \\ \mathcal{M}(\mathbb{C}) &= \{f : X \longrightarrow \mathbb{C}, f \text{ measurable} \} \\ \text{Let us recall that if } f \in \mathcal{M}_{+}, \text{ there is an increasing sequence } s_n \text{ in } \mathcal{E}_{+} \\ \text{with: } \lim_{n \to \infty} (x) &= f(x), \forall x \in X. \end{aligned}$

2. Integration in \mathcal{E}_+

Definition.2.1.

Let $s \in \mathcal{E}_+$ with $s(\cdot) = \sum_{i=1}^{n} a_i I_{A_i}(\cdot)$, where I_A is the Dirac function of the set A, and the sets $A_i, 1 \leq i \leq n$ form a partition of X in \mathcal{F} . The integral of s with respect to μ is defined by:

$$\int_{X} s.d\mu = \sum_{1}^{n} a_{i}.\mu\left(A_{i}\right)$$

with the convention $0 \cdot \infty = 0$.

Remark.2.2.

Suppose $s \in \mathcal{E}_+$ with $s(\cdot) = \sum_{i=1}^n a_i \cdot I_{A_i}(\cdot) = \sum_{j=1}^m b_j \cdot I_{B_j}(\cdot)$, where $\{A_i, 1 \le i \le n\}$ and $\{B_j, 1 \le j \le m\}$ are partitions of X. Then we have:
$$\begin{split} &A_i = \{x \in X : \ s\left(x\right) = a_i\} \text{ and } B_j = \{x \in X : \ s\left(x\right) = b_j\} \\ &\text{so } a_i.I_{A_i \cap B_j}\left(\cdot\right) = b_j.I_{A_i \cap B_j}\left(\cdot\right) \text{ for } 1 \leq i \leq n, 1 \leq j \leq m. \\ &a_i.I_{A_i}\left(\cdot\right) = \sum_{j=1}^m a_i.I_{A_i \cap B_j}\left(\cdot\right) \text{ and } \sum_{i=1}^n a_i.I_{A_i}\left(\cdot\right) = \sum_{i=1}^n \sum_{j=1}^m a_i.I_{A_i \cap B_j}\left(\cdot\right) \\ &\text{likewise } \sum_{j=1}^m b_j.I_{B_j}\left(\cdot\right) = \sum_{i=1}^n \sum_{j=1}^m b_j.I_{A_i \cap B_j}\left(\cdot\right) \text{ and the terms in the two double sums} \\ &\text{are equivalent so } \sum_{i=1}^n a_i.\mu\left(A_i\right) = \sum_{i=1}^n \sum_{j=1}^m a_i.\mu\left(A_i \cap B_j\right) \\ &\text{and } \sum_{j=1}^m b_j.\mu\left(B_j\right) = \sum_{j=1}^m \sum_{i=1}^n b_j.\mu\left(A_i \cap B_j\right) \text{ then } \sum_{i=1}^n a_i.\mu\left(A_i\right) = \sum_{j=1}^m b_j.\mu\left(B_j\right) \\ &\text{we deduce that the integral } \int_X s.d\mu = \sum_{1}^n a_i.\mu\left(A_i\right) \text{ is well defined.} \end{split}$$

Proposition.2.3.

Let s, t be in \mathcal{E}_{+} and $c \geq 0$ then we have: (1) $\int_{X} (s+t) .d\mu = \int_{X} s.d\mu + \int_{X} t.d\mu$ $\int_{X} c.s.d\mu = c. \int_{X} s.d\mu$ (2) If $s \leq t$ then $\int_{X} s.d\mu \leq \int_{X} t.d\mu$ (3) If $E \in \mathcal{F}$ and $s(\cdot) = \sum_{i=1}^{n} a_i.I_{A_i}(\cdot)$ we have $s.I_E = \sum_{i=1}^{n} a_i.I_{A_i \cap E}(\cdot)$ and $\int_{X} s.I_E.d\mu = \int_{E} s.d\mu = \sum_{1}^{n} a_i.\mu (A_i \cap E)$ **Proof.** Put $s(\cdot) = \sum_{i=1}^{n} a_i.I_{A_i}(\cdot), t(\cdot) = \sum_{j=1}^{m} b_j.I_{B_j}(\cdot)$, then (1) $s + t = \sum_{i,j} (a_i + b_j) .I_{A_i \cap B_j}, c.s = \sum_{i=1}^{n} ca_i.I_{A_i}$ $\int_{X} (s+t) .d\mu = \sum_{i,j} (a_i + b_j) .\mu (A_i \cap B_j) = \sum_{i,j} .a_i.\mu (A_i \cap B_j) + \sum_{i,j} .b_j.\mu (A_i \cap B_j)$ but $\sum_{i=1}^{n} a_i.\sum_{j=1}^{m} \mu (A_i \cap B_j) = \sum_{i=1}^{n} a_i.\mu (A_i) = \int_{X} s.d\mu$ and $\sum_{j=1}^{m} b_j.\sum_{i=1}^{n} \mu (A_i \cap B_j) = \sum_{j=1}^{m} b_j.\mu (B_j) = \int_{X} t.d\mu$ so $\int_{X} (s+t) .d\mu = \int_{X} s.d\mu + \int_{X} t.d\mu$, similarly $\int_{X} c.s.d\mu = c.\int_{X} s.d\mu$ (2) If $s \leq t$, then $t - s \geq 0$ and t = s + (t - s)

so
$$\int_{X} t.d\mu = \int_{X} s.d\mu + \int_{X} (t-s).d\mu \ge \int_{X} s.d\mu$$
. Point (3) is obvious.

Theorem.2.4.

Let (s_n) be an increasing sequence in \mathcal{E}_+ . If $r \in \mathcal{E}_+$ is such that $r \leq \sup . s_n$, then:

$$\int_{X} r.d\mu \le \sup_{n} \int_{X} s_{n}.d\mu$$

Proof. Since s_n is increasing, the sequence $\int_X s_n d\mu$ is increasing in $[0,\infty]$

by Proposition 5.2.3(2) so $\sup_{n} \int_{X} s_{n} d\mu$ exists in $[0, \infty]$. Let 0 < c < 1 and put $E_{n} = \{s_{n} \geq cr\}$. Since $s_{n} \leq s_{n+1}$ we have $E_{n} \subset E_{n+1}$. On the other hand for $x \in X$ we have $c.r(x) < r(x) \leq \sup_{n} s_{n}(x)$, therefore there is nwith $s_{n}(x) \geq c.r(x)$ and this gives $X = \bigcup_{n}^{n} E_{n}$. Now put $r = \sum_{i} \alpha_{i} I_{A_{i}}$ and taking integrals, we obtain $\int_{X} s_{n} d\mu \geq \int_{X} c.r.I_{E_{n}} d\mu$ (since $s_{n} \geq c.r.I_{E_{n}}$ on X), then $\int_{X} s_{n} d\mu \geq c.\sum_{i} \alpha_{i} \mu(A_{i} \cap E_{n}), \forall n$. This implies $\sup_{n} \int_{X} s_{n} d\mu \geq$ $\lim_{n} \left(c.\sum_{i} \alpha_{i} \mu(A_{i} \cap E_{n})\right) = c.\sum_{i} \alpha_{i} \mu(A_{i}) = c.\int_{X} r.d\mu$, because $\mu(A_{i} \cap E_{n})$ goes to $\mu(A_{i})$ since E_{n} is increasing to X. Making $c \longrightarrow 1$ we get the proof.

Let s_n, t_n be two increasing sequences in \mathcal{E}_+ such that $\sup_n s_n = \sup_n t_n$

then $\sup_{n} \int_{X} s_n d\mu = \sup_{n} \int_{X} t_n d\mu$

Proof. We have $\sup_{n} s_n = \sup_{n} t_n \Longrightarrow s_k \leq \sup_{n} t_n$, $\forall k$; from the Theorem we get $\int_X s_k d\mu \leq \sup_n \int_X t_n d\mu$, this gives $\sup_k \int_X s_k d\mu \leq \sup_n \int_X t_n d\mu$. By the same way we prove the reverse inequality.

Now we are in a position to extend the integration process from the class \mathcal{E}_+ to the class $\mathcal{M}_+ = \{f : X \longrightarrow [0, \infty], f \text{ measurable}\}.$

3. Integration in \mathcal{M}_+

Definition.3.1.

Let $f \in \mathcal{M}_+$, we know by Theorem. 5.6. that for some increasing sequence s_n in \mathcal{E}_+ we have $\lim_n s_n(x) = f(x), \forall x \in X$.

We define the integral of
$$f$$
 with respect to μ by $\int_X f.d\mu = \sup_n \int_X s_n.d\mu$.

This integral is well defined, that is, it does not depend on the sequence s_n in \mathcal{E}_+ converging to f (corollary of Theorem.2.4.).

Definition.3.2.

Let $f \in \mathcal{M}_+$ and $E \in \mathcal{F}$. We define the integral of f over E by:

$$\int_{E} f.d\mu = \int_{X} f.I_{E}.d\mu$$

where $(f.I_{E})(x) = f(x)$ for $x \in E$ and $(f.I_{E})(x) = 0$ for $x \in E^{c}$

Proposition.3.3.

The integral in \mathcal{M}_+ has the following properties: If $f, g \in \mathcal{M}_+, c \ge 0$, and $E, F \in \mathcal{F}$, then:

$$(1) \int_{X} (f+g) . d\mu = \int_{X} f . d\mu + \int_{X} g . d\mu$$
$$\int_{X} c . f . d\mu = c . \int_{X} f . d\mu$$
$$(2) \text{ If } f \leq g \text{ then } \int_{X} f . d\mu \leq \int_{X} g . d\mu \text{ and } \int_{E} f . d\mu \leq \int_{E} g . d\mu$$
$$(3) E \subset F \Longrightarrow \int_{E} f . d\mu \leq \int_{F} f . d\mu$$
$$(4) \text{ If } f = 0 \text{ on } E \text{ then } \int_{E} f . d\mu = 0 \text{ even if } \mu (E) = \infty.$$
$$(5) \text{ If } \mu (E) = 0 \text{ then } \int_{E} f . d\mu = 0 \text{ even if } f = \infty \text{ on } E.$$

Proof. All properties are consequence of Definitions **3.1-3.2.** ■ **Theorem.3.4.**

Let $f \in \mathcal{M}_+$ then we have:

$$\int_{X} f.d\mu = \sup \left\{ \int_{X} s.d\mu : s \in \mathcal{E}_{+} \text{ and } s \leq f \right\}$$

Proof. If $s \in \mathcal{E}_+$ and $s \leq f$ then $\int_X s.d\mu \leq \int_X f.d\mu$

so sup.
$$\left\{ \int_X s.d\mu : s \in \mathcal{E}_+ \text{ and } s \leq f \right\} \leq \int_X f.d\mu.$$

But by Definition **5.3.1** we have $\int f.d\mu = \sup_X \int \int s_x d\mu + s_y \in \mathcal{E}_+$ and $s_y \leq f.d\mu$

But by Definition **5.3.1.** we have $\int_{X} f d\mu = \sup_{n} \left\{ \int_{X} s_{n} d\mu, s_{n} \in \mathcal{E}_{+} \text{ and } s_{n} \leq f \right\}$ from this we deduce the proof of the Theorem.

Theorem.3.5. (Beppo-Levy monotone convergence Theorem)

Let (f_n) be an increasing sequence in \mathcal{M}_+ , then:

$$\lim_{n} f_{n} = f \in \mathcal{M}_{+} \text{ and } \int_{X} f d\mu = \lim_{n} \int_{X} f_{n} d\mu, \text{ in other words:}$$
$$\lim_{n} \int_{X} f_{n} d\mu = \int_{X} \lim_{n} f_{n} d\mu$$

Proof. We know that $\lim_{n} f_n = f \in \mathcal{M}_+$ (see chapter 4, section 2) and since (f_n)

is increasing we have $\int_X f_n d\mu \leq \int_X f_{n+1} d\mu \leq \int_X f.d\mu, \ \forall n.$ So $a = \lim_n \int_X f_n d\mu$ exists

and $a \leq \int_{X} f.d\mu$. Let $s \in \mathcal{E}_{+}$ with $s \leq f$ and for 0 < c < 1 put $E_{n} = \{f_{n} \geq c.s\}$. We have $E_{n} \subset E_{n+1}$ since $f_{n} \leq f_{n+1}$ and $\bigcup_{n} E_{n} = X$ because $c.s < f = \sup_{n} f_{n}$. On the other hand $f_{n} \geq 0 \Longrightarrow f_{n} \geq c.s.I_{E_{n}}, \forall n$.

Now put $s = \sum_{i} \alpha_i . I_{A_i}$ and taking integrals, we obtain $\int_X f_n . d\mu \ge \int_X c.s. I_{E_n} . d\mu$

(since $f_n \ge c.s.I_{E_n}$ on X), then $\int_X f_n d\mu \ge c.\sum_i \alpha_i \mu (A_i \cap E_n), \forall n$. This implies

$$a = \lim_{n} \int_{X} f_{n} d\mu \ge \lim_{n} \left(c \sum_{i} \alpha_{i} \mu \left(A_{i} \cap E_{n} \right) \right) = c \sum_{i} \alpha_{i} \mu \left(A_{i} \right) = c \int_{X} s d\mu, \text{ because } \mu \left(A_{i} \cap E_{n} \right) \text{ goes to } \mu \left(A_{i} \right) \text{ since } E_{n} \text{ is increasing to } X. \text{ Making } c \longrightarrow 1 \text{ we get } a \ge \int_{X} s d\mu \text{ for all } s \in \mathcal{E}_{+} \text{ with } s \le f, \text{ so } a \ge \sup \left\{ \int_{X} s d\mu, s \in \mathcal{E}_{+}, s \le f \right\} = \int_{X} f d\mu \text{ by Theorem.5.3.4, then } a = \int_{X} f d\mu. \blacksquare$$

Remark. Theorem.**3.5.** is not valid in general for decreasing sequences (f_n) as is shown by the following example: let $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu)$ be the Borel measure space and $f_n = I_{]n,\infty[}$, then f_n decreases to 0 but $\lim_n \int_X f_n d\mu = \infty$.

Lemma 3.6. (Fatou Lemma)

Let (f_n) be any sequence in \mathcal{M}_+ , then:

$$\int_{X} \liminf_{n} f_n \, d\mu \leq \liminf_{n} \iint_{X} f_n \, d\mu$$
Proof. Put $F_k = \inf_{n \geq k} f_n$ then F_k is increasing in \mathcal{M}_+ to $\liminf_n f_n$,
so by Theorem.5.3.5, $\lim_{k} \iint_{X} F_k \cdot d\mu = \iint_{X} \liminf_{n} f_n \, d\mu$.
But $F_k \leq f_n, \forall n \geq k$, which implies $\iint_{X} F_k \cdot d\mu \leq \inf_{n \geq k} \iint_{X} f_n \, d\mu$ and then
making $k \longrightarrow \infty$ we get $\lim_{k} \iint_{X} F_k \cdot d\mu = \iint_{X} \liminf_{n} f_n \, d\mu \leq \liminf_{k} \iint_{n \geq k} f_n \, d\mu =$
 $\liminf_{n} \iint_{X} f_n \, d\mu$.

4. Exercises

29.(*a*) Let $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ be the counting measure on \mathbb{N} . If $f : \mathbb{N} \longrightarrow [0, \infty[$ is given by $f(i) = a_i \ i \in \mathbb{N}$ prove that:

$$\int_{\mathbb{N}} f d\mu = \sum_{i} a_{i}$$

(b) Let $\mu = \delta_{x_0}$ be the Dirac measure on the power set $\mathcal{P}(X)$ of X.

then for any $f: X \longrightarrow [0, \infty[, \int_X f.d\mu = f(x_0)]$. **30.**Let (f_n) be any sequence in \mathcal{M}_+ , prove that $\sum_n f_n \in \mathcal{M}_+$ and:

$$\int\limits_{X} \sum_{n} f_n \, d\mu = \sum_{n} \int\limits_{X} f_n \, d\mu$$

(Hint $\sum_{i=1}^{n} f_i$ increases to $\sum_{n} f_n$ and use Theorem.3.5). **31.**Let $f \in \mathcal{M}_+$

(a) Prove that the set function $\nu : A \longrightarrow \int f d\mu$, defined on \mathcal{F} is a positive measure

(b) If
$$g \in \mathcal{M}_+$$
 prove that $\int_X g.d\nu = \int_X f.g.d\mu$
(Hint: check (b) for $g \in \mathcal{E}_+$ and apply Theorem **3.5** for $g \in \mathcal{M}_+$)

32.Let (f_n) be a sequence in \mathcal{M}_+ with $\lim_n f_n(x) = f(x), \forall x \in X$ for some $f \in \mathcal{M}_+$. Suppose $\sup_n \int_X f_n d\mu < \infty$, and prove that $\int_X f d\mu < \infty$

(Apply Fatou Lemma 3.6)

33.Let (f_n) be a decreasing sequence in \mathcal{M}_+ such that

$$\int_{X} f_{n_0} d\mu < \infty, \text{ for some } n_0 \ge 1$$

Prove that $\lim_{n \to X} \int_X f_n d\mu = \int_X \lim_n f_n d\mu$

(Hint: apply Theorem **3.5** to the increasing positive sequence $(f_{n_0} - f_n) \ n \ge n_0$) **34.**Let the interval]0, 1[of real numbers be endowed with Lebesgue measure. Apply Fatou Lemma to the following sequence: $f_n(m) = m \ 0 \le m \le \frac{1}{2}$ and $f_n(m) = 0, 1 \ge m \ge \frac{1}{2}$

 $f_n(x) = n, 0 \le x \le \frac{1}{n}$ and $f_n(x) = 0, 1 > x > \frac{1}{n}$.

5. Integration of Complex Functions

Definition.5.1.

Let $\mathcal{L}_{1}(\mu)$ be the subset of $\mathcal{M}(X,\mathbb{C})$ defined by:

$$\mathcal{L}_{1}(\mu) = \left\{ f \in \mathcal{M}(X, \mathbb{C}) : \int_{X} |f| \, .d\mu < \infty \right\}$$

where $\mathcal{M}(X, \mathbb{C}) = \{f : X \longrightarrow \mathbb{C} \mid f \text{ measurable}\}$ (see Definitions 1.1 and 1.2) if $f = u + iv \in \mathcal{L}_1(\mu)$ we define the integral of f by:

$$\int\limits_X f.d\mu = \int\limits_X u.d\mu + i \int\limits_X v.d\mu = \int\limits_X u^+.d\mu - \int\limits_X u^-.d\mu + i \int\limits_X v^+.d\mu - i \int\limits_X v^-.d\mu$$
this integral is well defined since u^+, u^-, v^+, v^- are less then $|f|$.

If f is real valued, we have v = 0 and $\int_X f d\mu = \int_X u^+ d\mu - \int_X u^- d\mu$

Definition.5.2.

If
$$f \in \mathcal{M}(X, \overline{\mathbb{R}})$$
 we define the integral of f by: $\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$

provided that $\int_X f^+ d\mu < \infty$ or $\int_X f^- d\mu < \infty$

Proposition.5.3.

 $\mathcal{L}_{1}(\mu)$ is a vector space on the field \mathbb{C} and we have

$$\int_{X} (\alpha f + \beta g) . d\mu = \alpha \int_{X} f . d\mu + \beta \int_{X} g . d\mu$$

Proof. Use the following facts:

 $\begin{aligned} |\alpha f + \beta g| &\leq |\alpha| \, . \, |f| + |\beta| \, . \, |g| \text{ and} \\ f &= u + iv = u^+ - u^- + iv^+ - iv^-, \, g = z + iw = z^+ - z^- + iw^+ - iw^- \end{aligned}$ then apply Definition 5.1.

Lemma.5.4.

Let f, g be in $\mathcal{L}_1(\mu)$ such that $f = g \ \mu - a.e.$ then $\int_{-\pi} f d\mu = \int_{-\pi} g d\mu$ **Proof.** Let $E = \{x : f(x) = g(x)\}$ then $\mu(E^{c}) = 0$ on the other hand we have $\int_{E^c} f.d\mu = \int_{E^c} g.d\mu = 0$ by point (5) Proposition **3.3** applied to the integrals of f^+, f^-, g^+, g^- , since $f.I_E = g.I_E$ we deduce that $\int f.d\mu = \int g.d\mu$ that is $\int f.d\mu = \int g.d\mu$.

$$\int_{E} f d\mu = \int_{E} g d\mu \text{ that is } \int_{X} f d\mu = \int_{X} g d\mu.$$

By the same way one can prove: Proposition.5.5.

(1) If f, g are real valued in $\mathcal{L}_1(\mu)$ and $f \leq g.\mu - a.e.$ then $\int_{\mathcal{L}} f.d\mu \leq \int_{\mathcal{L}} g.d\mu$ (2) $\left| \int f.d\mu \right| \leq \int |f|.d\mu$ for all f in $\mathcal{L}_1(\mu)$. (3) If $\in \mathcal{M}_+$ and $\int f d\mu = 0$ then $f = 0 \ \mu - a.e.$ on E(4) If $f \in \mathcal{L}_1(\mu)$ and $\int f d\mu = 0$ for all $E \in \mathcal{F}$ then $f = 0 \ \mu - a.e.$ (5) If $f \in \mathcal{M}(X, \mathbb{R})$ and $\int_{Y} |f| d\mu < \infty$ then $\mu\{|f| = +\infty\} = 0$, i.e f is finite $\mu - a.e.$ Corollary. Let f, g be in $\mathcal{L}_1(\mu)$: (a) $\int_{E} f.d\mu = \int_{E} g.d\mu \ \forall E \in \mathcal{F} \Longrightarrow f = g.\mu - a.e.$

(b) If
$$f, g$$
 are real valued then $\int_{E} f d\mu \leq \int_{E} g d\mu, \forall E \in \mathcal{F} \Longrightarrow f \leq g \mu - a.e.$

6. The Banach Space $L_1(\mu)$

Definition 6.1

The binary relation $f = g \ \mu - a.e$ is an equivalence relation on $\mathcal{L}_1(\mu)$ Let $L_1(\mu)$ be the quotient of $\mathcal{L}_1(\mu)$ by this equivalence relation, that is $L_1(\mu)$ is the set of equivalence classes in $\mathcal{L}_1(\mu)$.

It is well known that $L_1(\mu)$ is a vector space on \mathbb{R} with the operations defined by: class(x) + class(y) = class(x + y) and $\alpha.class(x) = class(\alpha.x)$.

In the sequel we consider elements of $L_1(\mu)$ as functions although they are classes of functions.

If $f \in L_1(\mu)$, formula $||f|| = \int_X |f| d\mu$ defines a norm on $L_1(\mu)$ Theorem 6.2

Theorem.6.2

Endowed with the norm $||f|| = \int_X |f| d\mu$ the space $L_1(\mu)$ is a Banach space. **Proof** Let (f_1) be a Cauchy sequence in $L_1(\mu)$ then we have:

Proof. Let (f_n) be a Cauchy sequence in $L_1(\mu)$ then we have:

 $\forall j \geq 1, \exists N_j \geq 1 \text{ such that } n, m \geq N_j \implies ||f_n - f_m|| < \frac{1}{2^j}$ let us define the strictly increasing subsequence $n_1 < n_2 < n_3 < \dots$ by the

following recipe:

$$\begin{split} n_1 &= N_1, n_2 = \max\left(n_1 + 1, N_2\right),, n_j = \max\left(n_{j-1} + 1, N_j\right), ... \\ \text{then we have: } \left\|f_{n_{j+1}} - f_{n_j}\right\| < \frac{1}{2^j}, ..\forall j = 1, 2, ... \end{split}$$

now consider the functions: $g_k = \sum_{j=1}^k \left| f_{n_{j+1}} - f_{n_j} \right|$ and $g = \sum_{j=1}^\infty \left| f_{n_{j+1}} - f_{n_j} \right|$ $\|g_k\| \le \sum_{j=1}^k \left\| f_{n_{j+1}} - f_{n_j} \right\| \le \sum_{j=1}^k \frac{1}{2^j} \le \sum_{j=1}^\infty \frac{1}{2^j} < 1$ and also $\|g\| < 1$ so g is integrable $\Longrightarrow g$ is finite $\mu - a.e$

let us define the function $f: X \longrightarrow \mathbb{R}$ by $f(x) = f_{n_1}(x) + \sum_{j=1}^{\infty} \left(f_{n_{j+1}}(x) - f_{n_j}(x) \right)$ then

we have obviously $f(x) = \lim_{i \to \infty} f_{n_j}(x)$

now let us observe that the sequence (f_{n_j}) is cauchy since it is a subsequence of (f_n) which is cauchy so

$$\forall \epsilon > 0, .. \exists N_{\epsilon} \ge 1 : n_j, m \ge N \Longrightarrow \left\| f_{n_j} - f_m \right\| = \int_X \left| f_{n_j} - f_m \right| . d\mu < \epsilon$$
 by Fatou lemma **3.6** applied for n_j we get $\int_X \liminf_{n_j} \left| f_{n_j} - f_m \right| . d\mu = \int_X \left| f - f_m \right| . d\mu \le \liminf_{n_j} \int_X \left| f_{n_j} - f_m \right| . d\mu \le \lim_{n_j} \inf_{n_j} \int_X \left| f_{n_j} - f_m \right| . d\mu < \epsilon.$ So $f \in L_1(\mu)$ and $\lim_m \int_X \left| f - f_m \right| . d\mu = 0.$

Now we give one of the most famous convergence theorem of Lebesgue integration theory Theorem.6.3 (Lebesgue's dominated convergence theorem)

Let (f_n) be a sequence in $L_1(\mu)$ such that:

(a) f_n converges $\mu - a.e$ to a function f

(b) there is g in $L_1(\mu)$ such that $\forall n \ge 1 ||f_n| \le |g|| \mu - a.e$ Then the function f is in $L_1(\mu)$ and $\lim_n \int_X |f_n - f| d\mu = 0$

in particular $\lim_{n} \int_{X} f_n \ d\mu = \int_{X} f \ d\mu$

Proof. Put $E = \{x : f_n(x) \text{ converges to } f(x)\} \cup \left\{\bigcup_n \{|f_n| \le |g|\}\right\}$ then $\mu(E^c) = 0$

We can assume that f_n converges everywhere to a function fand that $|f_n| \leq |g|$ everywhere $\forall n \geq 1$ (if necessary replace f_n by $F_n = f_n I_E$ and g by $G = gI_E$) first since $|f_n| \leq |g|$ everywhere $\forall n \geq 1$ and f_n converges everywhere to f we

deduce that $|f| \leq |g|$ and $|f_n - f| \leq 2g$ so $2g - |f_n - f| \geq 0$ applying Fatou lemma **3.6** to the function $2g - |f_n - f|$ we get:

$$\int_{X} \liminf_{n} \left[2g - |f_{n} - f| \right] . d\mu = \int_{X} \left[2g . - \limsup_{n} |f_{n} - f| \right] . d\mu = \int_{X} 2g . d\mu \le \lim_{n} \inf_{n} \left[\int_{X} \left[2g - |f_{n} - f| \right] . d\mu = \int_{X} 2g . d\mu - \lim_{n} \sup_{n} \int_{X} |f_{n} - f| . d\mu \text{ and so } \int_{X} 2g . d\mu \le \int_{X} 2g . d\mu - \lim_{n} \sup_{n} \int_{X} |f_{n} - f| . d\mu \text{ and so } \int_{X} 2g . d\mu \le \int_{X} 2g . d\mu - \lim_{n} \sup_{n} \int_{X} |f_{n} - f| . d\mu \text{ that } \lim_{n} \sup_{n} \int_{X} |f_{n} - f| . d\mu = 0.$$

Theorem.6.4 (Bounded convergence theorem)

Suppose $\mu(X) < \infty$. Let (f_n) be a sequence in $L_1(\mu)$ such that $|f_n| \leq M$ $\mu - a.e$ for some constant M > 0 then the conclusions of Theorem **6.3** are valid.

Application.6.5 (continuity of integrals depending on a parameter)

Let T be an interval of \mathbb{R} and $f: X \times T \longrightarrow \mathbb{R}$ a function such that:

- (a) for each $t \in T$ the function $x \longrightarrow f(x, t)$ is in $L_1(\mu)$
- (b) there is g in $L_1(\mu)$ such that $|f(x,t)| \le |g(x)| \quad \mu a.e$ for all $t \in T$

then we have $\lim_{t \to t_0} \int_X f(x,t) \ d\mu = \int_X f(x,t_0) \ d\mu$

Application.6.6 (Derivative of integrals depending on a parameter)

Let T be an open set of \mathbb{R} and $f: X \times T \longrightarrow \mathbb{R}$ a function such that:

- (a) for each $t \in T$ the function $x \longrightarrow f(x, t)$ is in $L_1(\mu)$
- (b) the function $t \longrightarrow f(x, t)$ derivable on T for each $x \in X$
- (c) there is $g \in L_1(\mu) \left| \frac{d}{dt} f(x,t) \right| \le |g(x)| \quad \mu a.e \text{ for all } t \in T$

Then the function $t \longrightarrow \int_{X} f(x,t) d\mu$ is differentiable on Tand $\frac{d}{dt} \int_{X} f(x,t) d\mu = \int_{X} \frac{d}{dt} f(x,t) d\mu$

Application.6.7 (Change of variable formula)

Let (X, \mathcal{F}, μ) be a measure space and let (Y, \mathcal{G}) be a measurable space: If $\varphi : X \longrightarrow Y$ is a measurable mapping from (X, \mathcal{F}) into (Y, \mathcal{G}) then: (1) the set function $\nu : \mathcal{G} \longrightarrow [0, \infty]$ given by $G \in \mathcal{G}, \nu (G) = \mu (\varphi^{-1} (G))$ is a measure on (Y, \mathcal{G})

(2) for every function $g: Y \longrightarrow \mathbb{C}$, ν -integrable the function $g \circ \varphi$ is μ -integrable and

$$(*) \int_{Y} g.d\nu = \int_{X} g \circ \varphi.d\mu$$
$$(**) \int_{E} g.d\nu = \int_{\varphi^{-1}(E)} g \circ \varphi.d\mu \ \forall E \in \mathcal{G}.$$

As a particular case take $(Y, \mathcal{G}) = (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ and $\varphi : X \longrightarrow \mathbb{R}$, μ -integrable put $\nu(B) = \hat{\mu}(B) = \mu(\varphi^{-1}(B))$ for $B \in \mathcal{B}_{\mathbb{R}}$

then we get from(**): $\int_{\varphi^{-1}(B)} \varphi d\mu = \int_{B} t d\hat{\mu}$

Application.6.8

Let (X, \mathcal{F}, μ) be a measure space and let $f \in \mathcal{M}_+$ then the set function $\mu : \mathcal{F} \longrightarrow [0, \infty]$ given by: $A \in \mathcal{F} \mu(A) =$

the set function
$$\nu : \mathcal{F} \longrightarrow [0, \infty]$$
 given by: $A \in \mathcal{F}, \nu(A) = \int_{A} f d\mu$
is a positive measure on \mathcal{F} and we have:

$$\int_{X} g.d\nu = \int_{X} f.g.d\mu, \text{ for every } g \in \mathcal{M}_{+}.$$

7. The L_p -Spaces

ſ

Let (X, \mathcal{F}, μ) be a measure space. This section concerns a short description of the L_p -spaces with some important convexity inequalities. **Definition 7.1**

Let $\mathcal{L}_{p}(\mu)$ be the subset of $\mathcal{M}(X,\mathbb{C})$ defined by:

$$\mathcal{L}_{p}(\mu) = \left\{ f \in \mathcal{M}(X, \mathbb{C}) : \int_{X} |f|^{p} . d\mu < \infty \right\}$$

for some real number 0 .

Definition 7.2

Two real positive numbers 0 < p, q < 1 such that p + q = pq or equivalently $\frac{1}{p} + \frac{1}{q} = 1$ are called conjugate exponents. If $p \longrightarrow 1$ then $q \longrightarrow \infty$ so $1, \infty$ are considered as conjugate exponents.

Theorem 7.3

Let $f, g \in \mathcal{M}_+$ and let 0 < p, q < 1 be conjugate exponents then we have:

(1) Hölder's inequality:
$$\int_{X} f.g.d\mu \leq \left\{ \int_{X} f^{p}.d\mu \right\}^{\frac{1}{p}} \cdot \left\{ \int_{X} g^{q}.d\mu \right\}^{\frac{1}{q}}$$
(2) Minkowski's inequality:
$$\left\{ \int_{X} (f+g)^{p}.d\mu \right\}^{\frac{1}{p}} \leq \left\{ \int_{X} f^{p}.d\mu \right\}^{\frac{1}{p}} + \left\{ \int_{X} g^{p}.d\mu \right\}^{\frac{1}{p}}$$

Remark: Using Minkowski's inequality it is not difficult to prove that $\mathcal{L}_{p}(\mu)$ is a vector space over \mathbb{C} .

Definition 7.4 Let 0 be a positive real number

The binary relation $f = g \ \mu - a.e$ is an equivalence relation on $\mathcal{L}_p(\mu)$ Let $L_p(\mu)$ be the quotient of $\mathcal{L}_p(\mu)$ by this equivalence relation, that is $L_p(\mu)$

Let $L_p(\mu)$ be the quotient of $L_p(\mu)$ by this equivalence relation, that is $L_p(\mu)$ is the set of equivalence classes in $\mathcal{L}_p(\mu)$.

It is well known that $L_p(\mu)$ is a vector space on \mathbb{R} with the operations defined by: class(x) + class(y) = class(x + y) and $\alpha.class(x) = class(\alpha.x)$.

In the sequel we consider elements of $L_{p}(\mu)$ as functions although they are classes of functions.

Theorem 7.5

If $f \in L_p(\mu)$, formula $\|f\|_p = \left\{ \int_X |f|^p d\mu \right\}^{\frac{1}{p}}$

defines a norm on $L_p(\mu)$ and with respect to this norm $L_p(\mu)$ is a Banach space. (mimic the proof made for L_1 Theorem **6.2**)

Definition 7.6 The Hilbert Space $L_2(\mu)$

1

For p = 2 it is not difficult to see that the norm $||f||_2 = \left\{\int_X |f|^2 d\mu\right\}^{\overline{2}}$ is induced by the inner product $\langle f, g \rangle = \int_X f.\overline{g}.d\mu$, which makes $L_2(\mu)$ a Hilbert space.

8. The Space L_{∞}

Definition 8.1 Let (X, \mathcal{F}, μ) be a measure space. Let $f \in \mathcal{M}_+$ we define the essential supremum of f by: $ess - \sup f = \left\{ \begin{array}{c} \alpha \ge 0 : \mu \left[f > \alpha \right] = 0 \\ \infty \text{ if } \mu \left[f > \alpha \right] > 0, \forall \alpha \ge 0 \end{array} \right\}$ if $f \in \mathcal{M}(X, \mathbb{C})$ we put $N_{\infty}(f) = ess - \sup |f|$

Remark.

For $f \in \mathcal{M}(X, \mathbb{C})$ we have:

 $\alpha \in \{\alpha \ge 0 : \mu \left[|f| > \alpha \right] = 0 \} \iff |f| \le \alpha \ \mu - a.e$

Lemma.8.2

For $f \in \mathcal{M}(X, \mathbb{C})$ we have: $\mu[|f| > N_{\infty}(f)] = 0$, that is $|f| \leq N_{\infty}(f) \ \mu - a.e$

Definition 8.3

Let $\mathcal{L}_{\infty}(\mu)$ be the subset of $\mathcal{M}(X, \mathbb{C})$ defined by: $\mathcal{L}_{\infty}(\mu) = \{f \in \mathcal{M}(X, \mathbb{C}) : N_{\infty}(f) < \infty\}$

It is easy to prove that the binary relation $f = g \ \mu - a.e$ is an equivalence relation on $\mathcal{L}_{\infty}(\mu)$ and $N_{\infty}(f) = N_{\infty}(g)$ if $f = g \ \mu - a.e$

Let $L_{\infty}(\mu)$ be the quotient of $\mathcal{L}_{\infty}(\mu)$ by this equivalence relation, that is $L_{\infty}(\mu)$ is the set of equivalence classes in $\mathcal{L}_{\infty}(\mu)$.

Also one can prove that $L_{\infty}(\mu)$ is a vector space on \mathbb{R} with the operations defined by: class(f) + class(g) = class(f + g) and $\alpha.class(f) = class(\alpha.f)$.

In the sequel we consider elements of $L_{\infty}(\mu)$ as functions although they are classes of functions and

Definition 8.3

For any f in $L_{\infty}(\mu)$ define $||f||_{\infty}$ by $N_{\infty}(h)$ where h is any function satisfying $f = h \ \mu - a.e$ then $L_{\infty}(\mu)$ is a vector space on \mathbb{C} and $||f||_{\infty}$ is a norm on $L_{\infty}(\mu)$:

Theorem 8.4

 $L_{\infty}(\mu)$ endowed with the norm $\|f\|_{\infty}$ defined above is a Banach space.

An important property of the sequences (f_n) in the spaces L_p is the following: Theorem 8.5

Let (f_n) be a cauchy sequence in L_p that is a sequence (f_n) satisfying $\lim_{m,n} ||f_n - f_m||_p = 0$ then:

- (1) For $1 \le p < \infty$, the sequence (f_n) contains a subsequence (f_{n_j}) converging $\mu a.e$ to a function $f \in L_p$
- (2) For $p = \infty$ the sequence (f_n) itself converges uniformly $\mu - a.e$ to a function $f \in L_{\infty}$.

9. Duality of the L_p -Spaces

Recall.

1 Let X, Y be normed spaces. A linear operator T from a normed space X into a normed space Y is said to be bounded if there is a constant M > 0 such that:

$$\left\|T\left(x\right)\right\| \le M. \left\|x\right\|, \forall x \in X$$

This definition means that if B is a bounded subset of X, the set $\{T(x), x \in B\}$ is bounded in Y. For instance if $B = \{x : ||x|| \le 1\}$ then $||T(x)|| \le M, \forall x \in B$. **2** Let T be a bounded operator from X into Y. Define:

$$||T|| = \sup\left\{\frac{||T(x)||}{||x||} : x \in X, x \neq 0\right\}$$

$$m_1 = \sup\left\{||T(x)|| : x \in X, ||x|| = 1\right\}$$

$$m_2 = \sup\left\{||T(x)|| : x \in X, ||x|| < 1\right\}$$

$$m_3 = \sup\left\{||T(x)|| : x \in X, ||x|| \le 1\right\}$$

Then $m_1 = m_2 = m_3 = ||T|| < \infty$ and we have:

$$||T(x)|| \le ||T|| ||x||, \forall x \in X$$

3 If X is a normed space the strong dual of X is the Banach space X^* of continuous linear functionals on X. If $x \in X$ and $x^* \in X^*$, we denote $x^*(x)$ by $\langle x^*, x \rangle$.

Definition 9.1

Let (X, \mathcal{F}, μ) be a measure space and let $1 \leq p, q \leq \infty$ be conjugate exponents. For g fixed in L_q let us define the functional φ_q on L_p by:

$$\varphi_g: L_p \longrightarrow \mathbb{C}, \quad f \in L_p \quad \varphi_g(f) = \int_X f.g.d\mu$$

It is clear that φ_q is well defined and we have:

Theorem 9.2

- (a) φ_g is linear continuous on L_p for any $1 \le p \le \infty$. Moreover if p > 1 we have $\|\varphi_g\| = \|g\|_q$
- where $\|\varphi_g\| = \sup \{ \|\varphi_g(f)\| : f \in L_p, \|f\| \le 1 \}$ (b) If μ is σ -finite (Definition **3.3** Chapter **2**) then we have $\|\varphi_g\| = \|g\|_{\infty}$ for p = 1.

Theorem 9.3 $(L_p \text{ Duality})$

Let (X, \mathcal{F}, μ) be a measure space with $\mu \sigma$ -finite and let $\varphi : L_p \longrightarrow \mathbb{C}$ be a continuous linear functional on L_p If $1 \leq p < \infty$ there is a unique $g \in L_q$, for q conjugate exponent of p such that

$$\varphi(f) = \int_X f.g.d\mu \ \forall f \in L_p \text{ and } \|\varphi\| = \|g\|$$

In other words the strong dual $(L_p)^*$ of L_p is linearly isometric to L_q for q conjugate exponent of p.

Remark

(a) For p = 1 Theorem 9.3 is not true in general if μ is not σ -finite as is shown by the following example:

take $X = \{a, b\}, \mu(a) = 1, \mu(\phi) = 0, \mu(b) = \mu(X) = \infty$ then μ is not σ -finite. In this case we have

 $L_{1} = \{f : \{a, b\} \longrightarrow \mathbb{C}, \text{ such that } f(b) = 0\} = \mathbb{C}$ so $L_{1} = (L_{1})^{*} = \mathbb{C}, \text{ but } L_{\infty} = \begin{cases} f : \{a, b\} \longrightarrow \mathbb{C}, \text{ such that} \\ \sup(f(a), f(b)) < \infty \end{cases} \} = \mathbb{C}^{2}.$ (b) The Theorem **9.3** is not true in general for the space L_{∞} even if μ is finite

(b) The Theorem 9.3 is not true in general for the space L_{∞} even if μ is finite in other words we have $L_1 \subset (L_{\infty})^*$ and the inclusion is strict in general. Here is an example:

(c) Let [0,1] the unit interval endowed with the Lebesgue μ and let C[0,1] be the space of real continuous functions on [0,1] equipped with the uniform norm $||f|| = \sup \{|f(x)|, x \in [0,1]\}$. Let us observe that if f, g are continuous

and satisfying f = g $\mu - a.e$ then f = g everywhere, indeed let $F \subset [0,1]$ be measurable with $\mu(F) = 0$ and $f(x) = g(x) \ \forall x \in [0,1] \ F$, so the set $A = \{x \in [0,1] : |f(x) - g(x)| > 0\} = F$, but A is open by the continuity of f,g, then since $\mu(F) = 0$ the equality A = F implies $F = \phi$ and so f = geverywhere on [0,1]. Consequently the class of f for the equivalence relation f = g $\mu - a.e$ is reduced to only f. Since any $f \in C[0,1]$ is bounded we have $C[0,1] \subset L_{\infty}$.

Now let us consider the linear functional $\varphi : C[0,1] \longrightarrow \mathbb{R}$ given by $\varphi(f) = f(0), \varphi$ is continuous since $|\varphi(f)| \le ||f|| = \sup \{|f(x)|, x \in [0,1]\}$ and $||\varphi|| \le 1$. By Hahn-Banach Theorem, φ can be extended to a continuous linear functional on all of L_{∞} ; if there were some $g \in L_1$ such that $\varphi(f) = \int_{[0,1]} f.g.d\mu \ \forall f \in L_{\infty}$, we would have $f(0) = \int_{[0,1]} f.g.d\mu \ \forall f \in C[0,1]$. Taking $f(x) = \cos(nx)$ we get $f(0) = 1 = \int_{[0,1]} \cos(nx) .g.d\mu \ \forall n \ge 1$, this leads to a contradiction since by the **Riemann-Lebesgue Lemma**, (see Theorem **10.6** below) we have $\lim_{n \longrightarrow \infty} \int_a^b f(x) \cos(nx) .dx = 0$.

10. Riemann Integral and Lebesgue Integral

In this section we consider a **bounded** function $f : [a, b] \longrightarrow \mathbb{R}$, defined on the interval [a, b] with values in \mathbb{R} .

10.1 Definition (Darboux sums)

Let $\pi = \{I_1, I_2, ..., I_n\}$ be a finite partition of [a, b] into intervals. Put $m = \inf \{f(x), x \in [a, b]\}$ and $M = \sup \{f(x), x \in [a, b]\}$ $m_k = \inf \{f(x), x \in I_k\}$ and $M_k = \sup \{f(x), x \in I_k\}, 1 \le k \le n$. We define the lower and upper Darboux sums of fwith respect to the partition π by:

$$\underline{S}_{\pi}(f) = \sum_{k=1}^{k=n} m_k . \lambda(I_k) \text{ and } \overline{S}_{\pi} = \sum_{k=1}^{k=n} M_k . \lambda(I_k)$$

where $\lambda(I)$ is the length of the interval I.

10.2 Definition (Lower integral and Upper integral)

The Lower integral of f is defined by: $\underline{S}(f) = \sup \underline{S}_{\pi}(f)$ The Upper integral of f is defined by:

The Upper integral of f is defined by: $\overline{S}(f) = \inf \overline{S}_{\pi}$

where the sup and inf are taken over the finite partitions π of [a, b]. It is clear that $\underline{S}(f) \leq \overline{S}(f)$. We say that f is integrable if $\underline{S}(f) = \overline{S}(f)$.

We define the Riemann integral of f on [a, b] by $\int_{a}^{b} f(x) dx = \underline{S}(f) = \overline{S}(f)$.

10.3 Theorem

A **bounded** function $f : [a, b] \longrightarrow \mathbb{R}$ is Riemann integrable if and only if it is continuous $\mu - a.e$, in this case the Riemann integral is equal to the Lebesgue integral, that is we have:

$$\int_{a}^{b} f(x) \, dx = \int_{[a,b]} f \, d\mu, \text{ where } \mu \text{ is the Lebesgue measure on } [a,b] \, .$$

10.4 Theorem

Let $f_n:[a,b] \to \mathbb{R}$ be Riemann integrable functions and assume that f_n converges uniformly to f on [a,b]. Then f is Riemann integrable

and
$$\lim_{n} \int_{a}^{b} f_{n} dx = \int_{a}^{b} f dx$$

If we replace uniform convergence by pointwise convergence, then the above Theorem shows that the limit function f does not have to be Riemann integrable. Therefore the above theorem is not true if we replace uniform convergence by pointwise convergence. There is however a version of the above theorem for pointwise convergence if we add the hypothesis that the limit function is Riemann integrable. This theorem is called **Arzela's Theorem** for the Riemann integral, which is a special case of the Bounded Convergence Theorem of Lebesgue for the Lebesgue integral.

10.5 Theorem (Arzela's Theorem). Let $f, f_n:[a, b] \to \mathbb{R}$ be Riemann integrable functions and assume that f_n converges pointwise to f on [a, b]. If there exists M such that $|f_n(x)| \le M$ for all $n \ge 1$. Then $\lim_n \int_a^b f_n dx = \int_a^b f dx$.

10.6 Theorem (Riemann-Lebesgue Lemma)

If f is an intégrable function on the interval [a, b], then :

$$\lim_{n \to \infty} \int_{a}^{b} f(x) \cos(nx) dx = 0 \text{ and } \lim_{n \to \infty} \int_{a}^{b} f(x) \sin(nx) dx = 0$$

The proof is easy if f is bounded or if f is C^1 using intégration by parts.