Chapter 6
COMPLEX MEASURES
Absolute Continuity and Representation Theorems

Introduction
Let (X,F, ) be a measure space and let f : X — C be a complex pu-
integrable function. Let us consider the set function v given by:

Z/(A):fAfdu,Aef (%)

Such set function has the following properties:
(1) (c—additivity): For any sequence (A,,) of pairwise disjoint sets A, in F
we have v (UAn) =Y v(Ay)

(2) (absolute continuity): Let A € F with p (A) = 0 then v (A) = 0, because
f-Ia =0 p—a.e, we say that v is absolutely continuous with respect to . This
relation will be denoted by v < p

(3). If f is real valued let us write f = f™ — f~ then
v(A)= [, fdp= [, [Tdu— [, f~duso we have v (A) = vy (A) —vs (A), with
v1(A) = [, ffdp and vy (A) = [, f~dp positive and o—additive.

In this chapter we consider complex valued o—additive set functions
A: F — C and we will show successively:
(a) X is of bounded variation:

more precisely there is a positive finite measure |A\| on F such that

A(E)| <\ (E), VE ¢ F

[\ is called the total variation of .
(b) if X is real valued then it can be written as A = AT — A~

where AT, A\~ are finite positive measures.
This is called the Jordan decomposition.
(¢) A has the integral form (x) for some complex p-integrable function f provided
A < p for some o—finite positive measure .

This is the Radon-Nicodym Theorem.

1. Complex Measures property

Definition 1.1
Let (X, F) be a measurable space and A\ : F — C a complex set function.
We say that A is a complex measure if for every sequence (A,,) of pairwise

disjoint sets in F we have A (UAn> =3 A(An).
n n
Remark (1) Let Yz, = M be a convergent series of real or complex numbers.

n
We say that the series is unconditionally convergent to M if for any permuta-
tion (i.e bijection) o : N — N, the series ) z,(,) converges to M. For real

n
or complex numbers series unconditional convergence is equivalent to absolute
convergence by Riemann series theorem.



(2) Let 0 : N — N be a permutation of N then UA = UA, () = A and the
sets (A, (n)) are pairwise disjoint so A (A) = Z)\( n) = nz/\( Ag(n), since o
is arbitrary this implies that the series Z)\( n) is uncondltlonally convergent
and then absolutely convergent.

(3) If A is a complex measure on (X, F) then one can write A = Re (A)+¢Im (A),

where it is easy to see that Re (A) and Im () are real o—additive set functions
n (X, F). This simple observation leads to the following definition:

Definition 1.2
Let (X, F) be a measurable space and p : F — R a real set function.
We say that u is a real measure if for every sequence (A,,) of pairwise disjoint

sets in F we have p (%An> =3 u(4,).

Let ¢ : N — N be a permutnation of N then UA = UA,(n) = A and the
sets (Ay(n)) are pairwise disjoint so p(A) = Z,u( n) nz,u( (n)), since o
is arbitrary this implies that the series > (A4 n) is uncondltlonally convergent

and then absolutely convergent (see Remark (1))

2. Total variation of a complex measure

Let A be a complex measure on (X, F)

Among all positive measures p on (X, F) satisfying

AN(E)| < u(E), VE € F, there one and only one called the Total variation
of A and given by the following theorem:

Theorem 2.1 If X is a complex measure on (X, F)
let us define the positive set function |A| : F — [0, o0] by:
EcF, |\ (E)=sup {Z IAN(E,)|, (E,) partition of E in F

the supremum being taken over all partitions (E,) of E in F. Then:
|\ is a positive bounded measure on (X, F) satisfying
AE) < N (B), VE e F
moreover |A| is the smallest positive bounded measure with this property.
Proof. Let FE be a set in F
If (E,) is a sequence of pairwise disjoint sets in F we have to prove that:

A (UEL) = S A (Bn)
let us put F = UEn and take a partition (A,,) of E in F then we have:
(A, NE,),~, is a partition of A,,
(A, NE )m; is a partition of E,,

)
)

so [A(An)| = (A, NE,)

<> |MAnNE,)|,Ym > 1 and then
2 |A (Am \<ZZ|>\(A NE =22 A (Am 0 Bn)



but we have from the definition of [A| > |A (A N EL)| < A (En) Y >1
therefore we deduce that > |\ (An)] < YO |A| (En) inequality valid for every

partition(A,,) of E and implies |A| (E) < > |A| (E,) by the definition of |A| (E).

It remains to prove that > |A| (E,) < |A\|(E), to do this we use characteristic
n

property of the supremum: for each n > 1 let a,, > 0 be any real number
such that a,, < [A| (E},), then from the definition of || (E,,) there is a partition
(Amn)m21 of E, with a, < > |A(Apmn)|, but we have E = . U.E, = U.Apy

mn

and > an, < D3 |A(Amn)|. Since (A’m")m,nZI is a partition of E we deduce
that D> A (Amn)| < |A|(E) and so > a, < |A|(E), but this is true for all
an > 0 satisfying >an < > |A| (Ey,) this implies that > |A| (E,) < |A|(E). The
proof of the boundedness of |}| is left to the reader.l
Theorem 2.2 If ) is a complex measure on (X, F)
For any increasing or decreasing sequence (A4,,) in F we have
A\ (limAn) = lim\ (4,,)
where limA,, stands for UA,, in the increasing case
and for NA,, in the decreasing one.
Proof.
use the o—additivity of A and the fact that |\ (E)| < co, VE € F .I

Theorem 2.3
Let M (X,F) be the family of all complex measures on (X, F)
let A,v be in M (X, F) and let o € C, then define:

A+v, awv, |[Al, by the following recipe
A+v)(E)=X(E)+v(E), (av)(E)=av(E), E€F

A= [AH(X)
Then M (X, F) is a vector space on C, and ||A|| is a norm on M (X, F)
Moreover M (X, F), endowed with the norm ||A||, is a Banach space.

Proof. see any standard book on measure theory for a classical proof.e.g.[R — F|H



3. Hahn-Jordan Decomposition of a Real Measure

Theorem 3.1 Jordan Decomposition of a Real Measure
Let (X, F) be a measurable space and p : F — R a real measure (Definition
1.2
Let)us define the set functions put, = as follows: for each & € F
put(E)=sup{p(F): FeF, FCE}
p (B)=—inf{u(F): FeF, FCEFE}
Then p*, u~ are positive bounded measures on (X, F) satisfying:

. 1 N |
(@) u™ = 5 (lul + p) (@) = = 5 (Iul = )
(14) p = p™ —p~  (Jordan Decomposition)
(iv) [ul = p* + p~
Proof
First it is enough to prove that u™ is a positive bounded measure on (X, F)
because p~ = (—p) " .
From the definition of the total variation of u we can see that for £ € F
VF € F, FC Bt (F) < |u(F)| < |l (F) < |ul (B) < |l (X) < o0
so we deduce that u™ is positive bounded;
it remains to prove that u™ is o—additive
Let (E,) be pairwise disjoint sets in F, we have to prove:
ut (UE,) = Sut (En)
Since Yn > 1 ut (E,) < 0o, we have from the definition of u* :
let € >0 then for each n > 1, 3F, C E, such that u* (E,) — 2% < p(Fy)
summing over n we get Y ut (E,) —e < > u(F,) =p (UFn)

but %Fn C %En = u (L#Fn> <pt (%En) , therefore ;u+ (Ep)—e < p™ (%En>
since € > 0 is arbitrary, we obtain Y u* (E,) < put (%En> after making e — 0.
On the other hand let F' C L#En;' € F, then F = %(En N F) and
p(F)=>pu(B,NF) <> ut(E,) because E,NF C E,

since F' C UE,,..is arbitrary in F, we deduce that p* (UEn) <> ut(Ep)
so pt is a positive measure on (X, F).
We have (i) = (i3) — (4i7) and (iv) = (4¢) + (423)
it is enough to prove (i) because (i) follows with p~ = (—pu)™
then we get (i13) with (i7) — (¢) and (fv) with (é2) + (427) .
1
So let us prove (i) that is u* = 3 (Il + ) :

fix € > 0 then from the definition of the total variation |y
there is a partition (E,) of E in F such that () |u| (E) —e <> |pu(Ey)|.



Let us put L ={l: u(E;) > 0} and K = {k : p(Ex) < 0}, we get:
2w (En)l = 2p (E) = 3 p (Ek)

now define F' = LLJEZ and G = %Ek, so by the o—additivity of u we deduce
u(F) = ZL)u (Ey) and p(G) = ;u (Ek), then 3 |p (En)| = p(F) — 1 (G)

therefore we obtain from the inequality (x) that

(24) |p[ (E) —e < X |p(En)| = p(F) — n(G)

n

but since E = F'U G we have

(3%) p(E) = p(F) + p(G)
adding (2%) + (3x) we get:

[l (B) + 1 (E) — € < 2u(F)
the definition of p* implies pu (F) < p™ (E), because F C E

1
finally 5 (lu] (E) + 1 (E) —€) < u* (E) with nothing depending on € apart e,

1
making ¢ — 0 we get 3 (lpl (B) + p(E)) < pt (E).
This inequality cannot be strict:

indeed suppose that we have % (lu (B) + p(E)) < pt (E), this would imply
the existence of an F' in F with F' C E and % (lpl (B) + p(E)) < p(F) < pt (E)
but the set function % (|| (E) + 1 (E)) is a positive measure on (X, F),

since F' C E we should have % (le| (F) +n(F)) < % (lp] (B) + 1 (E))

since 1 (F) < |ul (F), we have i (F) = & (u(F) + p(F)) < 3 (1nl (F) +  (F) <

% (|| (E) + 1 (E)) < p (F) which is absurd

so we deduce that % (|| (E)+p(E))=p" (E).NR

Remark.

The Jordan decomposition of a real measure p as difference of two positive
bounded measures p = pt — u~ is not unique, since for any positive bounded
measure v one can write u = (u* +v) — (u= +v).

However such decomposition is minimal in the sense that if p =\ — v

with ), v positive bounded measures then p* < X and = < v; to see this use
the facts 4 < X and (—u) < v in the definition of u™, pu~.

Theorem 3.2 The Hahn Decomposition
Let o : F — R be a real measure on the measurable space (X, F).
There exists a partition of X in two sets A, B in F such that:
(1) p(F) >0 for every F C Aand u~= (A) =0
(2) p(F) <0 for every F C B and pt (B) =0
The partition X = A U B satisfying (1), (2) is unique in the following sense:
if C, D is another partition of X satisfying (1), (2) then |u| (AAC) = 0 and
|u| (BAD) = 0, (see [R — F] for the Proof).



5. Absolute Continuity of Measures
Radon-Nikodym Theorem

Definition 5.1
Let A be a complex measure on (X, F) and p a positive measure.
We say that A is absolutely continuous with respect to p if:
for E € F satisfying 4 (E)=0= A(E) =0
notation: A< pu
Example 5.2
Let f € Ly (i), then the complex measure A on (X, F) given by:

EE}',)\(E):/f.du (%)
E
is absolutely continuous with respect to u, indeed suppose p (E) =0

then .f.IJp =0 p—a.e and /f.du = /f.IE.dp = 0 = ) absolutely continuous

E X

with respect to p.(by the property of the integral)
This example is fundamental in the following sense:
If p is o—finite then the complex measure in the integral form (x) is the
only one which is absolutely continuous with respect to p
this is due to the Radon-Nikodym Theorem. First let us look at some
properties of the absolute continuity.
Theorem 5.3
Let A be a complex measure on (X,F) and p a positive measure.
The following properties are equivalent:

(@) A<p

(b) For any € > 0 there is 6 = § > 0 such that for A € F

w(A) <o = |M(A) <e
Proof.
(b) = (a)
if 4(A) =0 then p(A) <IVI>0,s0|A(A) <eVe>0

that is |A| (4) =0
(a) = (b)
we prove that not (b) = not (a)
suppose not (b) then there is € > 0 such that for each n > 1

1
there exists By, € F with p(E,) < o~ and |A[(E,) > €
put £ = limsupE, =N. kL>J .E}, then since |A| is bounded we get:

[A] (E) = lim || (kg .Ek> > lim [\ (E,) > € > 0.
1
On the other hand since we have Y u (E,) < Zz—n < 00, we can apply

the Borel-Cantelli Lemma to the sequence F,, to get u (E) = (lim supEn> =0

so not (a) is satisfied and not (b) = not (a) is proved.l



Definition 5.4 (Singular Measures)

Let 4, v be positive measures on (X, F).

We say that u, v are singular if there is a partition {A, B} of X such that
#(4) = v (B) =0

notation: p Ll v

If p,v are complex measures then they are singular if |u| L |v|

Remark.
Suppose u, v positive or complex measures and p 1 v
if {A, B} is the partition of X defining the singularity then we have
for E€eF p(E)=p(ENB)andv(E)=v(ENA)
Proposition 5.5
Let g, A1, A2, be measures on (X, F) with p positive and Aj, A2, complex then
(a) My Lpand Ao Lu= A1+ X2 L p
DM <pand << p= M+ <1
(0) M < o= ] < g
(d))\l <1 and Ay L B = A1 LA
&)\ <pand Ay Lp= X =0
Proof
(b) and (c¢) are deduced from definition, (e) is a consequence of (d)
so let us prove (a) and (d) .
To see (a) let {A1, B1},{A2, B2} be two partitions of X with
A1 (A1) = p(B1) =0 and |Xo| (A2) = p(B2) =0
put A = A1 N A and B = By U By, then {4, B} is a partition of X and we have
A1+ A2f (A) < (|A1] + [A2]) (A) = 0 and p(B) < p(B1) + p(B2) =0
therefore Ay + Ao L p this proves (a) .
To prove (d): since Ay L pu let {4, B} be a partition of X with |A\y] (A) =
p(B)=0
but we have also A\; < p so we will have [A;|(B) = 0 by (c¢), finally we get
[A2| (A) = |M[(B) =0
that is Ay L Ag, then we deduce (d) .l

Theorem 5.6 Radon-Nikodym-Lebesgue Theorem.
Let u, A, be measures on (X, F) with p positive c—finite and A complex then:
(1) There is a unique pair of complex measures \,, As such that
Aa € by As L ppand Ay L Ag
moreover A = A\, + Ag Lebesgue Decomposition
(2) There is a unique function h € Ly () such that

Ao (B) = /h.du for every E € F.Radon-Nikodym Theorem
B

Proof

Let us point out:

(7) uniqueness in (1) of A4, Ag: if )\;, )\; is an other pair of complex measures
with A, < g1, Ay Lgand A=A, + A, = A, + A, then we have

/\; —Ag = As — )\/s; we deduce from Proposition 5.5 (a) that A — /\; Lu



and from Proposition 5.5 (b) that )\; —da <

so part (e) of the same Proposition implies )\; —Xa = A5 — )\; = 0, whence the
uniqueness of the decomposition.

(i) uniqueness in (2) of the function h: if K € Ly (i) is an other function with

Ao (E) = / k' .dp for every E € F then / h.dp = / W .du, VE € F, and so by
E
the property of the integral we get h = B W — a.e.
We prove the theorem when p, A are positive bounded measures
the proof in this case is due to John Von Neuman.
(for the general case see reference [R — F1).
Let u, A be positive bounded measures on (X, F) and put m = p+ A
then m is a positive bounded measure on (X, F) and we have

X/fdm /fdu—l—/fd)\

for any rneaburable posmve function f on X

this can be checked easily for simple positive functions

by using Beppo-Levy convergence theorem one can prove it
for measurable positive functions.

Observe that Ly (m) = Ly (u)N Ly (A) because/|f\ dm = /|f\ d,u—i—/|f\ dA

Now take f in the Hilbert space Lo (m) then we have by the Schwarz mequahty
1

2 1
lx/f.d)\ SX/|f.d/\§X/|f|.dm§ X/f| dm | (m(X))2

consequently the linear functional f — / f.dX is continuous on the Hilbert

X
Space Ls (m). Therefore there is a unique function g in Ly (m) such that :

*) / fdx= / f-g.dm, by the isomorphism between Ly (m) and its strong dual

X X
take f = Ig in equation (x) to get

(xx) A(E) = /g.dm, then since 0 < A\ (E) <m(E)VE € F

E
we obtain 0 < g <1 m — a.e, but m = g+ A, from which (x) gives

***/f (1—g).dX\= /fgd,u

Now put A={0<g< 1} B = {g = 1} and define measures A,, \s as follows

A (B)=A(ANE)and A\s (F)=A(ENB) VYEc€F
putting £ = X, f = Ip in the relation (x x %) gives



/(179)-%:/9-@:#(3)

B B

since g = 1 on the set B we have /(1 —g).dA=0,s0 u(B)=0

B
but A; (E) = 0 for every E C A, therefore A; L p.
Again consider (* * x) but with f = [1 +g+g2+... + g”] dg, we get:

/ (1—gm*1).dr = / (1— g1} .dr+ / (1—gm*1).dr = / (1—g"1).dA

E ENA ENB ENA
since g = 1 on the set B.

On the other hand we have ¢"*! () | 0 Vz € EN A, since A= {0 < g < 1}
so1—g"tt(x) 1 IVz € EN A and by Beppo-Levy convergence theorem we
get:

(4%) lim / (1—g").dr=A(ENA) =\, (E)

ENA

I on A
but we have g. (14+ g+ ¢*+...+¢") Th=4 1-g
co onB

since p (B) = 0, we deduce that

(5%) /g. (1+g+g*+..+g").duT /h.du
E E
now properties (4x) and (5%) jointly imply

Ao (B) = /h.d,u and h € Ly (p)

which ends t?le proof of the Theorem. the function h is called the Radon-
Nikodym density of A\ with respect to p and is denoted by h = %.I
The following theorem is a version of the preceding one in the case A, p positive
o—finite measures, the proof can be found in [R — FJ.
Theorem 5.7
Let u, A, be positive o—finite measures on (X, F)
(1) There is a unique pair of positive measures \,, As such that
Ag K by As L ppand Ay L Ag
moreover A = A, + Ag Lebesgue Decomposition
(2) There is a unique positive function h locally p—integrable such that

Ao (E) = /h.du for every £ € F.Radon-Nikodym Theorem

E
h locally p—integrable means that there is a partition (X,,) of X in F such that
/h.d,u < oo Vn.

Xn



6. Applications

We recall that the structures given in Theorem 5.6 are valid on (X, F) with u
positive o—finite and A complex although its proof has been given for p, A posi-
tive bounded. So hereafter we consider the general context of complex measures.
Let us start by the relation of a complex mesure and its total variation.

Proposition 6.1
Let A be a complex measure on (X, F) then
there exists a measurable function h : X — C such that

|h(x)] =1 for every x € X and )\(E):/h.d|)\| VE € F

E
where |A| is the total variation of A (see Theorem.2.1 for total variation of A )

Proof
Observe that A < |\| and use the Radon-Nikodym Theorem.Hl

Proposition 6.2
Let (X, F, ) be a measure space and let f be in Ly ().

Consider the complex measure A on (X, F) given by A (E) = /f.du
B

then we have || (E):/|f|.dﬂ VE € F.
E

Proof
Let us consider the set measure v (E) = / |f].du on (X, F) then we have:
E

NB) = | [ £du| < [ 1f1dn=v(B) = NB) < v(E)
E E

but we now that the total variation |A| is the smallest positive measure
satisfying |A (E)| < |A| by theorem 2.1, so we deduce that |[A| < v and therefore
|A] < v. Since v is bounded by the Radon-Nikodym theorem there is ¢ € Ly (v)

with ¢ positive and |A| (E) = /cp.du. The integral form of v allows to write
E

A (E) = /cp. | f|.dp. By Proposition 6.1 there exists a measurable function A :

E

X — C such that |h(z)| =1 for every € X and A (E) :/h.d|)\\ VE € F.
B

We deduce from the integration process that A (E) = /h.d |A] = /h.go. |f] -du.

E E

By hypothesis \ (E) = /f.du so we get /h.<p. |f].du = /f.d,u,VE € F and
B E E

10



then h.o.|f|=f p—ae But |h(z)|=1 foreveryx € X sop =1 p—a.e

because ¢ > 0, finally || (E) = /gp.di/ =v(E) = / |f|.dp. 1
E E

Proposition 6.3

Let p be a o—finite measure on (X, F) and let us denote by

A, the family of all complex measures absolutely continuous with respect to u
Then A, is a closed subspace of the Banach space M (X, F). Moreover

there is a linear isometry from L, (1) onto A,,.

Proof

Recall the Banach space M (X, F) of all complex measures on (X, F)

with the norm ||A|| = |A| (X) defined in Theorem 2.3.

It is easy to check that A, is a subspace of M (X, F). We prove that it is closed:
let (A\,,) be a sequence in A, converging to A

that is 1171111 A = All = lirrln [An, — Al (X) = 0. This implies that (A, (E))
converges to A (E) even uniformly with respect to E.

If we have p (E) = 0 then A, (E) =0 Vn, so A(F) =0 that is A € A,

this shows that A, is closed.

Now we define the linear isometry ¥ from L (p) onto A, as follows:

for f € Ly (p) put ¥ (f) = A, where X is the complex measure on (X, F) given
by

MNE) = / f.dp. Then it is clear that ¥ is linear, moreover it is invertible,

indeed
if A € A, then A < p and since p is o—finite there is a unique f € Ly (u) such
that

MNE) = /f.du = U (f), by the Radon-Nikodym Theorem. On the other hand
E

U is an isometry

since we have || ¥ (f)| = [IAll = [A[(X) = /Ifl dp =[£I, () B
X
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