Chapter 6 COMPLEX MEASURES

Absolute Continuity and Representation Theorems

Introduction

Let (X, \mathcal{F}, μ) be a measure space and let $f: X \longrightarrow \mathbb{C}$ be a complex μ -integrable function. Let us consider the set function ν given by:

$$\nu(A) = \int_A f \ d\mu, \ A \in \mathcal{F}$$
 (*)

Such set function has the following properties:

- (1) $(\sigma$ -additivity): For any sequence (A_n) of pairwise disjoint sets A_n in \mathcal{F} we have $\nu\left(\bigcup_n A_n\right) = \sum_n \nu\left(A_n\right)$
- (2) (absolute continuity): Let $A \in \mathcal{F}$ with $\mu(A) = 0$ then $\nu(A) = 0$, because $f.I_A = 0$ $\mu a.e$, we say that ν is absolutely continuous with respect to μ . This relation will be denoted by $\nu \ll \mu$
- (3). If f is real valued let us write $f = f^+ f^-$ then $\nu\left(A\right) = \int_A f \ d\mu = \int_A f^+ d\mu \int_A f^- d\mu$ so we have $\nu\left(A\right) = \nu_1\left(A\right) \nu_2\left(A\right)$, with $\nu_1\left(A\right) = \int_A f^+ d\mu$ and $\nu_2\left(A\right) = \int_A f^- d\mu$ positive and σ -additive.

In this chapter we consider complex valued σ -additive set functions $\lambda : \mathcal{F} \longrightarrow \mathbb{C}$ and we will show successively:

(a) λ is of bounded variation:

more precisely there is a positive finite measure $|\lambda|$ on \mathcal{F} such that

$$|\lambda(E)| \le |\lambda|(E), \ \forall E \in \mathcal{F}$$

 $|\lambda|$ is called the total variation of λ .

(b) if λ is real valued then it can be written as $\lambda = \lambda^+ - \lambda^-$ where λ^+, λ^- are finite positive measures.

This is called the Jordan decomposition.

(c) λ has the integral form (*) for some complex μ -integrable function f provided $\lambda \ll \mu$ for some σ -finite positive measure μ .

This is the Radon-Nicodym Theorem.

1. Complex Measures property

Definition 1.1

Let (X, \mathcal{F}) be a measurable space and $\lambda : \mathcal{F} \longrightarrow \mathbb{C}$ a complex set function. We say that λ is a complex measure if for every sequence (A_n) of pairwise disjoint sets in \mathcal{F} we have $\lambda \left(\bigcup_n A_n \right) = \sum_n \lambda \left(A_n \right)$.

Remark (1) Let $\sum_{n} z_{n} = M$ be a convergent series of real or complex numbers. We say that the series is unconditionally convergent to M if for any permutation (i.e bijection) $\sigma: \mathbb{N} \longrightarrow \mathbb{N}$, the series $\sum_{n} z_{\sigma(n)}$ converges to M. For real or complex numbers series unconditional convergence is equivalent to absolute convergence by **Riemann series theorem.**

- (2) Let $\sigma: \mathbb{N} \longrightarrow \mathbb{N}$ be a permutation of \mathbb{N} then $\bigcup_{n} A_{n} = \bigcup_{n} A_{\sigma(n)} = A$ and the sets $(A_{\sigma(n)})$ are pairwise disjoint so $\lambda(A) = \sum_{n=0}^{\infty} \lambda(A_n) = \sum_{n=0}^{\infty} \lambda(A_{\sigma(n)})$, since σ is arbitrary this implies that the series $\sum_{n} \lambda(A_n)$ is unconditionally convergent and then absolutely convergent.
- (3) If λ is a complex measure on (X, \mathcal{F}) then one can write $\lambda = \operatorname{Re}(\lambda) + i \operatorname{Im}(\lambda)$, where it is easy to see that Re (λ) and Im (λ) are real σ -additive set functions on (X, \mathcal{F}) . This simple observation leads to the following definition:

Definition 1.2

Let (X, \mathcal{F}) be a measurable space and $\mu : \mathcal{F} \longrightarrow \mathbb{R}$ a real set function. We say that μ is a real measure if for every sequence (A_n) of pairwise disjoint

sets in \mathcal{F} we have $\mu\left(\bigcup_{n}A_{n}\right)=\sum_{n}\mu\left(A_{n}\right)$. Let $\sigma:\mathbb{N}\longrightarrow\mathbb{N}$ be a permutation of \mathbb{N} then $\bigcup_{n}A_{n}=\bigcup_{n}A_{\sigma(n)}=A$ and the sets $(A_{\sigma(n)})$ are pairwise disjoint so $\mu(A) = \sum_{n} \mu(A_n) = \sum_{n} \mu(A_{\sigma(n)})$, since σ is arbitrary this implies that the series $\sum \mu(A_n)$ is unconditionally convergent and then absolutely convergent (see Remark (1))

2. Total variation of a complex measure

Let λ be a complex measure on (X, \mathcal{F})

Among all positive measures μ on (X, \mathcal{F}) satisfying

 $|\lambda(E)| < \mu(E), \forall E \in \mathcal{F}$, there one and only one called the Total variation of λ and given by the following theorem:

Theorem 2.1 If λ is a complex measure on (X, \mathcal{F})

let us define the positive set function $|\lambda|: \mathcal{F} \longrightarrow [0, \infty]$ by:

$$E \in \mathcal{F}, |\lambda|(E) = \sup \left\{ \sum_{n} |\lambda(E_n)|, (E_n) \text{ partition of } E \text{ in } \mathcal{F} \right\}$$

the supremum being taken over all partitions (E_n) of E in \mathcal{F} . Then:

 $|\lambda|$ is a positive bounded measure on (X, \mathcal{F}) satisfying

$$|\lambda(E)| \le |\lambda(E)|, \ \forall E \in \mathcal{F}$$

moreover $|\lambda|$ is the smallest positive bounded measure with this property.

Proof. Let E be a set in \mathcal{F}

If (E_n) is a sequence of pairwise disjoint sets in \mathcal{F} we have to prove that:

$$|\lambda| \left(\bigcup_{n} E_{n}\right) = \sum_{n} |\lambda| \left(E_{n}\right)$$

 $|\lambda| \left(\bigcup_{n} E_{n}\right) = \sum_{n} |\lambda| (E_{n})$ let us put $E = \bigcup_{n} E_{n}$ and take a partition (A_{m}) of E in \mathcal{F} then we have:

 $(A_m \cap E_n)_{n \ge 1}$ is a partition of A_m $(A_m \cap E_n)_{m \ge 1}$ is a partition of E_n

so
$$|\lambda(A_m)| = \left|\sum_n \lambda(A_m \cap E_n)\right| \le \sum_n |\lambda(A_m \cap E_n)|, \forall m \ge 1$$
 and then

$$\sum_{m} |\lambda(A_m)| \le \sum_{m} \sum_{n} |\lambda(A_m \cap E_n)| = \sum_{n} \sum_{m} |\lambda(A_m \cap E_n)|$$

but we have from the definition of $|\lambda| \sum |\lambda(A_m \cap E_n)| \le |\lambda|(E_n) \quad \forall n \ge 1$ therefore we deduce that $\sum_{m} |\lambda(A_m)| \stackrel{m}{\leq} \sum_{n} |\lambda|(E_n)$ inequality valid for every partition (A_m) of E and implies $|\lambda|(E) \leq \sum_{n} |\lambda|(E_n)$ by the definition of $|\lambda|(E)$.

It remains to prove that $\sum_{n} |\lambda| (E_n) \leq |\lambda| (E)$, to do this we use characteristic property of the supremum: for each $n \geq 1$ let $a_n > 0$ be any real number such that $a_n < |\lambda|(E_n)$, then from the definition of $|\lambda|(E_n)$ there is a partition such that $a_n < |\lambda| (E_n)$, then from the definition of $|\lambda| (E_n)$ there is a partition $(A_{mn})_{m\geq 1}$ of E_n with $a_n < \sum_m |\lambda(A_{mn})|$, but we have $E = . \cup .E_n = \bigcup_m .A_{mn}$ and $\sum_n a_n < \sum_n |\lambda(A_{mn})|$. Since $(A_{mn})_{m,n\geq 1}$ is a partition of E we deduce that $\sum_n \sum_m |\lambda(A_{mn})| \le |\lambda| (E)$ and so $\sum_n a_n < |\lambda| (E)$, but this is true for all $a_n > 0$ satisfying $\sum_n a_n < \sum_n |\lambda| (E_n)$ this implies that $\sum_n |\lambda| (E_n) \le |\lambda| (E)$. The proof of the boundedness of $|\lambda|$ is left to the reader.

Theorem 2.2 If λ is a complex measure on (X, \mathcal{F})

For any increasing or decreasing sequence (A_n) in \mathcal{F} we have

$$\lambda\left(\lim_{n} A_{n}\right) = \lim_{n} \lambda\left(A_{n}\right)$$

 $\lambda\left(\lim_{n}A_{n}\right)=\lim_{n}\lambda\left(A_{n}\right)$ where $\lim_{n}A_{n}$ stands for $\underset{n}{\cup}A_{n}$ in the increasing case

and for $\cap A_n$ in the decreasing one.

Proof.

use the σ -additivity of λ and the fact that $|\lambda(E)| < \infty$, $\forall E \in \mathcal{F}$.

Theorem 2.3

Let $M(X,\mathcal{F})$ be the family of all complex measures on (X,\mathcal{F})

let λ, ν be in $M(X, \mathcal{F})$ and let $\alpha \in \mathbb{C}$, then define:

$$\lambda + \nu$$
, $\alpha \cdot \nu$, $\|\lambda\|$, by the following recipe

$$(\lambda + \nu)(E) = \lambda(E) + \nu(E), (\alpha \cdot \nu)(E) = \alpha \cdot \nu(E), E \in \mathcal{F}$$

 $\|\lambda\| = |\lambda|(X)$

Then $M(X,\mathcal{F})$ is a vector space on \mathbb{C} , and $\|\lambda\|$ is a norm on $M(X,\mathcal{F})$

Moreover $M(X, \mathcal{F})$, endowed with the norm $\|\lambda\|$, is a Banach space.

Proof. see any standard book on measure theory for a classical proof.e.g. [R-F]

3. Hahn-Jordan Decomposition of a Real Measure

Theorem 3.1 Jordan Decomposition of a Real Measure

Let (X, \mathcal{F}) be a measurable space and $\mu : \mathcal{F} \longrightarrow \mathbb{R}$ a real measure (Definition **1.2**)

Let us define the set functions μ^+, μ^- as follows: for each $E \in \mathcal{F}$

$$\mu^{+}\left(E\right) = \sup\left\{\mu\left(F\right) : F \in \mathcal{F}, F \subset E\right\}$$

$$\mu^{-}(E) = -\inf \{ \mu(F) : F \in \mathcal{F}, F \subset E \}$$

Then μ^+, μ^- are positive bounded measures on (X, \mathcal{F}) satisfying:

(i)
$$\mu^{+} = \frac{1}{2} (|\mu| + \mu)$$
 (ii) $\mu^{-} = \frac{1}{2} (|\mu| - \mu)$ (iii) $\mu = \mu^{+} - \mu^{-}$ (Jordan Decomposition)

(iii)
$$\mu = \tilde{\mu}^+ - \mu^-$$
 (Jordan Decomposition)

$$(iv) |\mu| = \mu^+ + \mu^-$$

Proof

First it is enough to prove that μ^+ is a positive bounded measure on (X, \mathcal{F}) because $\mu^- = (-\mu)^+$.

From the definition of the total variation of μ we can see that for $E \in \mathcal{F}$

$$\forall F \in \mathcal{F}, \ F \subset E.....\mu(F) \leq |\mu(F)| \leq |\mu(F)| \leq |\mu(E)| \leq |\mu(X)| \leq \infty$$

so we deduce that μ^+ is positive bounded;

it remains to prove that μ^+ is σ -additive Let (E_n) be pairwise disjoint sets in \mathcal{F} , we have to prove:

$$\mu^+\left(\bigcup_n E_n\right) = \sum_n \mu^+\left(E_n\right)$$

Since $\forall n \geq 1$ $\mu^+(E_n) < \infty$, we have from the definition of μ^+ :

let $\epsilon > 0$ then for each $n \ge 1$, $\exists F_n \subset E_n$ such that $\mu^+(E_n) - \frac{\epsilon}{2^n} < \mu(F_n)$

summing over n we get $\sum \mu^{+}(E_n) - \epsilon < \sum \mu(F_n) = \mu\left(\bigcup_{n} F_n\right)$

but
$$\bigcup_{n} F_{n} \subset \bigcup_{n} E_{n} \Longrightarrow \mu\left(\bigcup_{n} F_{n}\right) \leq \mu^{+}\left(\bigcup_{n} E_{n}\right)$$
, therefore $\sum_{n} \mu^{+}\left(E_{n}\right) - \epsilon < \mu^{+}\left(\bigcup_{n} E_{n}\right)$

since $\epsilon > 0$ is arbitrary, we obtain $\sum_{n} \mu^{+}(E_{n}) \leq \mu^{+}(\bigcup_{n} E_{n})$ after making $\epsilon \longrightarrow 0$.

On the other hand let $F \subset \bigcup_n E_n ... F \in \mathcal{F}$, then $F = \bigcup_n (E_n \cap F)$ and

$$\mu(F) = \sum_{n} \mu(E_n \cap F) \le \sum_{n} \mu^+(E_n)$$
 because $E_n \cap F \subset E_n$

since $F \subset \bigcup_{n} E_n$ is arbitrary in \mathcal{F} , we deduce that $\mu^+ \left(\bigcup_{n} E_n \right) \leq \sum_{n} \mu^+ \left(E_n \right)$

so μ^+ is a positive measure on (X, \mathcal{F}) .

We have (i) = (ii) - (iii) and (iv) = (ii) + (iii)

it is enough to prove (i) because (ii) follows with $\mu^- = (-\mu)^+$

then we get (iii) with (ii) - (i) and (iv) with (ii) + (iii).

So let us prove (i) that is $\mu^+ = \frac{1}{2}(|\mu| + \mu)$:

fix $\epsilon > 0$ then from the definition of the total variation $|\mu|$

there is a partition (E_n) of E in \mathcal{F} such that $(*) |\mu| (E) - \epsilon < \sum |\mu(E_n)|$.

Let us put
$$L = \{l : \mu(E_l) \ge 0\}$$
 and $K = \{k : \mu(E_k) < 0\}$, we get:
$$\sum_n |\mu(E_n)| = \sum_L \mu(E_l) - \sum_K \mu(E_k)$$

now define $F = \bigcup_{L} E_l$ and $G = \bigcup_{K} E_k$, so by the σ -additivity of μ we deduce

$$\mu\left(F\right) = \sum_{L} \mu\left(E_{l}\right)$$
 and $\mu\left(G\right) = \sum_{K} \mu\left(E_{k}\right)$, then $\sum_{n} |\mu\left(E_{n}\right)| = \mu\left(F\right) - \mu\left(G\right)$

therefore we obtain from the inequality (*) that (2*)
$$|\mu|(E) - \epsilon < \sum_{n} |\mu(E_n)| = \mu(F) - \mu(G)$$

but since $E = F \cup G$ we have

$$(3*) \mu(E) = \mu(F) + \mu(G)$$

adding (2*) + (3*) we get:

$$|\mu|(E) + \mu(E) - \epsilon < 2\mu(F)$$

 $\left|\mu\right|\left(E\right)+\mu\left(E\right)-\epsilon<2\mu\left(F\right)$ the definition of μ^{+} implies $\mu\left(F\right)\leq\mu^{+}\left(E\right)$, because $F\subset E$

finally $\frac{1}{2}(|\mu|(E) + \mu(E) - \epsilon) < \mu^{+}(E)$ with nothing depending on ϵ apart ϵ ,

making
$$\epsilon \longrightarrow 0$$
 we get $\frac{1}{2} (|\mu|(E) + \mu(E)) \le \mu^{+}(E)$. This inequality cannot be strict:

indeed suppose that we have $\frac{1}{2}(|\mu|(E) + \mu(E)) < \mu^{+}(E)$, this would imply

the existence of an F in \mathcal{F} with $F \subset E$ and $\frac{1}{2}\left(\left|\mu\right|\left(E\right) + \mu\left(E\right)\right) < \mu\left(F\right) < \mu^{+}\left(E\right)$

but the set function $\frac{1}{2}(|\mu|(E) + \mu(E))$ is a positive measure on (X, \mathcal{F}) ,

since
$$F \subset E$$
 we should have $\frac{1}{2}(|\mu|(F) + \mu(F)) \leq \frac{1}{2}(|\mu|(E) + \mu(E))$

since
$$\mu(F) \le |\mu(F)|$$
, we have $\mu(F) = \frac{1}{2} (\mu(F) + \mu(F)) \le \frac{1}{2} (|\mu(F) + \mu(F)|) \le \frac{1}{2$

$$\frac{1}{2}\left(\left| \mu \right| \left(E \right) + \mu \left(E \right) \right) < \mu \left(F \right) \text{ which is absurd}$$

so we deduce that
$$\frac{1}{2}\left(\left|\mu\right|\left(E\right)+\mu\left(E\right)\right)=\mu^{+}\left(E\right)$$
.

Remark.

The Jordan decomposition of a real measure μ as difference of two positive bounded measures $\mu = \mu^+ - \mu^-$ is not unique, since for any positive bounded measure ν one can write $\mu = (\mu^+ + \nu) - (\mu^- + \nu)$.

However such decomposition is minimal in the sense that if $\mu = \lambda - \nu$ with λ, ν positive bounded measures then $\mu^+ \leq \lambda$ and $\mu^- \leq \nu$; to see this use the facts $\mu \leq \lambda$ and $(-\mu) \leq \nu$ in the definition of μ^+, μ^- .

Theorem 3.2 The Hahn Decomposition

Let $\mu: \mathcal{F} \longrightarrow \mathbb{R}$ be a real measure on the measurable space (X, \mathcal{F}) .

There exists a partition of X in two sets A, B in \mathcal{F} such that:

- (1) $\mu(F) > 0$ for every $F \subset A$ and $\mu^{-}(A) = 0$
- (2) $\mu(F) \leq 0$ for every $F \subset B$ and $\mu^+(B) = 0$

The partition $X = A \cup B$ satisfying (1), (2) is unique in the following sense: if C, D is another partition of X satisfying (1), (2) then $|\mu|(A\Delta C) = 0$ and $|\mu|(B\Delta D) = 0$, (see [R - F] for the Proof).

5. Absolute Continuity of Measures Radon-Nikodym Theorem

Definition 5.1

Let λ be a complex measure on (X, \mathcal{F}) and μ a positive measure.

We say that λ is absolutely continuous with respect to μ if:

for
$$E \in \mathcal{F}$$
 satisfying $\mu(E) = 0 \Longrightarrow \lambda(E) = 0$

notation: $\lambda \ll \mu$

Example 5.2

Let $f \in L_1(\mu)$, then the complex measure λ on (X, \mathcal{F}) given by:

$$E \in \mathcal{F}, \ \lambda(E) = \int_{E} f.d\mu$$
 (*)

is absolutely continuous with respect to μ , indeed suppose $\mu(E) = 0$

then
$$f.I_E = 0$$
 $\mu - a.e$ and $\int_E f.d\mu = \int_X f.I_E.d\mu = 0 \Longrightarrow \lambda$ absolutely continuous

with respect to μ . (by the property of the integral)

This example is fundamental in the following sense:

If μ is σ -finite then the complex measure in the integral form (*) is the only one which is absolutely continuous with respect to μ

this is due to the Radon-Nikodym Theorem. First let us look at some properties of the absolute continuity.

Theorem 5.3

Let λ be a complex measure on (X, \mathcal{F}) and μ a positive measure. The following properties are equivalent:

(a)
$$\lambda \ll \mu$$

(b) For any
$$\epsilon > 0$$
 there is $\delta = \delta_{\epsilon} > 0$ such that for $A \in \mathcal{F}$ $\mu(A) < \delta \implies |\lambda|(A) < \epsilon$

Proof.

$$(b) \Longrightarrow (a)$$

if
$$\mu(A) = 0$$
 then $\mu(A) < \delta \ \forall \delta > 0$, so $|\lambda|(A) < \epsilon \ \forall \epsilon > 0$ that is $|\lambda|(A) = 0$

$$(a) \Longrightarrow (b)$$

we prove that $not(b) \Longrightarrow not(a)$

suppose
$$not(b)$$
 then there is $\epsilon > 0$ such that for each $n \ge 1$ there exists $E_n \in \mathcal{F}$ with $\mu(E_n) < \frac{1}{2^n}$ and $|\lambda|(E_n) \ge \epsilon$

put $E = \limsup_{n} E_n = \bigcap_{n} \bigcup_{k \geq n} E_k$, then since $|\lambda|$ is bounded we get:

$$|\lambda|(E) = \lim_{n} |\lambda| \left(\bigcup_{k \ge n} E_k\right) \ge \lim_{n} |\lambda|(E_n) \ge \epsilon > 0.$$

On the other hand since we have $\sum_{n} \mu(E_n) < \sum_{n} \frac{1}{2^n} < \infty$, we can apply

the Borel-Cantelli Lemma to the sequence E_n to get $\mu\left(E\right) = \mu\left(\limsup_n E_n\right) = 0$ so not(a) is satisfied and $not(b) \Longrightarrow not(a)$ is proved.

Definition 5.4 (Singular Measures)

Let μ, ν be positive measures on (X, \mathcal{F}) .

We say that μ, ν are singular if there is a partition $\{A, B\}$ of X such that

$$\mu\left(A\right) = \nu\left(B\right) = 0$$

notation: $\mu \perp \nu$

If μ, ν are complex measures then they are singular if $|\mu| \perp |\nu|$

Remark.

Suppose μ, ν positive or complex measures and $\mu \perp \nu$

if $\{A,B\}$ is the partition of X defining the singularity then we have

for
$$E \in \mathcal{F}$$
 $\mu(E) = \mu(E \cap B)$ and $\nu(E) = \nu(E \cap A)$

Proposition 5.5

Let $\mu, \lambda_1, \lambda_2$, be measures on (X, \mathcal{F}) with μ positive and λ_1, λ_2 , complex then

- (a) $\lambda_1 \perp \mu$ and $\lambda_2 \perp \mu \Longrightarrow \lambda_1 + \lambda_2 \perp \mu$
- (b) $\lambda_1 \ll \mu$ and $\lambda_2 \ll \mu \Longrightarrow \lambda_1 + \lambda_2 \ll \mu$
- (c) $\lambda_1 \ll \mu \Longrightarrow |\lambda_1| \ll \mu$
- $(d).\lambda_1 \ll \mu \text{ and } \lambda_2 \perp \mu \Longrightarrow \lambda_1 \perp \lambda_2$
- $(e).\lambda_1 \ll \mu \text{ and } \lambda_1 \perp \mu \Longrightarrow \lambda_1 = 0$

Proof

(b) and (c) are deduced from definition, (e) is a consequence of (d) so let us prove (a) and (d).

To see (a) let $\{A_1, B_1\}$, $\{A_2, B_2\}$ be two partitions of X with

$$|\lambda_1|(A_1) = \mu(B_1) = 0$$
 and $|\lambda_2|(A_2) = \mu(B_2) = 0$

put $A = A_1 \cap A_2$ and $B = B_1 \cup B_2$, then $\{A, B\}$ is a partition of X and we have $|\lambda_1 + \lambda_2| (A) \leq (|\lambda_1| + |\lambda_2|) (A) = 0$ and $\mu(B) \leq \mu(B_1) + \mu(B_2) = 0$ therefore $\lambda_1 + \lambda_2 \perp \mu$ this proves (a).

To prove (d): since $\lambda_2 \perp \mu$ let $\{A, B\}$ be a partition of X with $|\lambda_2|(A) = \mu(B) = 0$

but we have also $\lambda_1 \ll \mu$ so we will have $|\lambda_1|(B) = 0$ by (c), finally we get $|\lambda_2|(A) = |\lambda_1|(B) = 0$

that is $\lambda_1 \perp \lambda_2$, then we deduce (d).

Theorem 5.6 Radon-Nikodym-Lebesgue Theorem.

Let μ, λ , be measures on (X, \mathcal{F}) with μ positive σ -finite and λ complex then:

- (1) There is a unique pair of complex measures λ_a, λ_s such that $\lambda_a \ll \mu$, $\lambda_s \perp \mu$ and $\lambda_a \perp \lambda_s$
- moreover $\lambda = \lambda_a + \lambda_s$ Lebesgue Decomposition (2) There is a unique function $h \in L_1(\mu)$ such that

$$\lambda_{a}\left(E\right)=\int\limits_{E}h.d\mu$$
 for every $E\in\mathcal{F}.\mathbf{Radon\text{-}Nikodym}$ Theorem

Proof

Let us point out:

(i) uniqueness in (1) of λ_a, λ_s : if λ_a', λ_s' is an other pair of complex measures with $\lambda_a' \ll \mu$, $\lambda_s' \perp \mu$ and $\lambda = \lambda_a' + \lambda_s' = \lambda_a + \lambda_s$ then we have $\lambda_a' - \lambda_a = \lambda_s - \lambda_s'$; we deduce from Proposition **5.5** (a) that $\lambda_s - \lambda_s' \perp \mu$

and from Proposition **5.5** (b) that $\lambda_{a}^{'} - \lambda_{a} \ll \mu$ so part (e) of the same Proposition implies $\lambda_{a}^{'} - \lambda_{a} = \lambda_{s} - \lambda_{s}^{'} = 0$, whence the uniqueness of the decomposition.

(ii) uniqueness in (2) of the function h: if $h' \in L_1(\mu)$ is an other function with

$$\lambda_{a}\left(E\right)=\int\limits_{E}h^{'}.d\mu \ \ \text{for every } E\in\mathcal{F} \ \text{then} \int\limits_{E}h.d\mu=\int\limits_{E}h^{'}.d\mu, \ \forall E\in\mathcal{F}, \ \text{and so by}$$

the property of the integral we get h = h' $\mu - a.e.$

We prove the theorem when μ, λ are positive bounded measures the proof in this case is due to John Von Neuman.

(for the general case see reference [R-F]).

Let μ, λ be positive bounded measures on (X, \mathcal{F}) and put $m = \mu + \lambda$ then m is a positive bounded measure on (X, \mathcal{F}) and we have

$$\int\limits_X f.dm = \int\limits_X f.d\mu + \int\limits_X f.d\lambda$$

for any measurable positive function f on X

this can be checked easily for simple positive functions

by using **Beppo-Levy** convergence theorem one can prove it for measurable positive functions.

Observe that
$$L_{1}\left(m\right)=L_{1}\left(\mu\right)\cap L_{1}\left(\lambda\right)$$
 because $\int\limits_{X}\left|f\right|.dm=\int\limits_{X}\left|f\right|.d\mu+\int\limits_{X}\left|f\right|.d\lambda$

Now take f in the Hilbert space $L_{2}\left(m\right)$ then we have by the Schwarz inequality

$$\left| \int_{X} f . d\lambda \right| \le \int_{X} |f| . d\lambda \le \int_{X} |f| . dm \le \left(\int_{X} |f|^{2} . dm \right)^{\frac{1}{2}} . (m(X))^{\frac{1}{2}}$$

consequently the linear functional $f \longrightarrow \int f d\lambda$ is continuous on the Hilbert

Space $L_{2}\left(m\right)$. Therefore there is a unique function g in $L_{2}\left(m\right)$ such that :

(*)
$$\int_{X} f.d\lambda = \int_{X} f.g.dm$$
, by the isomorphism between $L_{2}(m)$ and its strong dual

take $f = I_E$ in equation (*) to get

(**)
$$\lambda\left(E\right) = \int_{\Gamma} g.dm$$
, then since $0 \le \lambda\left(E\right) \le m\left(E\right) \ \forall E \in \mathcal{F}$

we obtain $0 \le g \le 1$ m - a.e, but $m = \mu + \lambda$, from which (*) gives

$$(***) \int_{E} f. (1-g) . d\lambda = \int_{E} f. g. d\mu.$$

Now put $A = \{0 \le g < 1\}$, $B = \{g = 1\}$ and define measures λ_a, λ_s as follows

$$\lambda_{a}\left(E\right)=\lambda\left(A\cap E\right) \text{ and } \lambda_{s}\left(E\right)=\lambda\left(E\cap B\right) \quad \forall E\in\mathcal{F}$$
 putting $E=X,\ f=I_{B}$ in the relation $(***)$ gives

$$\int_{B} (1 - g) . d\lambda = \int_{B} g . d\mu = \mu (B)$$

since g=1 on the set B we have $\int\limits_{B}\left(1-g\right).d\lambda=0,$ so $\mu\left(B\right)=0$

but $\lambda_s(E) = 0$ for every $E \subset A$, therefore $\lambda_s \perp \mu$.

Again consider (***) but with $f = [1 + g + g^2 + ... + g^n] . I_E$, we get:

$$\int\limits_{E} \left(1-g^{n+1}\right).d\lambda = \int\limits_{E\cap A} \left(1-g^{n+1}\right).d\lambda + \int\limits_{E\cap B} \left(1-g^{n+1}\right).d\lambda = \int\limits_{E\cap A} \left(1-g^{n+1}\right).d\lambda$$
 since $g=1$ on the set B .

On the other hand we have $g^{n+1}(x) \downarrow 0 \ \forall x \in E \cap A$, since $A = \{0 \leq g < 1\}$ so $1 - g^{n+1}(x) \uparrow 1 \forall x \in E \cap A$ and by **Beppo-Levy** convergence theorem we get:

$$(4*) \lim_{n} \int_{E \cap A} (1 - g^{n+1}) . d\lambda = \lambda (E \cap A) = \lambda_a (E)$$

but we have $g. (1 + g + g^2 + ... + g^n) \uparrow h = \left\{ \begin{array}{c} \frac{g}{1-g} \text{ on } A \\ \infty \text{ on } B \end{array} \right\}$

since $\mu(B) = 0$, we deduce that

$$(5*) \int_{E} g. \left(1 + g + g^{2} + \dots + g^{n}\right) . d\mu \uparrow \int_{E} h. d\mu$$

now properties (4*) and (5*) jointly imply

$$\lambda_{a}\left(E\right)=\int_{E}h.d\mu$$
 and $h\in L_{1}\left(\mu\right)$

which ends the proof of the Theorem. the function h is called the Radon-Nikodym density of λ with respect to μ and is denoted by $h = \frac{d\lambda}{d\mu}$.

The following theorem is a version of the preceding one in the case λ,μ positive σ -finite measures, the proof can be found in [R-F].

Theorem 5.7

Let μ, λ , be positive σ -finite measures on (X, \mathcal{F})

- (1) There is a unique pair of positive measures λ_a, λ_s such that $\lambda_a \ll \mu$, $\lambda_s \perp \mu$ and $\lambda_a \perp \lambda_s$ moreover $\lambda = \lambda_a + \lambda_s$ Lebesgue Decomposition
- (2) There is a unique positive function h locally μ -integrable such that

$$\lambda_{a}\left(E\right)=\int\limits_{E}h.d\mu$$
 for every $E\in\mathcal{F}.\mathbf{Radon\text{-}Nikodym\ Theorem}$

h locally μ -integrable means that there is a partition (X_n) of X in \mathcal{F} such that

$$\int_{X_n} h.d\mu < \infty \quad \forall n.$$

6. Applications

We recall that the structures given in Theorem **5.6** are valid on (X, \mathcal{F}) with μ positive σ -finite and λ complex although its proof has been given for μ, λ positive bounded. So hereafter we consider the general context of complex measures. Let us start by the relation of a complex mesure and its total variation.

Proposition 6.1

Let λ be a complex measure on (X, \mathcal{F}) then there exists a measurable function $h: X \longrightarrow \mathbb{C}$ such that

$$|h(x)| = 1$$
 for every $x \in X$ and $\lambda(E) = \int_{E} h.d|\lambda| \quad \forall E \in \mathcal{F}$

where $|\lambda|$ is the total variation of λ (see Theorem.2.1 for total variation of λ)

Proof

Observe that $\lambda \ll |\lambda|$ and use the Radon-Nikodym Theorem.

Proposition 6.2

Let (X, \mathcal{F}, μ) be a measure space and let f be in $L_1(\mu)$.

Consider the complex measure
$$\lambda$$
 on (X, \mathcal{F}) given by $\lambda(E) = \int_{E} f d\mu$

then we have
$$\left|\lambda\right|(E) = \int_{E} \left|f\right| d\mu \quad \forall E \in \mathcal{F}.$$

Proof

Let us consider the set measure $\nu\left(E\right)=\int\limits_{E}\left|f\right|.d\mu$ on (X,\mathcal{F}) then we have:

$$\left|\lambda\left(E\right)\right| = \left|\int_{E} f.d\mu\right| \le \int_{E} \left|f\right|.d\mu = \nu\left(E\right) \Longrightarrow \left|\lambda\left(E\right)\right| \le \nu\left(E\right)$$

but we now that the total variation $|\lambda|$ is the smallest positive measure satisfying $|\lambda|(E)| \leq |\lambda|$ by theorem **2.1**, so we deduce that $|\lambda| \leq \nu$ and therefore $|\lambda| \ll \nu$. Since ν is bounded by the Radon-Nikodym theorem there is $\varphi \in L_1(\nu)$

with φ positive and $|\lambda|(E) = \int_{E} \varphi d\nu$. The integral form of ν allows to write

$$\left|\lambda\right|(E)=\int\limits_{E}\varphi.\left|f\right|.d\mu.$$
 By Proposition **6.1** there exists a measurable function h :

$$X \longrightarrow \mathbb{C}$$
 such that $|h\left(x\right)| = 1$ for every $x \in X$ and $\lambda\left(E\right) = \int\limits_{E} h.d\left|\lambda\right| \ \ \forall E \in \mathcal{F}.$

We deduce from the integration process that $\lambda\left(E\right)=\int\limits_{E}h.d\left|\lambda\right|=\int\limits_{E}h.\varphi.\left|f\right|.d\mu.$

By hypothesis
$$\lambda\left(E\right)=\int\limits_{E}f.d\mu$$
 so we get $\int\limits_{E}h.\varphi.\left|f\right|.d\mu=\int\limits_{E}f.d\mu,\forall E\in\mathcal{F}$ and

then
$$h.\varphi.|f| = f$$
 $\mu - a.e$. But $|h(x)| = 1$ for every $x \in X$ so $\varphi = 1$ $\mu - a.e$ because $\varphi \ge 0$, finally $|\lambda|(E) = \int_E \varphi.d\nu = \nu(E) = \int_E |f|.d\mu. \blacksquare$

Proposition 6.3

Let μ be a σ -finite measure on (X, \mathcal{F}) and let us denote by \mathcal{A}_{μ} the family of all complex measures absolutely continuous with respect to μ Then \mathcal{A}_{μ} is a closed subspace of the Banach space $M(X, \mathcal{F})$. Moreover there is a linear isometry from $L_1(\mu)$ onto \mathcal{A}_{μ} .

Proof

Recall the Banach space $M(X, \mathcal{F})$ of all complex measures on (X, \mathcal{F}) with the norm $\|\lambda\| = |\lambda|(X)$ defined in Theorem 2.3.

It is easy to check that \mathcal{A}_{μ} is a subspace of $M(X, \mathcal{F})$. We prove that it is closed: let (λ_n) be a sequence in \mathcal{A}_{μ} converging to λ

that is $\lim_{n} \|\lambda_n - \lambda\| = \lim_{n} |\lambda_n - \lambda| (X) = 0$. This implies that $(\lambda_n (E))$

converges to $\lambda(E)$ even uniformly with respect to E.

If we have $\mu(E) = 0$ then $\lambda_n(E) = 0 \ \forall n$, so $\lambda(E) = 0$ that is $\lambda \in \mathcal{A}_{\mu}$ this shows that \mathcal{A}_{μ} is closed.

Now we define the linear isometry Ψ from $L_1(\mu)$ onto \mathcal{A}_{μ} as follows:

for $f \in L_1(\mu)$ put $\Psi(f) = \lambda$, where λ is the complex measure on (X, \mathcal{F}) given by

$$\lambda\left(E\right)=\int\limits_{E}f.d\mu.$$
 Then it is clear that Ψ is linear, moreover it is invertible,

indeed

if $\lambda \in \mathcal{A}_{\mu}$ then $\lambda \ll \mu$ and since μ is σ -finite there is a unique $f \in L_1(\mu)$ such that

$$\lambda\left(E\right)=\int\limits_{E}f.d\mu=\Psi\left(f\right),$$
 by the Radon-Nikodym Theorem. On the other hand

 Ψ is an isometry

since we have
$$\|\Psi\left(f\right)\|=\|\lambda\|=|\lambda|\left(X\right)=\int\limits_{X}\left|f\right|.d\mu=\|f\|_{L_{1}(\mu)}$$
 . \blacksquare

References

- 1. Royden-Fitzpatrick. Real Analysis Fourth Edition Prentice Hall.
- 2. W. Rudin Real and Complex Analysis Mc GRAW-HILL Third Edition

11