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Abstract

The subject of the present work deals with Bochner integrationl of bounded
operators, acting on L1-type spaces. More precisely, let (S;F ; �) be a �nite
measure space and let X be a Banach space or a locally convex space. We form
the space L1 (�;X) of all Bochner ��integrable functions f : S ! X, with an
adequate topology. We perform integration for a class of bounded operators
T : L1 (�;X) ! X, whose integral structure is similar to that of bounded
functionals on L1 (�).The main setting is the Bochner integration process with
respect to �nite abstract measure and the results obtained may be considered
as generalizations of the classical Riesz Theorem.
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Introduction

In the �rst part we consider a �nite measure space (S;F ; �), a Banach space
X and form the Banach space L1 (�;X) of all Bochner ��integrable functions
f : S ! X, with L1 (�;X) = L1 (�) if X = R. We introduce a class of linear
bounded operators T : L1 (�;X) ! X, whose Bochner integral structure is
much similar to that of bounded functionals on L1 (�). We give two complete
characterizations of this class. The �rst one, which may be considered as a
Riesz type theorem, is obtained via integrals by functions in L1 (�). Actually
the identi�ed class will be isometrically isomorphic to L1 (�). The second
characterization is more speci�c. It pertains to an operator valued measure, that
will be attached to each operator of the class. This operator valued measure
will be absolutely continuous with respect to � and this property will be used
to get another interesting characterization of the class under consideration.
In the second part, we assume that X is a locally convex space whose topol-

ogy is de�ned by a family fp�g of continuous seminorms. We assume that fp�g
is separating, this means that for each nonzero x 2 X there is a p� such that
p� (x) 6= 0: Moreover we assume that X is sequentially complete, that is, every
Cauchy sequence in X is convergent. The construction of the Bochner inte-
gral we give in this context is, as far as we know, new (for other approachs
see [1; 5; 13]): Finally, arrangements are made so that each Part of this work is
mostly selfcontained and can be read independently.
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Part 1.

The Integral structure of some bounded operators on L1 (�;X)

1.Operators on the space of Bochner integrable functions

Let (S;F ; �) be a �nite measure space and let X be a Banach space. We
denote by L1 (�;X) the Banach space of all Bochner ��integrable functions
f : S ! X, with L1 (�;X) = L1 (�) if X = R. For all properties of the Bochner
integral, we refer the reader to [6] :
For f 2 L1 (�;X), we put:

(1:2) kfk1 =
R
S
kf(s)k d� (s)

Then it is well known that:

1.3. Proposition: Formula (1:2) de�nes a norm on L1 (�;X), for which
L1 (�;X) is a Banach space. Moreover the measurable simple functions s : S !
X form a dense subspace of L1 (�;X). This means that for each f 2 L1 (�;X)
there is a sequence sn of simple functions such that kf � snk1 ! 0.
The starting point that has motivated the present work is contained in the

following simple observation:

1.4. Theorem: Fix a function g in L1 (�) ( the space of all ��essentially
bounded real functions on S ) and consider the operator Tg : L1 (�;X) ! X
de�ned by:

(1:5) f 2 L1 (�;X), Tg (f) =
R
S
fg d�:

Then Tg is linear bounded and satis�es kTgk = kgk1.

Proof: Since kf(s)g (s)k � kf(s)k kgk1 �� a.e. we deduce from (1:5),
kTg (f)k � kgk1 :

R
S
kf(s)k d� (s) = kgk1 : kfk1. So the operator Tg is bounded

and kTgk � kgk1. To prove the reverse inequality, apply Tg to a function
f 2 L1 (�;X) of the form f = ':x, where ' 2 L1 (�), such that k'k1 = 1 and
x �xed in X with kxk = 1. We get kfk1 = k'k1 = 1 and Tg (f) =

R
S
'g

xd� =
�R
S
'g.d�

�
:x, by standard integration tools.

So we deduce kTg (f)k =
��R
S
'g.d�

�� � kTgk and then
Sup

���R
S
'g.d�

�� , ' 2 L1 (�) , k'k1 = 1	 � kTgk. But the LHS of the preceding
inequality is equal to kgk1 by the Riesz duality theorem for L1 (�). So we get
kgk1 � kTgk and then kTgk = kgk1 :�
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1.6. Remark: Another way to put the conclusion of Theorem 1.4 is the
following:

The map � : g ! Tg from L1 (�) into L (L1 (�;X) ; X), the space of bounded
operators T : L1 (�;X)! X, is a linear isometry.

We can wonder whether � is onto. This is certainly true if X = R by the
Riesz duality theorem for L1 (�). But if dimension of X is greater than one,
the following example shows that not all operators in L (L1 (�;X) ; X) can be
written in the form (1:5) for some g in L1 (�) :

1.7. Example: LetX = R2, equipped with the norm: z = (z1; z2), kzk = jz1j+
jz2j. If f = (f1; f2) : S ! R2 is Bochner ��integrable with the Borel ���eld

on R2, then f1; f2 : S ! R are ��integrable and
Z
S

f d� =

�Z
S

f1 d�;

Z
S

f2 d�

�
.

Note also that kf (s)k = jf1 (s)j+ jf2 (s)j, so that kfk1 =
Z
S

jf1j d�+
Z
S

jf2j d�.

Now de�ne the operator T : L1
�
�;R2

�
! R2, by Tf = T (f1; f2) =

�Z
S

f1 d�; �

Z
S

f2 d�

�
,

where 0 < � < 1 is a �xed constant. It is clear that T is linear and we have

kTfk =
����Z
S

f1 d�

���� + �

����Z
S

f2 d�

���� � kfk1, so that T is bounded. If there were a
g 2 L1 (�) such that T (f) =

R
S
fg d�, we would have

Z
S

f1 d� =

Z
S

f1 g:d�

and �
Z
S

f2 d� =

Z
S

f2:g:d�, for all ��integrable functions f1; f2. Taking f1; f2
both characteristic functions of sets in F , this would imply g = 1, ��a.e and
g = �, ��a.e. This is impossible by the choice of �. Consequently the operator
T cannot be written in the form (1:5) :
The aim is to characterize those bounded operators T : L1 (�;X)! X that

have integral form (1:5) with a function g 2 L1 (�). This amounts to describe
the range of the operator � in remark 1.6. In section 2 we give the ingredients
of this characterization which allows a representation of operators on the space
L1 (�;X), much simpler than those given in [10]. In section3 we prove integral
representations by operator valued measures, for operators introduced in section
2. This leads to a rather precise description of such operators.

3



2 A Characterizing class

In this section we want to identify those operators T 2 L (L1 (�;X) ; X), for
which there is g 2 L1 (�) such that T = Tg. Let X� be the topological dual of
X. For each x� 2 X� consider the operator 'x� : L1 (�;X)! L1 (�), given by:

(2:1) f 2 L1 (�;X), 'x�f = x� � f

where (x� � f) (t) = x� (f (t)), t 2 S.
We collect some facts about 'x� for later use:

2.2. Proposition: (a) 'x� is linear bounded and k'x�k = kx�k :
(b) 'x� is onto for each x

� 6= 0:
(c) There exist y� 2 X� such that for each h 2 L1 (�) there is f 2 L1 (�;X)
with kfk1 = khk1 and 'y�f = h:

Proof: (a) k'x�fk =
Z
S

jx� � f j d� � kx�k
R
S
kf(s)k d� (s) = kx�k kfk1.

So 'x� is bounded and k'x�k � kx�k. To see the reverse inequality apply
'x� to a function f 2 L1 (�;X) of the form f (�) = g (�) :x, with g 2 L1 (�)
such that kgk1 = 1 and x �xed in X with kxk = 1. We get kfk1 = 1 and

k'x�fk =
Z
S

jx� � f j d� = jx� (x)j. Thus jx� (x)j � k'x�k for every x 2 X with

kxk = 1. Consequently kx�k = Sup fjx� (x)j ,x 2 X, kxk1 = 1g � k'x�k :
(b) Let x� 6= 0 and choose x 2 X such that x� (x) = 1. Now if h 2 L1 (�) put
f = h:x, then clearly we have 'x�f = h::
(c) Choose x 2 X with kxk = 1, then choose y� 2 X� such that y� (x) = kxk =
1, ky�k = 1, this is possible by Hahn-Banach theorem . If h 2 L1 (�), the
function f = h:x is in L1 (�;X) and �ts the conclusion.�
The following class of operators will play an essential role for the character-

ization we need:

2.3. De�nition: LetD be the class of linear bounded operators T 2 L (L1 (�;X) ; X)
satisfying the following condition:

(2:4) x�; y� 2 X�, f; g 2 L1 (�;X) : 'x�f = 'y�g =) x�Tf = y�Tg

It is easy to check that D is a closed subspace of L (L1 (�;X) ; X) : Note also
that every Tg as de�ned by (1:5) is in D.
The important fact about D is:

2.5. Theorem: Let T be an operator in D; then there exists a unique bounded
linear functional V : L1 (�)! R such that:

(2:6) V � 'x� = x� � T for every x� 2 X�:
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Proof: Let h 2 L1 (�) and x� 2 X�; x� 6= 0; by Proposition 2.2(b) there is
an f 2 L1 (�;X) such that 'x�f = h: then we put:

(2:7) V (h) = x�Tf

The functional V does not depend on the choice of x� but depends only on T:
For if Vx� and Vy� are de�ned as in (2:7), with x�; y� 6= 0, then Vx� (h) = x�Tf
if h = 'x�f and Vy� (h) = y�Tg if h = 'y�g; but condition (2:4) on T implies
that Vx� (h) = Vy� (h). It is easy to check that it is linear. We must show that
V is bounded. Since 'x� is bounded and onto, by the open mapping principle
there exists a constant K = Kx� > 0 such that for every h 2 L1 (�), there
is a solution f 2 L1 (�;X) of 'x�f = h, with kfk � K: khk : From (2:7) we
deduce that kV (h)k � kx�k kTk kfk � kx�k kTkK khk, which proves that V is
bounded.
: It remains to prove (2:6). For f 2 L1 (�;X) and x� 2 X�, we have h = 'x�f 2
L1 (�), and (2:7) gives V (h) = V ('x�f) = x�Tf . Since f and x� are arbitrary,
(2:6) follows. Uniqueness is clear from (2:6) since 'x� is onto.�
As a consequence of the preceding theorem let us note:

2.8. Theorem: There is an isometric isomorphism between the Banach space
D and the topological dual L�1 (�) of L1 (�), for each non trivial Banach space
X:

Proof: De�ne the operator 	 : D!L�1 (�) by: T 2 D, 	(T ) = V , where V
is the unique bounded functional on L1 (�) attached to T by theorem 2.5. It
is not di¢ cult to see that 	 is linear. We have to show that 	 is an isometry,
that is, kV k = kTk if 	(T ) = V: First we prove the estimation

(2:9) kV k = Sup fkV � 'x�k : x� 2 X�; kx�k � 1g

We have kV � 'x�k � kV k k'x�k = kV k kx�k, since k'x�k = kx�k by 2.2(a). So
we deduce kV � 'x�k � kV k, for all x� 2 X�; with kx�k � 1. Hence
Sup fkV � 'x�k : x� 2 X�; kx�k � 1g � kV k. But V 2 L�1 (�), consequently for
each " > 0 there is h 2 L1 (�) such that khk1 � 1 and kV k� " < jV (h)j � kV k.
Now let y� 2 X� as in 2:2 (c) and choose f 2 L1 (�;X), such that kfk1 = khk1
and 'y�f = h: Then kfk1 � 1 and

��V � 'y� (f)�� = jV (h)j � 

V � 'y�

 kfk1.
Thus jV (h)j �



V � 'y�

 � Sup fkV � 'x�k : x� 2 X�; kx�k � 1g. From the
choice of h we get kV k � " � Sup fkV � 'x�k : x� 2 X�; kx�k � 1g. Letting
" # 0, we obtain kV k � Sup fkV � 'x�k : x� 2 X�; kx�k � 1g. So (2:9) is proved.
To �nish the norm equality kV k = kTk, we appeal to formula (2:6) and conclude:
kV k = Sup fkV � 'x�k : x� 2 X�; kx�k � 1g = Sup fkx� � Tk : x� 2 X�; kx�k � 1g =
kTk : To achieve the proof it remains to prove that 	 is onto. If V 2 L�1 (�),
then by the Riesz duality theorem, there is a unique g 2 L1 (�) such that
V (h) =

R
S
hg d�, for all h 2 L1 (�). Consider the operator Tg on L1 (�;X)

given by formula (1:5). We have Tg 2 D and it is straightforward that V and
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Tg are linked by equation (2:6). So from the de�nition of the operator 	 we
deduce that 	(Tg) = V:�
Since L�1 (�) is isometrically isomorphic to L1 (�), we deduce the following
corollary:

corollary: The class D is isometrically isomorphic to L1 (�). In other words,
a bounded operator T : L1 (�;X)! X is in D i¤ there is a unique g 2 L1 (�)
such that T = Tg and in this case kTk = kgk1 :

Now we turn to another description of the class D, namely by a space of
measures. This will be achieved via integrals with respect to operator valued
measures.

3 Operator valued measures representing the class D

3.1. The integration process we shall deal with in this section is performed by
an operator valued additive set function G : F ! L(X;E), where L(X;E) is
the space of linear bounded operators of the Banach space X into the Banach
space E. The integral will be de�ned for measurable functions f : S ! X,
under the assumption that G is additive and with �nite semivariarion. Let
us recall that semivariation means the set function eG on F given by eG(B) =
Sup






X
i

G(Ai):xi






, where B 2 F , and the supremum taken over all �nite

partitions fAig of B in F and all �nite systems of vectors fxig in X, with
kxik � 1 8i: The function G is said to be of �nite semivariation if eG(B) is �nite
for all B 2 F : A simple measurable function s on S with values in the Banach
space X is a function of the form s (�) =

X
i

1Ai
(�) :xi, where fAig is a �nite

partition of S in F , and fxig is a �nite system of vectors in X. The symbol
1Ai

means the characteristic function of the set Ai. A function f : S ! X is
said to be measurable if there is a sequence sn of measurable simple functions
converging uniformly to f on S: If we denote by I and M the sets of simple
functions and measurable functions, respectively then I and M are subspaces
of the Banach space of all bounded functions f : S ! X, with supremum norm.
Moreover I is dense inM.
We de�ne the integral of the simple function s (�) =

X
i

1Ai
(�) :xi over the

set B 2 F , with respect to G by:

(3:2)
R
B
s dG =

X
i

G (Ai \B) :xi

It is easy to check that the integral is well de�ned and satis�es:
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(3:3)


R
B
sdG



 � ksk : eG(B)
(ksk = supremum norm)
Let us observe that estimation (3:3) implies that the linear operator UB : I!E,
with UB (s) =

R
B
s dG is bounded. So we can extend it in a unique manner to a

bounded operator on the closureM of I. This extension will be our integration
process on the spaceM of measurable functions.We shall denote it also by UB
with UB = U if B = S. Note that if f 2 M and if sn is a sequence in I such
that kf � snk ! 0 then the integral of f is given by:

(3:4) UB (f) =
R
B
f dG = limn

R
B
sn dG

By (3:3) the integral (3:4) does not depend on the sequence sn chosen converg-
ing to the function f: This simple integration process will be su¢ cient for our
purpose. The outstanding facts are summarized in the following:

3.5 Theorem: Let G be an additive L(X;E)-valued set function with �nite
semivariation on F :Then:
(a) The integral

R
B
f dG is linear in f 2M and satis�es:

(3:6) eG(B) = Sup
�

R

B
f dG



 ; kfk � 1; f 2M
	

in other words the operator UB : M ! E given by UB (f) =
R
B
f dG is

bounded with norm kUBk = eG(B), for each B 2 F . Conversely:
(b) Let U :M! E be a bounded operator. Then there is a unique additive set
function G : F ! L(X;E), with �nite semivariation such that:

(3:7) 8 f 2M, 8 B 2 F ; U (f .1B) =
R
B
f dG

(c) Let � : E ! Y be a bounded operator from E into the Banach space Y .
Let us de�ne �G : F ! L(X;Y ) by (�G) (B)x = �(G (B)x), B 2 F , x 2 X.
Then �G is an additive L(X;Y )-valued set function with �nite semivariation
and we have:

(3:8) 8 f 2M,
R
S
f d�G = �

�R
S
fdG

�
Proof: (a) To prove (3:6) start with f simple and use (3:2) and the de�nition
of eG(B). For general f use (3:4).
(b) De�ne G : F ! L(X;E) by G (B) :x = U (1B .x), for B 2 F , and x 2 X.
Then G is additive since U is linear and G is L(X;E)-valued because U is
bounded. Now (3:7) is easily checked by (3:2) and (3:4).
(c) To prove (3:8) start with f simple and use the de�nition of �G, then apply
(3:4), ( recall that the operator � is bounded).�
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Actually, part (b) of this theorem is an integral representation of a bounded
operator U on the spaceM by means of an L(X;E)-valued set function G on
F :

The next step is to extend the preceding integration process fromM to the
space L1 (�;X). The reader should observe that the space M is contained in
L1 (�;X), because functions inM are bounded and � is a �nite measure. The
extension of the integral (3:4) fromM to L1 (�;X) will be achieved under the
additional assumption that kG (A)k � k:� (A) for some constant k > 0 and all
A 2 F .
3.9 Theorem: Let G be an additive L(X;E)-valued set function with �nite
semivariation on F . Assume that:

(3:10) kG (A)k � k:� (A)

for some constant k > 0 and all A 2 F . Then we have:
(a) The integral (3:4) is a linear operator from M to E which is continuous
with the L1 (�;X)�topology on M and satis�es:

(3:11) 8f 2M;


R
S
fdG



 � k
R
S
kfk d�

(b) The integral
R
S
f dG, f 2 M, admits a unique extension to L1 (�;X), still

denoted by
R
S
fdG, such that:

(3:12) 8f 2 L1 (�;X) ;


R
S
fdG



 � k
R
S
kfk d�

(c) The operator f !
R
S
fdG is linear and bounded from L1 (�;X) to E:

Proof: (a) Let s (�) =
X
i

1Ai
(�) :xi be a simple measurable function with val-

ues inX. From (3:10) we deduce


R
S
s dG



 = 




X
i

G (Ai) :xi






 �X
i

kG (Ai)k : kxik �X
i

k� (Ai) : kxik = k
X
i

� (Ai) : kxik = k
R
S
ksk d�. So (3:11) is true for every

s 2 I. Now if f 2 M, let sn 2 I be such that sn ! f uniformly on S. As
� is �nite we deduce that

R
S
kf � snk d� ! 0 and so

R
S
ksnk d� !

R
S
kfk d�.

But


R
S
sndG



 ! 

R
S
fdG



 by (3:4). From the estimation above we know
that



R
S
sn dG



 � k
R
S
ksnk d�, for all n. Letting n ! 1 the validity of

(3:11) follows. Hence the continuity of the operator f !
R
S
fdG with the

L1 (�;X)�topology on the spaceM. Next to prove (b), we shall construct an
E�valued integration process on L1 (�;X) with the set function G, that coin-
cides with the integral (3:4) on M. This will be the desired extension. Recall
that the integral

R
S
s dG, for s simple, has been de�ned by formula (3:2). Now

if f 2 L1 (�;X), there exist a sequence sn 2 I such that
R
S
kf � snk d� ! 0.
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By(3:11) the sequence
R
S
sndG is fundamental in the Banach space E, so the

limit limn

R
S
sndG exists in E and it is easy to check that this limit is indepen-

dent of the choice of the sequence sn converging to f in L1 (�;X). So we can
de�ne:

(3:13) f 2 L1 (�;X),
R
S
fdG = limn

R
S
sndG

where sn is any sequence in I converging to f in the L1 (�;X) sense.
Now if f is a function inM, every sequence sn 2 I which converges uniformly
to f , converges also in the L1 (�;X) sense. So the integrals (3:4) and (3:13) are
the same for such f and this proves that (3:13) is an extension of (3:4). To see
the inequality (3:12), let sn 2 I converging in L1 (�;X) to the function f 2
L1 (�;X). By (3:11) we have



R
S
sndG



 � k
R
S
ksnk d�, for all n. Taking limits

for both sides we get (3:12) from which uniqueness of the extension follows.Part
(c) is clear:�
As a converse let us point out the following

3.10 Theorem: Let T : L1 (�;X) ! E be a bounded operator from L1 (�;X)
to E. Then there exists a unique set function G : F ! L(X;E) with �nite
semivariation satisfying (3:10), with the constant k = kTk and such that :

(3:14) f 2 L1 (�;X), Tf =
R
S
fdG

Moreover G is ��additive in the uniform topology of L(X;E).
Proof: De�ne G on F by the formula:

(3:15) A 2 F , x 2 X G (A) :x = T (1A (�) :x)

It is clear that G (A) is linear on X for each A 2 F and we have kG (A) :xk =
kT (1A (�) :x)k � kTk :� (A) : kxk. So we deduce that the function G sends F
to L(X;E) and satis�es kG (A)k � kTk :� (A), hence the validity of (3:10) with
k = kTk. On the other hand (3:14) is easily checked from (3:15) for simple
functions by linearity, and then extended to arbitrary f 2 L1 (�;X), by the
apropriate limiting process. Finally to get the ��additivity of G, let An be a
sequence in F with An & �, then � (An)! 0 and since kG (An)k � kTk :� (An)
for all n, we obtain G (An)! 0 in the uniform topology of L(X;E), whence the
��additivity of G.�
Now we consider operators T in the class D. We prove that the operator

valued function G attached to an operator T 2 D, according to (3:15), allows
an interesting characterization of such operators.

3.16 Theorem: Let T : L1 (�;X) ! X be a bounded operator on L1 (�;X)
into X. Then T is in the class D if and only if the operator valued function
attached to it according to (3:15) is of the form:
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(3:17) A 2 F , x 2 X G (A) : (�) = � (A) :I (�)

where � is a bounded measure absolutely continuous with respect to �, and I is
identity operator of X.

Proof: If T is in the class D, then by the corollary of theorem (2:8) there is
a unique g 2 L1 (�) such that T = Tg, that is for all f 2 L1 (�;X), Tf =

R
S

fg d�. On the other hand we have from (3:14), Tf =
R
S
fdG with G given

by (3:15). So taking f = 1A (�) :x, for A 2 F , x 2 X, in the two preceding
expressions of Tf , we get G (A) :x =

�R
A
g:x d�

�
=
�R
A
g d�

�
:x. Hence the

validity of (3:17) with � (A) =
R
A
g d�. Since � is �nite, the function g is in

L1 (�) and then it is clear that � is a bounded measure absolutely continuous
with respect to �. Now suppose that the operator valued function attached to T
according to (3:15) is of the form: G (A) :x = � (A) :x, with � a bounded measure
absolutely continuous with respect to �. So we can write � (A) =

R
A
g d�,

A 2 F , for some unique g 2 L1 (�). Actually the function g belongs to L1 (�).
Indeed by (3:15), G (A) :x = T (1A (�) :x) and we deduce that kG (A) :xk =���R

A
gd�

��� : kxk � kTk� (A) kxk, which implies ���R
A
gd�

��� � kTk� (A), for all
A 2 F . Consequently kgk1 � kTk, that is g 2 L1 (�). Now let us write
the formula G (A) :x = � (A) :x as

R
S
1A:xdG =

R
S
g:1A:xd�, and extend it

by linearity to
R
S
sdG =

R
S
g:sd�, for s simple in L1 (�;X). If f 2 L1 (�;X),

let sn be a sequence of simple functions converging to f in L1 (�;X). Then
g:sn converges to g:f in L1 (�;X), since g 2 L1 (�), so we deduce that

R
S
g:sn

d� goes to
R
S
g:f d�. But

R
S
sn dG =

R
S
g:sn d�, for all n and by (3:13),R

S
fdG = limn

R
S
sndG, consequently

R
S
g:f d� =

R
S
fdG, for all f 2 L1 (�;X).

But from (3:14) we have, Tf =
R
S
fdG for f 2 L1 (�;X), thus Tf =

R
S
g:f

d� = Tgf , that is T 2 D.�

Part 2.

Bochner integral in locally convex spaces

Let X be a locally convex Hausdor¤ space, whose topology is generated by
a family fp�g of continuous seminorms. We assume that fp�g is separating, this
means that for each nonzero x 2 X there is a p� such that p� (x) 6= 0: Moreover
we assume that X is sequentially complete, that is, every Cauchy sequence in
X is convergent. For all details on such spaces, the reader is referred to [13],
especially the sections 1:25; 1:36; 1:37 there. The construction of the Bochner
integral we give in this context is, as far as we know, new. (for other approachs
see [1; 5; 14]). On the space L1 (�;X) of Bochner integrable functions we de�ne
a family of separating seminorms that make this space locally convex. Finally
we introduce a special class of bounded operators from L1 (�;X) into X whose
structure is , in many respects, similar to some well known operators from L1 (�)
into R:
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For the needs of measurability and integration, we �x an abstract measure
space (S;F ; �), where F is a ���eld on the set S and � a �nite positive measure
on F .

1. Measurability

1.1. De�nition: A function f : S �! X is called elementary if its range
f (S) is �nite.
If we put f (S) = fx1; x2; :::; xng and Aj = fs : f (s) = xjg then the sets Aj
form a partition of S and we can write f in the consolidated form

f (�) =
nP
j=1

xj 1Aj (�), where 1Aj is the characteristic function of the set Aj :

1.2. De�nition: An elementary function f (�) =
nP
j=1

xj 1Aj
(�) is measur-

able if we have Aj 2 F for every j:We denote by E (X) the set of all elementary
measurable functions f : S �! X. Then we have:

1.3 Proposition: E (X) is a vector space on R:

Proof: Let f; g be in E (X) and � 2 R. Put f (�) =
P
n
xn 1An

(�)

g (�) =
P
m
ym 1Bm

(�), then (f + g) (�) =
P
n;m

(xn + ym) 1An\Bm
(�) and

(�f) (�) =
P
n
�xn 1An

(�) :�

1.4. Remark: Let T be any mapping from X into Y .
If f (�) =

P
n
xn 1An

(�) then (T � f) (�) =
P
T
n
(xn) 1An

(�) :

1.5. De�nition: A function f : S �! X is measurable if there is a sequence
(fn) of elementary measurable functions such that:

Lim
n

p� (fn � f) = 0

for each p�:
This means that for each s 2 S, each � > 0, and each p�, there isN = Ns;�;p� � 1
such that 8n � N; p� (fn (s)� f (s)) < �.

1.6. Proposition:The set M (X) of all measurable functions
f : S �! X is a vector space on R:

Proof: Let f; g be in M (X) and let fn; gn be sequences of elementary
functions such that p� (fn � f) �! 0 and p� (gn � g) �! 0, for each p�: Then
we have p� ((fn + gn)� (f + g)) � p� (fn � f)+p� (gn � g), so the sequence of
elementary functions fn + gn gives the measurability of f + g.
Likewise for � 2 R,we have p� (�fn � �f) = j�j p� (fn � f) �! 0, which gives
�f 2M (X) :�

11



2. Bochner integration

2.1. De�nition: Let f (�) =
nP
j=1

xj 1Aj
(�) be an elementary measurable

function. We de�ne the integral of f by the vector
R
S
f d� 2 X :

R
S
f d�

n

=
P
j=1

� (Aj) :xj

Since � is �nite this integral is well de�ned.

2.2. Proposition: (a)The integral is linear from E (X) into X:
(b). For every f 2 E (X) and every p� we have

p�
�R
S
f d�

�
�
R
S
p� (f) d�

where p� (f) is the positive elementary function given by

p� (f) (�)
n

=
P
j=1

p� (xj) 1Aj
(�) whose integral is

R
S
p� (f) d�

n

=
P
j=1

p� (xj) � (Aj) :

Proof: (a) Put f (�) =
nP
j=1

xj 1Aj
(�), g (�) =

mP
k=1

yk 1Bk
(�)

then (f + g) (�) =
P
j;k

(xj + yk) 1Aj\Bk
(�) and (�f) (�) =

P
j

�xj 1Aj
(�) :

This yields
R
S
(f + g) d�

P
1�k�m

P
1�j�n

(xj + yk) � (Aj \Bk) =
nP
j=1

� (Aj) :xj +

mP
k=1

� (Bk) :yk =
R
S
f d�+

R
S
g d�

Likewise we can prove that
R
S
�:f d� = �:

R
S
f d� for � 2 R.

(b) We have p�
�R
S
f d�

�
= p�

 
nP
j=1

� (Aj) :xj

!
�

nP
j=1

� (Aj) :p� (xj) =
R
S
p� (f) d�.�:

2.3. Proposition: Let T : X �! Y be a linear operator from X into a
locally convex space Y .
Let f 2 E (X), then T � f 2 E (Y ) and we have:

T
�R
S
f d�

�
=
R
S
T � f d�:

Proof: Let f (�) =
nP
j=1

xj 1Aj
(�), with

R
S
f d� =

P
j=1

� (Aj) :xj , then (T � f) (�) =
nP
j=1

T (xj) 1Aj (�) and

R
S
T � f d� =

nP
j=1

� (Aj) :T (xj) = T

 
nP
j=1

� (Aj) :xj

!
, by the linearity of T ,

so we deduce that T
�R
S
f d�

�
=
R
S
T � f d�:�:

12



2.4. De�nition: A measurable function f : S �! X is Bochner integrable
if there is a sequence fn of elementary measurable functions such that for each
p�, Lim

n
p� (fn � f) = 0 uniformly on S: Since the measure � is assumed �nite,

this implies that Lim
n

R
S
p� (fn � f) d� = 0, for each p�.

To de�ne the Bochner integral of f let us observe that if fn is such a sequence
of elementary functions we have:R

S
p� (fn � fm) d� �

R
S
p� (fn � f) d�+

R
S
p� (fm � f) d�.

So Lim
n;m

R
S
p� (fn � fm) d� = 0. But p�

R
S
(fn � fm) d� �

R
S
p� (fn � fm) d�

by Proposition 2.2(b), this implies that the sequence of integrals
R
S
fn d� is

Cauchy. As the space X is assumed sequentially complete,
R
S
fn d� converges.

This allows to de�ne the Bochner integral of f by the vector:R
S
f d� = Lim

n

R
S
fn d�:

If gn is another sequence of elementary functions such that
p� (gn � f) �! 0 uniformly on S, it is easy to check, from the continuity of
p� that Lim

n

R
S
fn d� = Lim

n

R
S
gn d�, so the Bochner integral

R
S
f d� is well

de�ned.
In the sequel we will denote by L1 (�;X) the set of all Bochner integrable

functions f : S �! X, where as usual two integrable functions are considered
as identical if they are equal ��almost everywhere.

2.5. Proposition: L1 (�;X) is a vector space on R and we have:
(a). The integral as de�ned is linear from L1 (�;X) into X:
(b). For every f 2 L1 (�;X) and every p� we have

p�
�R
S
f d�

�
�
R
S
p� (f) d�

Proof:
(a) Let f; g be in L1 (�;X) and let fn; gn be in E (X) such that

p� (fn � f) �! 0 and p� (gn � f) �! 0; uniformly on S. Since we have
p� ((f + g)� (fn + gn)) � p� (fn � f)+p� (gn � f) �! 0, it follows that p� ((f + g)� (fn + gn)) �!
0 uniformly on S. This yieldsR
S
(f + g) d� = Lim

n

R
S
(fn + gn) d� = Lim

n

R
S
fn d� + Lim

n

R
S
gn d� =R

S
f d�+

R
S
g d�. Likewise we have

R
S
�:f d� = �:

R
S
f d�:

(b) Let fn be in E (X) de�ning
R
S
f d�. By proposition 2.2(b)

p�
�R
S
fn d�

�
�
R
S
p� (fn) d� for all n. This implies p�

�R
S
f d�

�
=

p�

�
Lim
n

R
S
fn d�

�
=
�
Lim
n

p�
�R
S
fn d�

��
� lim inf

n

R
S
p� (fn) d� �

lim inf
n

�R
S
p� (fn � f) d�+

R
S
p� (f) d�

�
=
R
S
p� (f) d�:�:

2.6. Proposition: Let T : X �! Y be a linear continuous operator from
X into a locally convex space Y .
Let f 2 L1 (�;X), then T � f 2 L1 (�; Y ) and we have:

T
�R
S
f d�

�
=
R
S
T � f d�:
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Proof: Let fn be in E (X) de�ning
R
S
f d�, i.e Lim

n
p� (fn � f) �! 0

uniformly on S. By the continuity of T , if q is a seminorm on Y there is a
seminorm p� on X such that q (Tx) � p� (x), for every x 2 X. It follows
that q (Tfn � Tf) = qT (fn � f) d� � p� (fn � f) ! 0 uniformly on S. We
deduce that q (Tfn � Tf) �! 0 uniformly on S for each q. So the sequence
Tfn, which is in E (Y ) by Proposition 2.3, is de�ning the integral of Tf byR
S
Tf d� = Lim

n

R
S
Tfnd�. By Proposition 2.3 once more we haveR

S
Tfnd� = T

R
S
fnd� for all n.

Since Lim
n

R
S
fnd� =

R
S
f d�, we get Lim

n

R
S
Tfnd� = T

�R
S
f d�

�
, by the

continuity of T . this gives T
�R
S
f d�

�
=
R
S
T � f d�:�:

3. Bounded operators on L1 (�;X)

First we start by de�ning on L1 (�;X) a family ffp�g of continuous seminorms
which will make L1 (�;X) a locally convex space.
Let us observe that for each p�, we have p� (f) bounded on S if f 2

L1 (�;X).To see this let fn be in E (X) de�ning
R
S
f d�, i.e Limp� (fn � f) = 0

uniformly on S, (De�nition 2.4), so if � > 0, there is N � 1 such that
jp� (f)� p� (fN )j � p� (fN � f) < � uniformly on S. We deduce that p� (f) <
�+ p� (fN ) on S and p� (fN ) is bounded on S since fN 2 E (X).
Now de�ne fp� on L1 (�;X) by:

(3:1) f 2 L1 (�;X) fp� (f) = Sup
t2S

p� (f (t))

Then fp� is a seminorm on L1 (�;X) and the family ffp�g is separating. To see
this, let f be in L1 (�;X) with f 6= 0, that is f (t) 6= 0 for some t 2 S. Since the
family fp�g is assumed separating on X, there is a p� such that p� (f (t)) > 0;
so that fp� (f) > 0.
Since the family of seminorms ffp�g is separating, it makes L1 (�;X) a locally
convex space such that each fp� is continuous ([13] ; section 1:37) :
In what follows we de�ne a special class of bounded operators from L1 (�;X)

into X which are, in many respects, similar to some well known operators from
L1 (�) into R: First let us observe:
3.2. Lemma: Let g 2 L1 (�), then for every f 2 L1 (�;X)
g:f 2 L1 (�;X) :
Proof: Since g 2 L1 (�), there is a sequence (gn) of simple measurable

functions gn : S �! R converging uniformly to g on S. Since f 2 L1 (�;X),
there is a sequence fn of elementary measurable functions such that for each
p�, Lim

n
p� (fn � f) = 0 uniformly on S: But gn:fn is elementary measurable,

and we have:
p� (gn:fn � g:f) = p� [(gn:fn � gn:f) + (gn:f � g:f)]
� jgn � gj :p� (f) + jgnj :p� (fn � f)
� jgn � gj :fp� (f) + jgnj :p� (fn � f) �! 0; n �!1, uniformly on S:
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Consequently we have f:g 2 L1 (�;X) :�:
Now we de�ne a class fTg ,g 2 L1 (�)g of operators Tg, by the following

recipe:
3.3. De�nition: For each �xed g 2 L1 (�), Tg sends L1 (�;X) into X by

the formula:

f 2 L1 (�;X), Tg (f) =
R
S
fg d�

3.4. Theorem:. Let L1 (�;X) be endowed with the seminorms ffp�g given
by (3:1), and let X be equipped with the seminorms fp�g, then the operators
Tg are linear and bounded.

Proof: The linearity is clear from 2.5 (a). To see boundedness, let p� be a
seminorm on X, by 2.5 (b) we have:

p� (Tg (f)) = p�
�R
S
fg d�

�
�
R
S
p� (fg ) d�. Since p� (fg ) = jgj p� (f), we

deduce that p� (Tg (f)) �
R
S
jgj p� (f) d� � kgk1 :fp� (f) :� (X), which proves

that Tg is bounded.�:
In what follows, we quote some properties of the operators Tg, whose proof

comes from facts about Bochner integral (2.5-2.6).We denote by E
0
the strong

dual of the space E :
3.5. Proposition: (a) If � 2 X 0

, then � � Tg 2 L
0

1 (�;X) :

(b) If � 2 X 0
, then � � Tg (f) =

R
S
g �f d�, for every f 2 L1 (�;X) :

(c) If �; � are in X
0
, and '; in L1 (�;X), then:

� � ' = � �  =) � � Tg (') = � � Tg ( )

These properties, especially property (c), lead to the following:
Open problem: Let T : L1 (�;X) �! X be a linear bounded operator from
L1 (�;X) into X satisfying condition 3.5(c), that is:
If �; � are in X

0
, and '; in L1 (�;X), then:

� � ' = � �  =) � � T (') = � � T ( )

Does there exist a g 2 L1 (�) such that:

T (f) =
R
S
fg d�, for all f 2 L1 (�;X) :
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