Chapter 6
 COMPLEX MEASURES
 Absolute Continuity and Representation Theorems

Introduction

Let (X, \mathcal{F}, μ) be a measure space and let $f: X \longrightarrow \mathbb{C}$ be a complex μ integrable function. Let us consider the set function ν given by:

$$
\begin{equation*}
\nu(A)=\int_{A} f d \mu, \quad A \in \mathcal{F} \tag{*}
\end{equation*}
$$

Such set function has the following properties:
(1) (σ-additivity): For any sequence $\left(A_{n}\right)$ of pairwise disjoint sets A_{n} in \mathcal{F} we have $\nu\left(\cup_{n} A_{n}\right)=\sum_{n} \nu\left(A_{n}\right)$
(2) (absolute continuity): Let $A \in \mathcal{F}$ with $\mu(A)=0$ then $\nu(A)=0$, because $f . I_{A}=0 \mu-a . e$, we say that ν is absolutely continuous with respect to μ. This relation will be denoted by $\nu \ll \mu$
(3). If f is real valued let us write $f=f^{+}-f^{-}$then $\nu(A)=\int_{A} f d \mu=\int_{A} f^{+} d \mu-\int_{A} f^{-} d \mu$ so we have $\nu(A)=\nu_{1}(A)-\nu_{2}(A)$, with $\nu_{1}(A)=\int_{A} f^{+} d \mu$ and $\nu_{2}(A)=\int_{A} f^{-} d \mu$ positive and σ-additive.

In this chapter we consider complex valued σ-additive set functions
$\lambda: \mathcal{F} \longrightarrow \mathbb{C}$ and we will show successively:
(a) λ is of bounded variation:
more precisely there is a positive finite measure $|\lambda|$ on \mathcal{F} such that

$$
|\lambda(E)| \leq|\lambda|(E), \quad \forall E \in \mathcal{F}
$$

$|\lambda|$ is called the total variation of λ.
(b) if λ is real valued then it can be written as $\lambda=\lambda^{+}-\lambda^{-}$
where λ^{+}, λ^{-}are finite positive measures.
This is called the Jordan decomposition.
(c) λ has the integral form (*) for some complex μ-integrable function f provided $\lambda \ll \mu$ for some σ-finite positive measure μ.

This is the Radon-Nicodym Theorem.

1. Complex Measures property

Definition 1.1

Let (X, \mathcal{F}) be a measurable space and $\lambda: \mathcal{F} \longrightarrow \mathbb{C}$ a complex set function.
We say that λ is a complex measure if for every sequence $\left(A_{n}\right)$ of pairwise disjoint sets in \mathcal{F} we have $\lambda\left(\cup_{n} A_{n}\right)=\sum_{n} \lambda\left(A_{n}\right)$.
Remark (1) Let $\sum_{n} z_{n}=M$ be a convergent series of real or complex numbers. We say that the series is unconditionally convergent to M if for any permutation (i.e bijection) $\sigma: \mathbb{N} \longrightarrow \mathbb{N}$, the series $\sum_{n} z_{\sigma(n)}$ converges to M. For real or complex numbers series unconditional convergence is equivalent to absolute convergence by Riemann series theorem.
(2) Let $\sigma: \mathbb{N} \longrightarrow \mathbb{N}$ be a permutation of \mathbb{N} then $\cup_{n} A_{n}=\cup_{n} A_{\sigma(n)}=A$ and the sets $\left(A_{\sigma(n)}\right)$ are pairwise disjoint so $\lambda(A)=\sum_{n} \lambda\left(A_{n}\right)=\sum_{n} \lambda\left(A_{\sigma(n)}\right)$, since σ is arbitrary this implies that the series $\sum_{n} \lambda\left(A_{n}\right)$ is unconditionally convergent and then absolutely convergent.
(3) If λ is a complex measure on (X, \mathcal{F}) then one can write $\lambda=\operatorname{Re}(\lambda)+i \operatorname{Im}(\lambda)$, where it is easy to see that $\operatorname{Re}(\lambda)$ and $\operatorname{Im}(\lambda)$ are real σ-additive set functions on (X, \mathcal{F}). This simple observation leads to the following definition:

Definition 1.2

Let (X, \mathcal{F}) be a measurable space and $\mu: \mathcal{F} \longrightarrow \mathbb{R}$ a real set function.
We say that μ is a real measure if for every sequence $\left(A_{n}\right)$ of pairwise disjoint sets in \mathcal{F} we have $\mu\left(\cup_{n} A_{n}\right)=\sum_{n} \mu\left(A_{n}\right)$.
Let $\sigma: \mathbb{N} \longrightarrow \mathbb{N}$ be a permutation of \mathbb{N} then $\cup_{n} A_{n}=\cup_{n} A_{\sigma(n)}=A$ and the sets $\left(A_{\sigma(n)}\right)$ are pairwise disjoint so $\mu(A)=\sum_{n} \mu\left(A_{n}\right)=\sum_{n} \mu\left(A_{\sigma(n)}\right)$, since σ is arbitrary this implies that the series $\sum_{n} \mu\left(A_{n}\right)$ is unconditionally convergent and then absolutely convergent (see Remark (1))

2. Total variation of a complex measure

Let λ be a complex measure on (X, \mathcal{F})
Among all positive measures μ on (X, \mathcal{F}) satisfying
$|\lambda(E)| \leq \mu(E), \forall E \in \mathcal{F}$, there one and only one called the Total variation of λ and given by the following theorem:
Theorem 2.1 If λ is a complex measure on (X, \mathcal{F})
let us define the positive set function $|\lambda|: \mathcal{F} \longrightarrow[0, \infty]$ by:

$$
E \in \mathcal{F},|\lambda|(E)=\sup \left\{\sum_{n}\left|\lambda\left(E_{n}\right)\right|, \quad\left(E_{n}\right) \quad \text { partition of } E \text { in } \mathcal{F}\right\}
$$

the supremum being taken over all partitions $\left(E_{n}\right)$ of E in \mathcal{F}. Then:
$|\lambda|$ is a positive bounded measure on (X, \mathcal{F}) satisfying

$$
|\lambda(E)| \leq|\lambda|(E), \quad \forall E \in \mathcal{F}
$$

moreover $|\lambda|$ is the smallest positive bounded measure with this property.
Proof. Let E be a set in \mathcal{F}
If $\left(E_{n}\right)$ is a sequence of pairwise disjoint sets in \mathcal{F} we have to prove that:

$$
|\lambda|\left(\cup_{n} E_{n}\right)=\sum_{n}|\lambda|\left(E_{n}\right)
$$

let us put $E=\cup_{n} E_{n}$ and take a partition $\left(A_{m}\right)$ of E in \mathcal{F} then we have:
$\left(A_{m} \cap E_{n}\right)_{n \geq 1}$ is a partition of A_{m}
$\left(A_{m} \cap E_{n}\right)_{m \geq 1}$ is a partition of E_{n}
so $\left|\lambda\left(A_{m}\right)\right|=\left|\sum_{n} \lambda\left(A_{m} \cap E_{n}\right)\right| \leq \sum_{n}\left|\lambda\left(A_{m} \cap E_{n}\right)\right|, \forall m \geq 1$ and then
$\sum_{m}\left|\lambda\left(A_{m}\right)\right| \leq \sum_{m} \sum_{n}\left|\lambda\left(A_{m} \cap E_{n}\right)\right|=\sum_{n} \sum_{m}\left|\lambda\left(A_{m} \cap E_{n}\right)\right|$
but we have from the definition of $|\lambda| \sum_{m}\left|\lambda\left(A_{m} \cap E_{n}\right)\right| \leq|\lambda|\left(E_{n}\right) \quad \forall n \geq 1$ therefore we deduce that $\sum_{m}\left|\lambda\left(A_{m}\right)\right| \leq \sum_{n}|\lambda|\left(E_{n}\right)$ inequality valid for every partition $\left(A_{m}\right)$ of E and implies $|\lambda|(E) \leq \sum_{n}|\lambda|\left(E_{n}\right)$ by the definition of $|\lambda|(E)$.

It remains to prove that $\sum_{n}|\lambda|\left(E_{n}\right) \leq|\lambda|(E)$, to do this we use characteristic property of the supremum: for each $n \geq 1$ let $a_{n}>0$ be any real number such that $a_{n}<|\lambda|\left(E_{n}\right)$, then from the definition of $|\lambda|\left(E_{n}\right)$ there is a partition $\left(A_{m n}\right)_{m \geq 1}$ of E_{n} with $a_{n}<\sum_{m}\left|\lambda\left(A_{m n}\right)\right|$, but we have $E=. \cup_{n} \cdot E_{n}=\cup_{m n} \cdot A_{m n}$ and $\sum_{n} a_{n}<\sum_{n} \sum_{m}\left|\lambda\left(A_{m n}\right)\right|$. Since $\left(A_{m n}\right)_{m, n \geq 1}$ is a partition of E we deduce that $\sum_{n} \sum_{m}\left|\lambda\left(A_{m n}\right)\right| \leq|\lambda|(E)$ and so $\sum_{n} a_{n}<|\lambda|(E)$, but this is true for all $a_{n}>0$ satisfying $\sum_{n} a_{n}<\sum_{n}|\lambda|\left(E_{n}\right)$ this implies that $\sum_{n}|\lambda|\left(E_{n}\right) \leq|\lambda|(E)$. The proof of the boundedness of $|\lambda|$ is left to the reader.

Theorem 2.2 If λ is a complex measure on (X, \mathcal{F})
For any increasing or decreasing sequence $\left(A_{n}\right)$ in \mathcal{F} we have

$$
\lambda\left(\lim _{n} A_{n}\right)=\lim _{n} \lambda\left(A_{n}\right)
$$

where $\lim _{n} A_{n}$ stands for $\cup_{n} A_{n}$ in the increasing case
and for ${ }_{n}^{n} A_{n}$ in the decreasing one.
Proof.
use the σ-additivity of λ and the fact that $|\lambda(E)|<\infty, \forall E \in \mathcal{F}$
Theorem 2.3
Let $M(X, \mathcal{F})$ be the family of all complex measures on (X, \mathcal{F})
let λ, ν be in $M(X, \mathcal{F})$ and let $\alpha \in \mathbb{C}$, then define:
$\lambda+\nu, \quad \alpha . \nu, \quad\|\lambda\|$, by the following recipe
$(\lambda+\nu)(E)=\lambda(E)+\nu(E),(\alpha . \nu)(E)=\alpha . \nu(E), E \in \mathcal{F}$

$$
\|\lambda\|=|\lambda|(X)
$$

Then $M(X, \mathcal{F})$ is a vector space on \mathbb{C}, and $\|\lambda\|$ is a norm on $M(X, \mathcal{F})$
Moreover $M(X, \mathcal{F})$, endowed with the norm $\|\lambda\|$, is a Banach space.
Proof. see any standard book on measure theory for a classical proof.e.g. $[R-F]$

3. Hahn-Jordan Decomposition of a Real Measure

Theorem 3.1 Jordan Decomposition of a Real Measure
Let (X, \mathcal{F}) be a measurable space and $\mu: \mathcal{F} \longrightarrow \mathbb{R}$ a real measure (Definition 1.2)

Let us define the set functions μ^{+}, μ^{-}as follows: for each $E \in \mathcal{F}$

$$
\begin{aligned}
& \mu^{+}(E)=\sup \{\mu(F): F \in \mathcal{F}, \quad F \subset E\} \\
& \mu^{-}(E)=-\inf \{\mu(F): F \in \mathcal{F}, \quad F \subset E\}
\end{aligned}
$$

Then μ^{+}, μ^{-}are positive bounded measures on (X, \mathcal{F}) satisfying:
(i) $\mu^{+}=\frac{1}{2}(|\mu|+\mu)$
(ii) $\mu^{-}=\frac{1}{2}(|\mu|-\mu)$
(iii) $\mu=\mu^{+}-\mu^{-} \quad$ (Jordan Decomposition)
(iv) $|\mu|=\mu^{+}+\mu^{-}$

Proof

First it is enough to prove that μ^{+}is a positive bounded measure on (X, \mathcal{F}) because $\mu^{-}=(-\mu)^{+}$.
From the definition of the total variation of μ we can see that for $E \in \mathcal{F}$

$$
\forall F \in \mathcal{F}, \quad F \subset E \ldots \ldots \mu(F) \leq|\mu(F)| \leq|\mu|(F) \leq|\mu|(E) \leq|\mu|(X)<\infty
$$

so we deduce that μ^{+}is positive bounded;
it remains to prove that μ^{+}is σ-additive
Let $\left(E_{n}\right)$ be pairwise disjoint sets in \mathcal{F}, we have to prove:

$$
\mu^{+}\left(\cup_{n} E_{n}\right)=\sum_{n} \mu^{+}\left(E_{n}\right)
$$

Since $\forall n \geq 1 \quad \mu^{+}\left(E_{n}\right)<\infty$, we have from the definition of μ^{+}: let $\epsilon>0$ then for each $n \geq 1, \exists F_{n} \subset E_{n}$ such that $\mu^{+}\left(E_{n}\right)-\frac{\epsilon}{2^{n}}<\mu\left(F_{n}\right)$ summing over n we get $\sum_{n} \mu^{+}\left(E_{n}\right)-\epsilon<\sum_{n} \mu\left(F_{n}\right)=\mu\left(\cup_{n} F_{n}\right)$ but $\cup_{n} F_{n} \subset \cup_{n} E_{n} \Longrightarrow \mu\left(\cup_{n} F_{n}\right) \leq \mu^{+}\left(\cup_{n} E_{n}\right)$, therefore $\sum_{n} \mu^{+}\left(E_{n}\right)-\epsilon<\mu^{+}\left(\cup_{n} E_{n}\right)$ since $\epsilon>0$ is arbitrary, we obtain $\sum_{n} \mu^{+}\left(E_{n}\right) \leq \mu^{+}\left(\cup_{n} E_{n}\right)$ after making $\epsilon \longrightarrow 0$.
On the other hand let $F \subset \cup_{n} E_{n} \ldots F \in \mathcal{F}$, then $F=\cup_{n}\left(E_{n} \cap F\right)$ and
$\mu(F)=\sum_{n} \mu\left(E_{n} \cap F\right) \leq \sum_{n} \mu^{+}\left(E_{n}\right)$ because $E_{n} \cap F \subset E_{n}$
since $F \subset \cup_{n} E_{n}$..is arbitrary in \mathcal{F}, we deduce that $\mu^{+}\left(\cup_{n} E_{n}\right) \leq \sum_{n} \mu^{+}\left(E_{n}\right)$
so μ^{+}is a positive measure on (X, \mathcal{F}).
We have $(i)=(i i)-(i i i)$ and $(i v)=(i i)+(i i i)$
it is enough to prove (i) because ($i i$) follows with $\mu^{-}=(-\mu)^{+}$
then we get $(i i i)$ with $(i i)-(i)$ and $(i v)$ with $(i i)+(i i i)$.
So let us prove (i) that is $\mu^{+}=\frac{1}{2}(|\mu|+\mu)$:
fix $\epsilon>0$ then from the definition of the total variation $|\mu|$
there is a partition $\left(E_{n}\right)$ of E in \mathcal{F} such that $(*)|\mu|(E)-\epsilon<\sum_{n}\left|\mu\left(E_{n}\right)\right|$.

Let us put $L=\left\{l: \mu\left(E_{l}\right) \geq 0\right\}$ and $K=\left\{k: \mu\left(E_{k}\right)<0\right\}$, we get:

$$
\sum_{n}\left|\mu\left(E_{n}\right)\right|=\sum_{L} \mu\left(E_{l}\right)-\sum_{K} \mu\left(E_{k}\right)
$$

now define $F=\cup_{L} E_{l}$ and $G=\cup_{K} E_{k}$, so by the σ-additivity of μ we deduce

$$
\mu(F)=\sum_{L} \mu\left(E_{l}\right) \text { and } \mu(G)=\sum_{K} \mu\left(E_{k}\right), \text { then } \sum_{n}\left|\mu\left(E_{n}\right)\right|=\mu(F)-\mu(G)
$$

therefore we obtain from the inequality $(*)$ that
$(2 *)|\mu|(E)-\epsilon<\sum_{n}\left|\mu\left(E_{n}\right)\right|=\mu(F)-\mu(G)$
but since $E=F \cup G$ we have
$(3 *) \mu(E)=\mu(F)+\mu(G)$
adding $(2 *)+(3 *)$ we get:

$$
|\mu|(E)+\mu(E)-\epsilon<2 \mu(F)
$$

the definition of μ^{+}implies $\mu(F) \leq \mu^{+}(E)$, because $F \subset E$
finally $\frac{1}{2}(|\mu|(E)+\mu(E)-\epsilon)<\mu^{+}(E)$ with nothing depending on ϵ apart ϵ, making $\epsilon \longrightarrow 0$ we get $\frac{1}{2}(|\mu|(E)+\mu(E)) \leq \mu^{+}(E)$.
This inequality cannot be strict:
indeed suppose that we have $\frac{1}{2}(|\mu|(E)+\mu(E))<\mu^{+}(E)$, this would imply
the existence of an F in \mathcal{F} with $F \subset E$ and $\frac{1}{2}(|\mu|(E)+\mu(E))<\mu(F)<\mu^{+}(E)$
but the set function $\frac{1}{2}(|\mu|(E)+\mu(E))$ is a positive measure on (X, \mathcal{F}),
since $F \subset E$ we should have $\frac{1}{2}(|\mu|(F)+\mu(F)) \leq \frac{1}{2}(|\mu|(E)+\mu(E))$
since $\mu(F) \leq|\mu|(F)$, we have $\mu(F)=\frac{1}{2}(\mu(F)+\mu(F)) \leq \frac{1}{2}(|\mu|(F)+\mu(F)) \leq$ $\frac{1}{2}(|\mu|(E)+\mu(E))<\mu(F)$ which is absurd
so we deduce that $\frac{1}{2}(|\mu|(E)+\mu(E))=\mu^{+}(E)$

Remark.

The Jordan decomposition of a real measure μ as difference of two positive bounded measures $\mu=\mu^{+}-\mu^{-}$is not unique, since for any positive bounded measure ν one can write $\mu=\left(\mu^{+}+\nu\right)-\left(\mu^{-}+\nu\right)$.
However such decomposition is minimal in the sense that if $\mu=\lambda-\nu$
with λ, ν positive bounded measures then $\mu^{+} \leq \lambda$ and $\mu^{-} \leq \nu$; to see this use the facts $\mu \leq \lambda$ and $(-\mu) \leq \nu$ in the definition of μ^{+}, μ^{-}.

Theorem 3.2 The Hahn Decomposition

Let $\mu: \mathcal{F} \longrightarrow \mathbb{R}$ be a real measure on the measurable space (X, \mathcal{F}).
There exists a partition of X in two sets A, B in \mathcal{F} such that:
(1) $\mu(F) \geq 0$ for every $F \subset A$ and $\mu^{-}(A)=0$
(2) $\mu(F) \leq 0$ for every $F \subset B$ and $\mu^{+}(B)=0$

The partition $X=A \cup B$ satisfying (1), (2) is unique in the following sense: if C, D is another partition of X satisfying (1), (2) then $|\mu|(A \Delta C)=0$ and $|\mu|(B \Delta D)=0,($ see $[R-F]$ for the Proof).

5. Absolute Continuity of Measures Radon-Nikodym Theorem

Definition 5.1

Let λ be a complex measure on (X, \mathcal{F}) and μ a positive measure.
We say that λ is absolutely continuous with respect to μ if:
for $E \in \mathcal{F}$ satisfying $\mu(E)=0 \Longrightarrow \lambda(E)=0$
notation: $\quad \lambda \ll \mu$

Example 5.2

Let $f \in L_{1}(\mu)$, then the complex measure λ on (X, \mathcal{F}) given by:

$$
\begin{equation*}
E \in \mathcal{F}, \lambda(E)=\int_{E} f . d \mu \tag{*}
\end{equation*}
$$

is absolutely continuous with respect to μ, indeed suppose $\mu(E)=0$
then $. f . I_{E}=0 \mu$-a.e and $\int_{E} f . d \mu=\int_{X} f \cdot I_{E} \cdot d \mu=0 \Longrightarrow \lambda$ absolutely continuous with respect to μ. (by the property of the integral)
This example is fundamental in the following sense:
If μ is σ-finite then the complex measure in the integral form $(*)$ is the only one which is absolutely continuous with respect to μ
this is due to the Radon-Nikodym Theorem. First let us look at some properties of the absolute continuity.

Theorem 5.3

Let λ be a complex measure on (X, \mathcal{F}) and μ a positive measure.
The following properties are equivalent:
(a) $\lambda \ll \mu$
(b) For any $\epsilon>0$ there is $\delta=\delta_{\epsilon}>0$ such that for $A \in \mathcal{F}$
$\mu(A)<\delta \Longrightarrow|\lambda|(A)<\epsilon$
Proof.
$(b) \Longrightarrow(a)$
if $\mu(A)=0$ then $\mu(A)<\delta \forall \delta>0$, so $|\lambda|(A)<\epsilon \forall \epsilon>0$ that is $|\lambda|(A)=0$
$(a) \Longrightarrow(b)$
we prove that $n o t(b) \Longrightarrow \operatorname{not}(a)$
suppose not (b) then there is $\epsilon>0$ such that for each $n \geq 1$
there exists $E_{n} \in \mathcal{F}$ with $\mu\left(E_{n}\right)<\frac{1}{2^{n}}$ and $|\lambda|\left(E_{n}\right) \geq \epsilon$
put $E=\underset{n}{\lim \sup _{n}} E_{n}=\cap_{n} . \cup_{k \geq n} . E_{k}$, then since $|\lambda|$ is bounded we get:
$|\lambda|(E)=\lim _{n}|\lambda|\left(\bigcup_{k \geq n} . E_{k}\right) \geq \lim _{n}|\lambda|\left(E_{n}\right) \geq \epsilon>0$.
On the other hand since we have $\sum_{n} \mu\left(E_{n}\right)<\sum_{n} \frac{1}{2^{n}}<\infty$, we can apply
the Borel-Cantelli Lemma to the sequence E_{n} to get $\mu(E)=\mu\left(\underset{n}{\lim \sup } E_{n}\right)=0$
so $n o t(a)$ is satisfied and $n o t(b) \Longrightarrow n o t(a)$ is proved.

Definition 5.4 (Singular Measures)

Let μ, ν be positive measures on (X, \mathcal{F}).
We say that μ, ν are singular if there is a partition $\{A, B\}$ of X such that $\mu(A)=\nu(B)=0$
notation: $\quad \mu \perp \nu$
If μ, ν are complex measures then they are singular if $|\mu| \perp|\nu|$

Remark.

Suppose μ, ν positive or complex measures and $\mu \perp \nu$
if $\{A, B\}$ is the partition of X defining the singularity then we have
for $E \in \mathcal{F} \quad \mu(E)=\mu(E \cap B)$ and $\nu(E)=\nu(E \cap A)$

Proposition 5.5

Let $\mu, \lambda_{1}, \lambda_{2}$, be measures on (X, \mathcal{F}) with μ positive and λ_{1}, λ_{2}, complex then
(a) $\lambda_{1} \perp \mu$ and $\lambda_{2} \perp \mu \Longrightarrow \lambda_{1}+\lambda_{2} \perp \mu$
(b) $\lambda_{1} \ll \mu$ and $\lambda_{2} \ll \mu \Longrightarrow \lambda_{1}+\lambda_{2} \ll \mu$
(c) $\lambda_{1} \ll \mu \Longrightarrow\left|\lambda_{1}\right| \ll \mu$
(d). $\lambda_{1} \ll \mu$ and $\lambda_{2} \perp \mu \Longrightarrow \lambda_{1} \perp \lambda_{2}$
(e). $\lambda_{1} \ll \mu$ and $\lambda_{1} \perp \mu \Longrightarrow \lambda_{1}=0$

Proof

(b) and (c) are deduced from definition, (e) is a consequence of (d)
so let us prove (a) and (d).
To see (a) let $\left\{A_{1}, B_{1}\right\},\left\{A_{2}, B_{2}\right\}$ be two partitions of X with

$$
\left|\lambda_{1}\right|\left(A_{1}\right)=\mu\left(B_{1}\right)=0 \text { and }\left|\lambda_{2}\right|\left(A_{2}\right)=\mu\left(B_{2}\right)=0
$$

put $A=A_{1} \cap A_{2}$ and $B=B_{1} \cup B_{2}$, then $\{A, B\}$ is a partition of X and we have
$\left|\lambda_{1}+\lambda_{2}\right|(A) \leq\left(\left|\lambda_{1}\right|+\left|\lambda_{2}\right|\right)(A)=0$ and $\mu(B) \leq \mu\left(B_{1}\right)+\mu\left(B_{2}\right)=0$
therefore $\lambda_{1}+\lambda_{2} \perp \mu$ this proves (a).
To prove (d) : since $\lambda_{2} \perp \mu$ let $\{A, B\}$ be a partition of X with $\left|\lambda_{2}\right|(A)=$ $\mu(B)=0$
but we have also $\lambda_{1} \ll \mu$ so we will have $\left|\lambda_{1}\right|(B)=0$ by (c), finally we get $\left|\lambda_{2}\right|(A)=\left|\lambda_{1}\right|(B)=0$
that is $\lambda_{1} \perp \lambda_{2}$, then we deduce (d)
Theorem 5.6 Radon-Nikodym-Lebesgue Theorem.
Let μ, λ, be measures on (X, \mathcal{F}) with μ positive $\sigma-$ finite and λ complex then:
(1) There is a unique pair of complex measures λ_{a}, λ_{s} such that $\lambda_{a} \ll \mu, \lambda_{s} \perp \mu$ and $\lambda_{a} \perp \lambda_{s}$ moreover $\lambda=\lambda_{a}+\lambda_{s} \quad$ Lebesgue Decomposition
(2) There is a unique function $h \in L_{1}(\mu)$ such that

$$
\lambda_{a}(E)=\int_{E} h . d \mu \quad \text { for every } E \in \mathcal{F} . \text { Radon-Nikodym Theorem }
$$

Proof

Let us point out:
(i) uniqueness in (1) of λ_{a}, λ_{s} : if $\lambda_{a}^{\prime}, \lambda_{s}^{\prime}$ is an other pair of complex measures with $\lambda_{a}^{\prime} \ll \mu, \lambda_{s}^{\prime} \perp \mu$ and $\lambda=\lambda_{a}^{\prime}+\lambda_{s}^{\prime}=\lambda_{a}+\lambda_{s}$ then we have $\lambda_{a}^{\prime}-\lambda_{a}=\lambda_{s}-\lambda_{s}^{\prime}$; we deduce from Proposition 5.5 (a) that $\lambda_{s}-\lambda_{s}^{\prime} \perp \mu$
and from Proposition 5.5 (b) that $\lambda_{a}^{\prime}-\lambda_{a} \ll \mu$
so part (e) of the same Proposition implies $\lambda_{a}^{\prime}-\lambda_{a}=\lambda_{s}-\lambda_{s}^{\prime}=0$, whence the uniqueness of the decomposition.
(ii) uniqueness in (2) of the function $h:$ if $h^{\prime} \in L_{1}(\mu)$ is an other function with $\lambda_{a}(E)=\int_{E} h^{\prime} . d \mu$ for every $E \in \mathcal{F}$ then $\int_{E} h . d \mu=\int_{E} h^{\prime} . d \mu, \forall E \in \mathcal{F}$, and so by the property of the integral we get $h=h^{\prime} \quad \mu-a . e$.
We prove the theorem when μ, λ are positive bounded measures the proof in this case is due to John Von Neuman.
(for the general case see reference $[R-F]$).
Let μ, λ be positive bounded measures on (X, \mathcal{F}) and put $m=\mu+\lambda$ then m is a positive bounded measure on (X, \mathcal{F}) and we have

$$
\int_{X} f \cdot d m=\int_{X} f \cdot d \mu+\int_{X} f \cdot d \lambda
$$

for any measurable positive function f on X
this can be checked easily for simple positive functions
by using Beppo-Levy convergence theorem one can prove it for measurable positive functions.
Observe that $L_{1}(m)=L_{1}(\mu) \cap L_{1}(\lambda)$ because $\int_{X}|f| . d m=\int_{X}|f| . d \mu+\int_{X}|f| . d \lambda$
Now take f in the Hilbert space $L_{2}(m)$ then we have by the Schwarz inequality

$$
\left|\int_{X} f . d \lambda\right| \leq \int_{X}|f| . d \lambda \leq \int_{X}|f| . d m \leq\left(\int_{X}|f|^{2} . d m\right)^{\frac{1}{2}} \cdot(m(X))^{\frac{1}{2}}
$$

consequently the linear functional $f \longrightarrow \int_{X} f . d \lambda$ is continuous on the Hilbert Space $L_{2}(m)$. Therefore there is a unique function g in $L_{2}(m)$ such that :
$(*) \int_{X} f . d \lambda=\int_{X} f . g . d m$, by the isomorphism between $L_{2}(m)$ and its strong dual take $f=I_{E}$ in equation $(*)$ to get
$(* *) \lambda(E)=\int_{E} g \cdot d m$, then since $0 \leq \lambda(E) \leq m(E) \forall E \in \mathcal{F}$
we obtain $0 \leq g \leq 1 m$-a.e, but $m=\mu+\lambda$, from which (*) gives $(* * *) \int_{E} f \cdot(1-g) \cdot d \lambda=\int_{E} f \cdot g \cdot d \mu$.
Now put $A=\{0 \leq g<1\}, B=\{g=1\}$ and define measures λ_{a}, λ_{s} as follows

$$
\lambda_{a}(E)=\lambda(A \cap E) \text { and } \lambda_{s}(E)=\lambda(E \cap B) \quad \forall E \in \mathcal{F}
$$

putting $E=X, f=I_{B}$ in the relation $(* * *)$ gives

$$
\int_{B}(1-g) \cdot d \lambda=\int_{B} g \cdot d \mu=\mu(B)
$$

since $g=1$ on the set B we have $\int_{B}(1-g) \cdot d \lambda=0$, so $\mu(B)=0$
but $\lambda_{s}(E)=0$ for every $E \subset A$, therefore $\lambda_{s} \perp \mu$.
Again consider $(* * *)$ but with $f=\left[1+g+g^{2}+\ldots+g^{n}\right] . I_{E}$, we get:
$\int_{E}\left(1-g^{n+1}\right) \cdot d \lambda=\int_{E \cap A}\left(1-g^{n+1}\right) \cdot d \lambda+\int_{E \cap B}\left(1-g^{n+1}\right) \cdot d \lambda=\int_{E \cap A}\left(1-g^{n+1}\right) \cdot d \lambda$ since $g=1$ on the set B.
On the other hand we have $g^{n+1}(x) \downarrow 0 \forall x \in E \cap A$, since $A=\{0 \leq g<1\}$
so $1-g^{n+1}(x) \uparrow 1 \forall x \in E \cap A$ and by Beppo-Levy convergence theorem we get:
$(4 *) \lim _{n} \int_{E \cap A}\left(1-g^{n+1}\right) \cdot d \lambda=\lambda(E \cap A)=\lambda_{a}(E)$
but we have $g \cdot\left(1+g+g^{2}+\ldots+g^{n}\right) \uparrow h=\left\{\begin{array}{c}\frac{g}{1-g} \text { on } A \\ \infty \text { on } B\end{array}\right\}$
since $\mu(B)=0$, we deduce that

$$
(5 *) \int_{E} g \cdot\left(1+g+g^{2}+\ldots+g^{n}\right) \cdot d \mu \uparrow \int_{E} h . d \mu
$$

now properties $(4 *)$ and $(5 *)$ jointly imply

$$
\lambda_{a}(E)=\int_{E} h . d \mu \text { and } h \in L_{1}(\mu)
$$

which ends the proof of the Theorem. the function h is called the RadonNikodym density of λ with respect to μ and is denoted by $h=\frac{d \lambda}{d \mu}$.
The following theorem is a version of the preceding one in the case λ, μ positive σ-finite measures, the proof can be found in $[R-F]$.

Theorem 5.7

Let μ, λ, be positive σ-finite measures on (X, \mathcal{F})
(1) There is a unique pair of positive measures λ_{a}, λ_{s} such that $\lambda_{a} \ll \mu, \lambda_{s} \perp \mu$ and $\lambda_{a} \perp \lambda_{s}$ moreover $\lambda=\lambda_{a}+\lambda_{s}$

Lebesgue Decomposition

(2) There is a unique positive function h locally μ-integrable such that

$$
\lambda_{a}(E)=\int_{E} h . d \mu \quad \text { for every } E \in \mathcal{F} . \text { Radon-Nikodym Theorem }
$$

h locally μ-integrable means that there is a partition $\left(X_{n}\right)$ of X in \mathcal{F} such that

$$
\int_{X_{n}} h . d \mu<\infty \quad \forall n .
$$

6. Applications

We recall that the structures given in Theorem $\mathbf{5 . 6}$ are valid on (X, \mathcal{F}) with μ positive σ-finite and λ complex although its proof has been given for μ, λ positive bounded. So hereafter we consider the general context of complex measures. Let us start by the relation of a complex mesure and its total variation.

Proposition 6.1

Let λ be a complex measure on (X, \mathcal{F}) then
there exists a measurable function $h: X \longrightarrow \mathbb{C}$ such that

$$
|h(x)|=1 \text { for every } x \in X \text { and } \lambda(E)=\int_{E} h . d|\lambda| \quad \forall E \in \mathcal{F}
$$

where $|\lambda|$ is the total variation of λ (see Theorem.2.1 for total variation of λ)
Proof
Observe that $\lambda \ll|\lambda|$ and use the Radon-Nikodym Theorem

Proposition 6.2

Let (X, \mathcal{F}, μ) be a measure space and let f be in $L_{1}(\mu)$.
Consider the complex measure λ on (X, \mathcal{F}) given by $\lambda(E)=\int_{E} f . d \mu$
then we have $|\lambda|(E)=\int_{E}|f| . d \mu \quad \forall E \in \mathcal{F}$.
Proof
Let us consider the set measure $\nu(E)=\int_{E}|f| \cdot d \mu$ on (X, \mathcal{F}) then we have:

$$
|\lambda(E)|=\left|\int_{E} f \cdot d \mu\right| \leq \int_{E}|f| \cdot d \mu=\nu(E) \Longrightarrow|\lambda(E)| \leq \nu(E)
$$

but we now that the total variation $|\lambda|$ is the smallest positive measure satisfying $|\lambda(E)| \leq|\lambda|$ by theorem 2.1, so we deduce that $|\lambda| \leq \nu$ and therefore $|\lambda| \ll \nu$. Since ν is bounded by the Radon-Nikodym theorem there is $\varphi \in L_{1}(\nu)$ with φ positive and $|\lambda|(E)=\int_{E} \varphi \cdot d \nu$. The integral form of ν allows to write $|\lambda|(E)=\int_{E} \varphi \cdot|f| \cdot d \mu$. By Proposition 6.1 there exists a measurable function h : $X \longrightarrow \mathbb{C}$ such that $|h(x)|=1$ for every $x \in X$ and $\lambda(E)=\int_{E} h . d|\lambda| \quad \forall E \in \mathcal{F}$.
We deduce from the integration process that $\lambda(E)=\int_{E} h \cdot d|\lambda|=\int_{E} h \cdot \varphi \cdot|f| \cdot d \mu$.
By hypothesis $\lambda(E)=\int_{E} f . d \mu$ so we get $\int_{E} h . \varphi \cdot|f| \cdot d \mu=\int_{E} f . d \mu, \forall E \in \mathcal{F}$ and
then $h . \varphi \cdot|f|=f \quad \mu$-a.e. But $|h(x)|=1$ for every $x \in X$ so $\varphi=1 \mu$-a.e because $\varphi \geq 0$, finally $|\lambda|(E)=\int_{E} \varphi \cdot d \nu=\nu(E)=\int_{E}|f| \cdot d \mu$

Proposition 6.3

Let μ be a σ-finite measure on (X, \mathcal{F}) and let us denote by \mathcal{A}_{μ} the family of all complex measures absolutely continuous with respect to μ Then \mathcal{A}_{μ} is a closed subspace of the Banach space $M(X, \mathcal{F})$. Moreover there is a linear isometry from $L_{1}(\mu)$ onto \mathcal{A}_{μ}.
Proof
Recall the Banach space $M(X, \mathcal{F})$ of all complex measures on (X, \mathcal{F})
with the norm $\|\lambda\|=|\lambda|(X)$ defined in Theorem 2.3.
It is easy to check that \mathcal{A}_{μ} is a subspace of $M(X, \mathcal{F})$. We prove that it is closed: let $\left(\lambda_{n}\right)$ be a sequence in \mathcal{A}_{μ} converging to λ
that is $\lim _{n}\left\|\lambda_{n}-\lambda\right\|=\lim _{n}\left|\lambda_{n}-\lambda\right|(X)=0$. This implies that $\left(\lambda_{n}(E)\right)$
converges to $\lambda(E)$ even uniformly with respect to E.
If we have $\mu(E)=0$ then $\lambda_{n}(E)=0 \forall n$, so $\lambda(E)=0$ that is $\lambda \in \mathcal{A}_{\mu}$ this shows that \mathcal{A}_{μ} is closed.
Now we define the linear isometry Ψ from $L_{1}(\mu)$ onto \mathcal{A}_{μ} as follows:
for $f \in L_{1}(\mu)$ put $\Psi(f)=\lambda$, where λ is the complex measure on (X, \mathcal{F}) given by
$\lambda(E)=\int_{E} f . d \mu$. Then it is clear that Ψ is linear, moreover it is invertible,
indeed
if $\lambda \in \mathcal{A}_{\mu}$ then $\lambda \ll \mu$ and since μ is σ-finite there is a unique $f \in L_{1}(\mu)$ such that
$\lambda(E)=\int_{E} f . d \mu=\Psi(f)$, by the Radon-Nikodym Theorem. On the other hand
Ψ is an isometry
since we have $\|\Psi(f)\|=\|\lambda\|=|\lambda|(X)=\int_{X}|f| . d \mu=\|f\|_{L_{1}(\mu)}$.

References

1. Royden-Fitzpatrick. Real Analysis Fourth Edition Prentice Hall.
2. W. Rudin Real and Complex Analysis Mc GRAW-HILL Third Edition
