Bochner Integration in Topological Vector Spaces

Lakhdar MEZIANI

Abstract

The subject of the present work deals with Bochner integrationl of bounded operators, acting on L_{1}-type spaces. More precisely, let (S, \mathcal{F}, μ) be a finite measure space and let X be a Banach space or a locally convex space. We form the space $L_{1}(\mu, X)$ of all Bochner μ-integrable functions $f: S \rightarrow X$, with an adequate topology. We perform integration for a class of bounded operators $T: L_{1}(\mu, X) \rightarrow X$, whose integral structure is similar to that of bounded functionals on $L_{1}(\mu)$.The main setting is the Bochner integration process with respect to finite abstract measure and the results obtained may be considered as generalizations of the classical Riesz Theorem.

Keywords:
Bochner integration process; Bounded operators; Vector measures

Introduction

In the first part we consider a finite measure space (S, \mathcal{F}, μ), a Banach space X and form the Banach space $L_{1}(\mu, X)$ of all Bochner μ-integrable functions $f: S \rightarrow X$, with $L_{1}(\mu, X)=L_{1}(\mu)$ if $X=\mathbb{R}$. We introduce a class of linear bounded operators $T: L_{1}(\mu, X) \rightarrow X$, whose Bochner integral structure is much similar to that of bounded functionals on $L_{1}(\mu)$. We give two complete characterizations of this class. The first one, which may be considered as a Riesz type theorem, is obtained via integrals by functions in $L_{\infty}(\mu)$. Actually the identified class will be isometrically isomorphic to $L_{\infty}(\mu)$. The second characterization is more specific. It pertains to an operator valued measure, that will be attached to each operator of the class. This operator valued measure will be absolutely continuous with respect to μ and this property will be used to get another interesting characterization of the class under consideration.

In the second part, we assume that X is a locally convex space whose topology is defined by a family $\left\{p_{\alpha}\right\}$ of continuous seminorms. We assume that $\left\{p_{\alpha}\right\}$ is separating, this means that for each nonzero $x \in X$ there is a p_{α} such that $p_{\alpha}(x) \neq 0$. Moreover we assume that X is sequentially complete, that is, every Cauchy sequence in X is convergent. The construction of the Bochner integral we give in this context is, as far as we know, new (for other approachs see $[1,5,13])$. Finally, arrangements are made so that each Part of this work is mostly selfcontained and can be read independently.

Part 1.

The Integral structure of some bounded operators on $L_{1}(\mu, X)$

1.Operators on the space of Bochner integrable functions

Let (S, \mathcal{F}, μ) be a finite measure space and let X be a Banach space. We denote by $L_{1}(\mu, X)$ the Banach space of all Bochner μ-integrable functions $f: S \rightarrow X$, with $L_{1}(\mu, X)=L_{1}(\mu)$ if $X=\mathbb{R}$. For all properties of the Bochner integral, we refer the reader to [6].
For $f \in L_{1}(\mu, X)$, we put:

$$
\begin{equation*}
\|f\|_{1}=\int_{S}\|f(s)\| d \mu(s) \tag{1.2}
\end{equation*}
$$

Then it is well known that:
1.3. Proposition: Formula (1.2) defines a norm on $L_{1}(\mu, X)$, for which $L_{1}(\mu, X)$ is a Banach space. Moreover the measurable simple functions $s: S \rightarrow$ X form a dense subspace of $L_{1}(\mu, X)$. This means that for each $f \in L_{1}(\mu, X)$ there is a sequence s_{n} of simple functions such that $\left\|f-s_{n}\right\|_{1} \rightarrow 0$.

The starting point that has motivated the present work is contained in the following simple observation:
1.4. Theorem: Fix a function g in $L_{\infty}(\mu)$ (the space of all μ-essentially bounded real functions on S) and consider the operator $T_{g}: L_{1}(\mu, X) \rightarrow X$ defined by:

$$
\begin{equation*}
f \in L_{1}(\mu, X), \quad T_{g}(f)=\int_{S} f g d \mu: \tag{1.5}
\end{equation*}
$$

Then T_{g} is linear bounded and satisfies $\left\|T_{g}\right\|=\|g\|_{\infty}$.
Proof: Since $\|f(s) g(s)\| \leq\|f(s)\|\|g\|_{\infty} \quad \mu-$ a.e. we deduce from (1.5), $\left\|T_{g}(f)\right\| \leq\|g\|_{\infty} \cdot \int_{S}\|f(s)\| d \mu(s)=\|g\|_{\infty} \cdot\|f\|_{1}$. So the operator T_{g} is bounded and $\left\|T_{g}\right\| \leq\|g\|_{\infty}$. To prove the reverse inequality, apply T_{g} to a function $f \in L_{1}(\mu, X)$ of the form $f=\varphi \cdot x$, where $\varphi \in L_{1}(\mu)$, such that $\|\varphi\|_{1}=1$ and x fixed in X with $\|x\|=1$. We get $\|f\|_{1}=\|\varphi\|_{1}=1$ and $T_{g}(f)=\int_{S} \varphi g$ $x d \mu=\left(\int_{S} \varphi g \cdot d \mu\right) \cdot x$, by standard integration tools.
So we deduce $\left\|T_{g}(f)\right\|=\left|\int_{S} \varphi g \cdot d \mu\right| \leq\left\|T_{g}\right\|$ and then
$\operatorname{Sup}\left\{\left|\int_{S} \varphi g \cdot d \mu\right|, \varphi \in L_{1}(\mu),\|\varphi\|_{1}=1\right\} \leq\left\|T_{g}\right\|$. But the LHS of the preceding inequality is equal to $\|g\|_{\infty}$ by the Riesz duality theorem for $L_{1}(\mu)$. So we get $\|g\|_{\infty} \leq\left\|T_{g}\right\|$ and then $\left\|T_{g}\right\|=\|g\|_{\infty}$
1.6. Remark: Another way to put the conclusion of Theorem $\mathbf{1 . 4}$ is the following:

The map $\Phi: g \rightarrow T_{g}$ from $L_{\infty}(\mu)$ into $\mathcal{L}\left(L_{1}(\mu, X), X\right)$, the space of bounded operators $T: L_{1}(\mu, X) \rightarrow X$, is a linear isometry.

We can wonder whether Φ is onto. This is certainly true if $X=\mathbb{R}$ by the Riesz duality theorem for $L_{1}(\mu)$. But if dimension of X is greater than one, the following example shows that not all operators in $\mathcal{L}\left(L_{1}(\mu, X), X\right)$ can be written in the form (1.5) for some g in $L_{\infty}(\mu)$.
1.7. Example: Let $X=\mathbb{R}^{2}$, equipped with the norm: $z=\left(z_{1}, z_{2}\right),\|z\|=\left|z_{1}\right|+$ $\left|z_{2}\right|$. If $f=\left(f_{1}, f_{2}\right): S \rightarrow \mathbb{R}^{2}$ is Bochner μ-integrable with the Borel σ-field on \mathbb{R}^{2}, then $f_{1}, f_{2}: S \rightarrow \mathbb{R}$ are μ-integrable and $\int_{S} f d \mu=\left(\int_{S} f_{1} d \mu, \int_{S} f_{2} d \mu\right)$. Note also that $\|f(s)\|=\left|f_{1}(s)\right|+\left|f_{2}(s)\right|$, so that $\|f\|_{1}=\int_{S}\left|f_{1}\right| d \mu+\int_{S}\left|f_{2}\right| d \mu$. Now define the operator $T: L_{1}\left(\mu, \mathbb{R}^{2}\right) \rightarrow \mathbb{R}^{2}$, by $T f=T\left(f_{1}, f_{2}\right)=\left(\int_{S} f_{1} d \mu, \alpha \int_{S} f_{2} d \mu\right)$, where $0<\alpha<1$ is a fixed constant. It is clear that T is linear and we have $\|T f\|=\left|\int_{S} f_{1} d \mu\right|+\alpha\left|\int_{S} f_{2} d \mu\right| \leq\|f\|_{1}$, so that T is bounded. If there were a $g \in L_{\infty}(\mu)$ such that $T(f)=\int_{S} f g d \mu$, we would have $\int_{S} f_{1} d \mu=\int_{S} f_{1} g \cdot d \mu$ and $\alpha \int_{S} f_{2} d \mu=\int_{S} f_{2} \cdot g . d \mu$, for all μ-integrable functions f_{1}, f_{2}. Taking f_{1}, f_{2} both characteristic functions of sets in \mathcal{F}, this would imply $g=1, \mu$-a.e and $g=\alpha, \mu$-a.e. This is impossible by the choice of α. Consequently the operator T cannot be written in the form (1.5).

The aim is to characterize those bounded operators $T: L_{1}(\mu, X) \rightarrow X$ that have integral form (1.5) with a function $g \in L_{\infty}(\mu)$. This amounts to describe the range of the operator Φ in remark 1.6. In section 2 we give the ingredients of this characterization which allows a representation of operators on the space $L_{1}(\mu, X)$, much simpler than those given in [10]. In section3 we prove integral representations by operator valued measures, for operators introduced in section 2. This leads to a rather precise description of such operators.

2 A Characterizing class

In this section we want to identify those operators $T \in \mathcal{L}\left(L_{1}(\mu, X), X\right)$, for which there is $g \in L_{\infty}(\mu)$ such that $T=T_{g}$. Let X^{*} be the topological dual of X. For each $x^{*} \in X^{*}$ consider the operator $\varphi_{x^{*}}: L_{1}(\mu, X) \rightarrow L_{1}(\mu)$, given by:

$$
\begin{equation*}
f \in L_{1}(\mu, X), \quad \varphi_{x^{*}} f=x^{*} \circ f \tag{2.1}
\end{equation*}
$$

where $\left(x^{*} \circ f\right)(t)=x^{*}(f(t)), t \in S$.
We collect some facts about $\varphi_{x^{*}}$ for later use:
2.2. Proposition: (a) $\varphi_{x^{*}}$ is linear bounded and $\left\|\varphi_{x^{*}}\right\|=\left\|x^{*}\right\|$.
(b) $\varphi_{x^{*}}$ is onto for each $x^{*} \neq 0$.
(c) There exist $y^{*} \in X^{*}$ such that for each $h \in L_{1}(\mu)$ there is $f \in L_{1}(\mu, X)$ with $\|f\|_{1}=\|h\|_{1}$ and $\varphi_{y^{*}} f=h$.

Proof: (a) $\left\|\varphi_{x^{*}} f\right\|=\int_{S}\left|x^{*} \circ f\right| d \mu \leq\left\|x^{*}\right\| \int_{S}\|f(s)\| d \mu(s)=\left\|x^{*}\right\|\|f\|_{1}$. So $\varphi_{x^{*}}$ is bounded and $\left\|\varphi_{x^{*}}\right\| \leq\left\|x^{*}\right\|$. To see the reverse inequality apply $\varphi_{x^{*}}$ to a function $f \in L_{1}(\mu, X)$ of the form $f(\bullet)=g(\bullet) . x$, with $g \in L_{1}(\mu)$ such that $\|g\|_{1}=1$ and x fixed in X with $\|x\|=1$. We get $\|f\|_{1}=1$ and $\left\|\varphi_{x^{*}} f\right\|=\int_{S}\left|x^{*} \circ f\right| d \mu=\left|x^{*}(x)\right|$. Thus $\left|x^{*}(x)\right| \leq\left\|\varphi_{x^{*}}\right\|$ for every $x \in X$ with $\|x\|=1$. Consequently $\left\|x^{*}\right\|=\operatorname{Sup}\left\{\left|x^{*}(x)\right|, x \in X,\|x\|_{1}=1\right\} \leq\left\|\varphi_{x^{*}}\right\|$.
(b) Let $x^{*} \neq 0$ and choose $x \in X$ such that $x^{*}(x)=1$. Now if $h \in L_{1}(\mu)$ put $f=h . x$, then clearly we have $\varphi_{x^{*}} f=h .$.
(c) Choose $x \in X$ with $\|x\|=1$, then choose $y^{*} \in X^{*}$ such that $y^{*}(x)=\|x\|=$ 1 , $\left\|y^{*}\right\|=1$, this is possible by Hahn-Banach theorem. If $h \in L_{1}(\mu)$, the function $f=h . x$ is in $L_{1}(\mu, X)$ and fits the conclusion.

The following class of operators will play an essential role for the characterization we need:
2.3. Definition: Let \mathfrak{D} be the class of linear bounded operators $T \in \mathcal{L}\left(L_{1}(\mu, X), X\right)$ satisfying the following condition:

$$
\begin{equation*}
x^{*}, y^{*} \in X^{*}, f, g \in L_{1}(\mu, X): \varphi_{x^{*}} f=\varphi_{y^{*}} g \Longrightarrow x^{*} T f=y^{*} T g \tag{2.4}
\end{equation*}
$$

It is easy to check that \mathfrak{D} is a closed subspace of $\mathcal{L}\left(L_{1}(\mu, X), X\right)$. Note also that every T_{g} as defined by (1.5) is in \mathfrak{D}.
The important fact about \mathfrak{D} is:
2.5. Theorem: Let T be an operator in \mathfrak{D}, then there exists a unique bounded linear functional $V: L_{1}(\mu) \rightarrow \mathbb{R}$ such that:

$$
\begin{equation*}
V \circ \varphi_{x^{*}}=x^{*} \circ T \quad \text { for every } x^{*} \in X^{*} . \tag{2.6}
\end{equation*}
$$

Proof: Let $h \in L_{1}(\mu)$ and $x^{*} \in X^{*}, x^{*} \neq 0$; by Proposition 2.2(b) there is an $f \in L_{1}(\mu, X)$ such that $\varphi_{x^{*}} f=h$. then we put:

$$
\begin{equation*}
V(h)=x^{*} T f \tag{2.7}
\end{equation*}
$$

The functional V does not depend on the choice of x^{*} but depends only on T. For if $V_{x^{*}}$ and $V_{y^{*}}$ are defined as in (2.7), with $x^{*}, y^{*} \neq 0$, then $V_{x^{*}}(h)=x^{*} T f$ if $h=\varphi_{x^{*}} f$ and $V_{y^{*}}(h)=y^{*} T g$ if $h=\varphi_{y^{*}} g$; but condition (2.4) on T implies that $V_{x^{*}}(h)=V_{y^{*}}(h)$. It is easy to check that it is linear. We must show that V is bounded. Since $\varphi_{x^{*}}$ is bounded and onto, by the open mapping principle there exists a constant $K=K_{x^{*}}>0$ such that for every $h \in L_{1}(\mu)$, there is a solution $f \in L_{1}(\mu, X)$ of $\varphi_{x^{*}} f=h$, with $\|f\| \leq K$. $\|h\|$. From (2.7) we deduce that $\|V(h)\| \leq\left\|x^{*}\right\|\|T\|\|f\| \leq\left\|x^{*}\right\|\|T\| K\|h\|$, which proves that V is bounded.
. It remains to prove (2.6). For $f \in L_{1}(\mu, X)$ and $x^{*} \in X^{*}$, we have $h=\varphi_{x^{*}} f \in$ $L_{1}(\mu)$, and (2.7) gives $V(h)=V\left(\varphi_{x^{*}} f\right)=x^{*} T f$. Since f and x^{*} are arbitrary, (2.6) follows. Uniqueness is clear from (2.6) since $\varphi_{x^{*}}$ is onto.

As a consequence of the preceding theorem let us note:
2.8. Theorem: There is an isometric isomorphism between the Banach space \mathfrak{D} and the topological dual $L_{1}^{*}(\mu)$ of $L_{1}(\mu)$, for each non trivial Banach space X.

Proof: Define the operator $\Psi: \mathfrak{D} \rightarrow L_{1}^{*}(\mu)$ by: $T \in \mathfrak{D}, \Psi(T)=V$, where V is the unique bounded functional on $L_{1}(\mu)$ attached to T by theorem 2.5. It is not difficult to see that Ψ is linear. We have to show that Ψ is an isometry, that is, $\|V\|=\|T\|$ if $\Psi(T)=V$. First we prove the estimation

$$
\begin{equation*}
\|V\|=\operatorname{Sup}\left\{\left\|V \circ \varphi_{x^{*}}\right\|: x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\} \tag{2.9}
\end{equation*}
$$

We have $\left\|V \circ \varphi_{x^{*}}\right\| \leq\|V\|\left\|\varphi_{x^{*}}\right\|=\|V\|\left\|x^{*}\right\|$, since $\left\|\varphi_{x^{*}}\right\|=\left\|x^{*}\right\|$ by 2.2(a). So we deduce $\left\|V \circ \varphi_{x^{*}}\right\| \leq\|V\|$, for all $x^{*} \in X^{*}$, with $\left\|x^{*}\right\| \leq 1$. Hence Sup $\left\{\left\|V \circ \varphi_{x^{*}}\right\|: x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\} \leq\|V\|$. But $V \in L_{1}^{*}(\mu)$, consequently for each $\varepsilon>0$ there is $h \in L_{1}(\mu)$ such that $\|h\|_{1} \leq 1$ and $\|V\|-\varepsilon<|V(h)| \leq\|V\|$. Now let $y^{*} \in X^{*}$ as in $2.2(c)$ and choose $f \in L_{1}(\mu, X)$, such that $\|f\|_{1}=\|h\|_{1}$ and $\varphi_{y^{*}} f=h$. Then $\|f\|_{1} \leq 1$ and $\left|V \circ \varphi_{y^{*}}(f)\right|=|V(h)| \leq\left\|V \circ \varphi_{y^{*}}\right\|\|f\|_{1}$. Thus $|V(h)| \leq\left\|V \circ \varphi_{y^{*}}\right\| \leq \operatorname{Sup}\left\{\left\|V \circ \varphi_{x^{*}}\right\|: x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\}$. From the choice of h we get $\|V\|-\varepsilon \leq \operatorname{Sup}\left\{\left\|V \circ \varphi_{x^{*}}\right\|: x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\}$. Letting $\varepsilon \downarrow 0$, we obtain $\|V\| \leq \operatorname{Sup}\left\{\left\|V \circ \varphi_{x^{*}}\right\|: x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\}$. So (2.9) is proved. To finish the norm equality $\|V\|=\|T\|$, we appeal to formula (2.6) and conclude: $\|V\|=\operatorname{Sup}\left\{\left\|V \circ \varphi_{x^{*}}\right\|: x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\}=\operatorname{Sup}\left\{\left\|x^{*} \circ T\right\|: x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\}=$ $\|T\|$. To achieve the proof it remains to prove that Ψ is onto. If $V \in L_{1}^{*}(\mu)$, then by the Riesz duality theorem, there is a unique $g \in L_{\infty}(\mu)$ such that $V(h)=\int_{S} h g d \mu$, for all $h \in L_{1}(\mu)$. Consider the operator T_{g} on $L_{1}(\mu, X)$ given by formula (1.5). We have $T_{g} \in \mathfrak{D}$ and it is straightforward that V and
T_{g} are linked by equation (2.6). So from the definition of the operator Ψ we deduce that $\Psi\left(T_{g}\right)=V$.

Since $L_{1}^{*}(\mu)$ is isometrically isomorphic to $L_{\infty}(\mu)$, we deduce the following corollary:
corollary: The class \mathfrak{D} is isometrically isomorphic to $L_{\infty}(\mu)$. In other words, a bounded operator $T: L_{1}(\mu, X) \rightarrow X$ is in \mathfrak{D} iff there is a unique $g \in L_{\infty}(\mu)$ such that $T=T_{g}$ and in this case $\|T\|=\|g\|_{\infty}$.

Now we turn to another description of the class \mathfrak{D}, namely by a space of measures. This will be achieved via integrals with respect to operator valued measures.

3 Operator valued measures representing the class \mathfrak{D}

3.1. The integration process we shall deal with in this section is performed by an operator valued additive set function $G: \mathcal{F} \rightarrow \mathcal{L}(X, E)$, where $\mathcal{L}(X, E)$ is the space of linear bounded operators of the Banach space X into the Banach space E. The integral will be defined for measurable functions $f: S \rightarrow X$, under the assumption that G is additive and with finite semivariarion. Let us recall that semivariation means the set function \widetilde{G} on \mathcal{F} given by $\widetilde{G}(B)=$ Sup $\left\|\sum_{i} G\left(A_{i}\right) \cdot x_{i}\right\|$, where $B \in \mathcal{F}$, and the supremum taken over all finite partitions $\left\{A_{i}\right\}$ of B in \mathcal{F} and all finite systems of vectors $\left\{x_{i}\right\}$ in X, with $\left\|x_{i}\right\| \leq 1 \forall i$. The function G is said to be of finite semivariation if $\widetilde{G}(B)$ is finite for all $B \in \mathcal{F}$. A simple measurable function s on S with values in the Banach space X is a function of the form $s(\bullet)=\sum_{i} 1_{A_{i}}(\bullet) . x_{i}$, where $\left\{A_{i}\right\}$ is a finite partition of S in \mathcal{F}, and $\left\{x_{i}\right\}$ is a finite system of vectors in X. The symbol $1_{A_{i}}$ means the characteristic function of the set A_{i}. A function $f: S \rightarrow X$ is said to be measurable if there is a sequence s_{n} of measurable simple functions converging uniformly to f on S. If we denote by \mathcal{I} and \mathcal{M} the sets of simple functions and measurable functions, respectively then \mathcal{I} and \mathcal{M} are subspaces of the Banach space of all bounded functions $f: S \rightarrow X$, with supremum norm. Moreover \mathcal{I} is dense in \mathcal{M}.

We define the integral of the simple function $s(\bullet)=\sum_{i} 1_{A_{i}}(\bullet) . x_{i}$ over the set $B \in \mathcal{F}$, with respect to G by:

$$
\begin{equation*}
\int_{B} s d G=\sum_{i} G\left(A_{i} \cap B\right) \cdot x_{i} \tag{3.2}
\end{equation*}
$$

It is easy to check that the integral is well defined and satisfies:

$$
\begin{equation*}
\left\|\int_{B} s d G\right\| \leq\|s\| . \widetilde{G}(B) \tag{3.3}
\end{equation*}
$$

($\|s\|=$ supremum norm)
Let us observe that estimation (3.3) implies that the linear operator $U_{B}: \mathcal{I} \rightarrow E$, with $U_{B}(s)=\int_{B} s d G$ is bounded. So we can extend it in a unique manner to a bounded operator on the closure \mathcal{M} of \mathcal{I}. This extension will be our integration process on the space \mathcal{M} of measurable functions. We shall denote it also by U_{B} with $U_{B}=U$ if $B=S$. Note that if $f \in \mathcal{M}$ and if s_{n} is a sequence in \mathcal{I} such that $\left\|f-s_{n}\right\| \rightarrow 0$ then the integral of f is given by:

$$
\begin{equation*}
U_{B}(f)=\int_{B} f d G=\lim _{n} \int_{B} s_{n} d G \tag{3.4}
\end{equation*}
$$

By (3.3) the integral (3.4) does not depend on the sequence s_{n} chosen converging to the function f. This simple integration process will be sufficient for our purpose. The outstanding facts are summarized in the following:
3.5 Theorem: Let G be an additive $\mathcal{L}(X, E)$-valued set function with finite semivariation on \mathcal{F}. Then:
(a) The integral $\int_{B} f d G$ is linear in $f \in \mathcal{M}$ and satisfies:

$$
\begin{equation*}
\widetilde{G}(B)=\operatorname{Sup}\left\{\left\|\int_{B} f d G\right\|,\|f\| \leq 1, \quad f \in \mathcal{M}\right\} \tag{3.6}
\end{equation*}
$$

in other words the operator $U_{B}: \mathcal{M} \rightarrow E$ given by $U_{B}(f)=\int_{B} f d G$ is bounded with norm $\left\|U_{B}\right\|=\widetilde{G}(B)$, for each $B \in \mathcal{F}$. Conversely:
(b) Let $U: \mathcal{M} \rightarrow E$ be a bounded operator. Then there is a unique additive set function $G: \mathcal{F} \rightarrow \mathcal{L}(X, E)$, with finite semivariation such that:

$$
\begin{equation*}
\forall f \in \mathcal{M}, \quad \forall B \in \mathcal{F}, \quad U\left(f .1_{B}\right)=\int_{B} f d G \tag{3.7}
\end{equation*}
$$

(c) Let $\Lambda: E \rightarrow Y$ be a bounded operator from E into the Banach space Y. Let us define $\Lambda G: \mathcal{F} \rightarrow \mathcal{L}(X, Y)$ by $(\Lambda G)(B) x=\Lambda(G(B) x), B \in \mathcal{F}, x \in X$. Then ΛG is an additive $\mathcal{L}(X, Y)$-valued set function with finite semivariation and we have:

$$
\begin{equation*}
\forall f \in \mathcal{M}, \quad \int_{S} f d \Lambda G=\Lambda\left(\int_{S} f d G\right) \tag{3.8}
\end{equation*}
$$

Proof: (a) To prove (3.6) start with f simple and use (3.2) and the definition of $\widetilde{G}(B)$. For general f use (3.4).
(b) Define $G: \mathcal{F} \rightarrow \mathcal{L}(X, E)$ by $G(B) . x=U\left(1_{B} . x\right)$, for $B \in \mathcal{F}$, and $x \in X$. Then G is additive since U is linear and G is $\mathcal{L}(X, E)$-valued because U is bounded. Now (3.7) is easily checked by (3.2) and (3.4).
(c) To prove (3.8) start with f simple and use the definition of ΛG, then apply (3.4), (recall that the operator Λ is bounded).

Actually, part (b) of this theorem is an integral representation of a bounded operator U on the space \mathcal{M} by means of an $\mathcal{L}(X, E)$-valued set function G on \mathcal{F}.

The next step is to extend the preceding integration process from \mathcal{M} to the space $L_{1}(\mu, X)$. The reader should observe that the space \mathcal{M} is contained in $L_{1}(\mu, X)$, because functions in \mathcal{M} are bounded and μ is a finite measure. The extension of the integral (3.4) from \mathcal{M} to $L_{1}(\mu, X)$ will be achieved under the additional assumption that $\|G(A)\| \leq k . \mu(A)$ for some constant $k>0$ and all $A \in \mathcal{F}$.
3.9 Theorem: Let G be an additive $\mathcal{L}(X, E)$-valued set function with finite semivariation on \mathcal{F}. Assume that:

$$
\begin{equation*}
\|G(A)\| \leq k \cdot \mu(A) \tag{3.10}
\end{equation*}
$$

for some constant $k>0$ and all $A \in \mathcal{F}$. Then we have:
(a) The integral (3.4) is a linear operator from \mathcal{M} to E which is continuous with the $L_{1}(\mu, X)$-topology on \mathcal{M} and satisfies:

$$
\begin{equation*}
\forall f \in \mathcal{M}, \quad\left\|\int_{S} f d G\right\| \leq k \int_{S}\|f\| d \mu \tag{3.11}
\end{equation*}
$$

(b) The integral $\int_{S} f d G, f \in \mathcal{M}$, admits a unique extension to $L_{1}(\mu, X)$, still denoted by $\int_{S} f d G$, such that:

$$
\begin{equation*}
\forall f \in L_{1}(\mu, X), \quad\left\|\int_{S} f d G\right\| \leq k \int_{S}\|f\| d \mu \tag{3.12}
\end{equation*}
$$

(c) The operator $f \rightarrow \int_{S} f d G$ is linear and bounded from $L_{1}(\mu, X)$ to E.

Proof: (a) Let $s(\bullet)=\sum_{i} 1_{A_{i}}(\bullet) \cdot x_{i}$ be a simple measurable function with values in X. From (3.10) we deduce $\left\|\int_{S} s d G\right\|=\left\|\sum_{i} G\left(A_{i}\right) \cdot x_{i}\right\| \leq \sum_{i}\left\|G\left(A_{i}\right)\right\| \cdot\left\|x_{i}\right\| \leq$ $\sum_{i} k \mu\left(A_{i}\right) \cdot\left\|x_{i}\right\|=k \sum_{i} \mu\left(A_{i}\right) \cdot\left\|x_{i}\right\|=k \int_{S}\|s\| d \mu$. So (3.11) is true for every $s \in \mathcal{I}$. Now if $f \in \mathcal{M}$, let $s_{n} \in \mathcal{I}$ be such that $s_{n} \rightarrow f$ uniformly on S. As μ is finite we deduce that $\int_{S}\left\|f-s_{n}\right\| d \mu \rightarrow 0$ and so $\int_{S}\left\|s_{n}\right\| d \mu \rightarrow \int_{S}\|f\| d \mu$. But $\left\|\int_{S} s_{n} d G\right\| \rightarrow\left\|\int_{S} f d G\right\|$ by (3.4). From the estimation above we know that $\left\|\int_{S} s_{n} d G\right\| \leq k \int_{S}\left\|s_{n}\right\| d \mu$, for all n. Letting $n \rightarrow \infty$ the validity of (3.11) follows. Hence the continuity of the operator $f \rightarrow \int_{S} f d G$ with the $L_{1}(\mu, X)$-topology on the space \mathcal{M}. Next to prove (b), we shall construct an E-valued integration process on $L_{1}(\mu, X)$ with the set function G, that coincides with the integral (3.4) on \mathcal{M}. This will be the desired extension. Recall that the integral $\int_{S} s d G$, for s simple, has been defined by formula (3.2). Now if $f \in L_{1}(\mu, X)$, there exist a sequence $s_{n} \in \mathcal{I}$ such that $\int_{S}\left\|f-s_{n}\right\| d \mu \rightarrow 0$.
$\operatorname{By}(3.11)$ the sequence $\int_{S} s_{n} d G$ is fundamental in the Banach space E, so the limit $\lim _{n} \int_{S} s_{n} d G$ exists in E and it is easy to check that this limit is independent of the choice of the sequence s_{n} converging to f in $L_{1}(\mu, X)$. So we can define:

$$
\begin{equation*}
f \in L_{1}(\mu, X), \quad \int_{S} f d G=\lim _{n} \int_{S} s_{n} d G \tag{3.13}
\end{equation*}
$$

where s_{n} is any sequence in \mathcal{I} converging to f in the $L_{1}(\mu, X)$ sense.
Now if f is a function in \mathcal{M}, every sequence $s_{n} \in \mathcal{I}$ which converges uniformly to f, converges also in the $L_{1}(\mu, X)$ sense. So the integrals (3.4) and (3.13) are the same for such f and this proves that (3.13) is an extension of (3.4). To see the inequality (3.12), let $s_{n} \in \mathcal{I}$ converging in $L_{1}(\mu, X)$ to the function $f \in$ $L_{1}(\mu, X)$. By (3.11) we have $\left\|\int_{S} s_{n} d G\right\| \leq k \int_{S}\left\|s_{n}\right\| d \mu$, for all n. Taking limits for both sides we get (3.12) from which uniqueness of the extension follows.Part (c) is clear.

As a converse let us point out the following
3.10 Theorem: Let $T: L_{1}(\mu, X) \rightarrow E$ be a bounded operator from $L_{1}(\mu, X)$ to E. Then there exists a unique set function $G: \mathcal{F} \rightarrow \mathcal{L}(X, E)$ with finite semivariation satisfying (3.10), with the constant $k=\|T\|$ and such that:

$$
\begin{equation*}
f \in L_{1}(\mu, X), \quad T f=\int_{S} f d G \tag{3.14}
\end{equation*}
$$

Moreover G is σ-additive in the uniform topology of $\mathcal{L}(X, E)$.
Proof: Define G on \mathcal{F} by the formula:

$$
\begin{equation*}
A \in \mathcal{F}, x \in X \quad G(A) \cdot x=T\left(1_{A}(\bullet) \cdot x\right) \tag{3.15}
\end{equation*}
$$

It is clear that $G(A)$ is linear on X for each $A \in \mathcal{F}$ and we have $\|G(A) . x\|=$ $\left\|T\left(1_{A}(\bullet) . x\right)\right\| \leq\|T\| \cdot \mu(A) .\|x\|$. So we deduce that the function G sends \mathcal{F} to $\mathcal{L}(X, E)$ and satisfies $\|G(A)\| \leq\|T\| . \mu(A)$, hence the validity of (3.10) with $k=\|T\|$. On the other hand (3.14) is easily checked from (3.15) for simple functions by linearity, and then extended to arbitrary $f \in L_{1}(\mu, X)$, by the apropriate limiting process. Finally to get the σ-additivity of G, let A_{n} be a sequence in \mathcal{F} with $A_{n} \searrow \phi$, then $\mu\left(A_{n}\right) \rightarrow 0$ and since $\left\|G\left(A_{n}\right)\right\| \leq\|T\| . \mu\left(A_{n}\right)$ for all n, we obtain $G\left(A_{n}\right) \rightarrow 0$ in the uniform topology of $\mathcal{L}(X, E)$, whence the σ-additivity of G.

Now we consider operators T in the class \mathfrak{D}. We prove that the operator valued function G attached to an operator $T \in \mathfrak{D}$, according to (3.15), allows an interesting characterization of such operators.
3.16 Theorem: Let $T: L_{1}(\mu, X) \rightarrow X$ be a bounded operator on $L_{1}(\mu, X)$ into X. Then T is in the class \mathfrak{D} if and only if the operator valued function attached to it according to (3.15) is of the form:

$$
\begin{equation*}
A \in \mathcal{F}, x \in X \quad G(A) \cdot(\bullet)=\lambda(A) . I(\bullet) \tag{3.17}
\end{equation*}
$$

where λ is a bounded measure absolutely continuous with respect to μ, and I is identity operator of X.

Proof: If T is in the class \mathfrak{D}, then by the corollary of theorem (2.8) there is a unique $g \in L_{\infty}(\mu)$ such that $T=T_{g}$, that is for all $f \in L_{1}(\mu, X), T f=\int_{S}$ $f g d \mu$. On the other hand we have from (3.14), Tf $=\int_{S} f d G$ with G given
by (3.15). So taking $f=1_{A}(\bullet) . x$, for $A \in \mathcal{F}, x \in X$, in the two preceding expressions of $T f$, we get $G(A) \cdot x=\left(\int_{A} g \cdot x d \mu\right)=\left(\int_{A} g d \mu\right) . x$. Hence the validity of (3.17) with $\lambda(A)=\int_{A} g d \mu$. Since μ is finite, the function g is in $L_{1}(\mu)$ and then it is clear that λ is a bounded measure absolutely continuous with respect to μ. Now suppose that the operator valued function attached to T according to (3.15) is of the form: $G(A) . x=\lambda(A) . x$, with λ a bounded measure absolutely continuous with respect to μ. So we can write $\lambda(A)=\int_{A} g d \mu$, $A \in \mathcal{F}$, for some unique $g \in L_{1}(\mu)$. Actually the function g belongs to $L_{\infty}(\mu)$. Indeed by (3.15), $G(A) \cdot x=T\left(1_{A}(\bullet) . x\right)$ and we deduce that $\|G(A) \cdot x\|=$ $\left|\left(\int_{A} g d \mu\right)\right| \cdot\|x\| \leq\|T\| \mu(A)\|x\|$, which implies $\left|\left(\int_{A} g d \mu\right)\right| \leq\|T\| \mu(A)$, for all $A \in \mathcal{F}$. Consequently $\|g\|_{\infty} \leq\|T\|$, that is $g \in L_{\infty}(\mu)$. Now let us write the formula $G(A) \cdot x=\lambda(A) \cdot x$ as $\int_{S} 1_{A} \cdot x d G=\int_{S} g \cdot 1_{A} \cdot x d \mu$, and extend it by linearity to $\int_{S} s d G=\int_{S} g . s d \mu$, for s simple in $L_{1}(\mu, X)$. If $f \in L_{1}(\mu, X)$, let s_{n} be a sequence of simple functions converging to f in $L_{1}(\mu, X)$. Then $g . s_{n}$ converges to $g . f$ in $L_{1}(\mu, X)$, since $g \in L_{\infty}(\mu)$, so we deduce that $\int_{S} g . s_{n}$ $d \mu$ goes to $\int_{S} g \cdot f d \mu$. But $\int_{S} s_{n} d G=\int_{S} g \cdot s_{n} d \mu$, for all n and by (3.13), $\int_{S} f d G=\lim _{n} \int_{S} s_{n} d G$, consequently $\int_{S} g . f d \mu=\int_{S} f d G$, for all $f \in L_{1}(\mu, X)$. But from (3.14) we have, $T f=\int_{S} f d G$ for $f \in L_{1}(\mu, X)$, thus $T f=\int_{S} g \cdot f$ $d \mu=T_{g} f$, that is $T \in \mathfrak{D}$.

Part 2.

Bochner integral in locally convex spaces

Let X be a locally convex Hausdorff space, whose topology is generated by a family $\left\{p_{\alpha}\right\}$ of continuous seminorms. We assume that $\left\{p_{\alpha}\right\}$ is separating, this means that for each nonzero $x \in X$ there is a p_{α} such that $p_{\alpha}(x) \neq 0$. Moreover we assume that X is sequentially complete, that is, every Cauchy sequence in X is convergent. For all details on such spaces, the reader is referred to [13], especially the sections $1.25,1.36,1.37$ there. The construction of the Bochner integral we give in this context is, as far as we know, new. (for other approachs see $[1,5,14])$. On the space $L_{1}(\mu, X)$ of Bochner integrable functions we define a family of separating seminorms that make this space locally convex. Finally we introduce a special class of bounded operators from $L_{1}(\mu, X)$ into X whose structure is, in many respects, similar to some well known operators from $L_{1}(\mu)$ into \mathbb{R}.

For the needs of measurability and integration, we fix an abstract measure space (S, \mathcal{F}, μ), where \mathcal{F} is a σ-field on the set S and μ a finite positive measure on \mathcal{F}.

1. Measurability

1.1. Definition: A function $f: S \longrightarrow X$ is called elementary if its range $f(S)$ is finite.
If we put $f(S)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $A_{j}=\left\{s: f(s)=x_{j}\right\}$ then the sets A_{j} form a partition of S and we can write f in the consolidated form $f(\bullet)=\sum_{j=1}^{n} x_{j} 1_{A_{j}}(\bullet)$, where $1_{A_{j}}$ is the characteristic function of the set A_{j}.
1.2. Definition: An elementary function $f(\bullet)=\sum_{j=1}^{n} x_{j} 1_{A_{j}}(\bullet)$ is measurable if we have $A_{j} \in \mathcal{F}$ for every j. We denote by $\mathcal{E}(X)$ the set of all elementary measurable functions $f: S \longrightarrow X$. Then we have:
1.3 Proposition: $\mathcal{E}(X)$ is a vector space on \mathbb{R}.

Proof: Let f, g be in $\mathcal{E}(X)$ and $\lambda \in \mathbb{R}$. Put $f(\bullet)=\sum_{n} x_{n} 1_{A_{n}}(\bullet)$
$g(\bullet)=\sum_{m} y_{m} 1_{B_{m}}(\bullet)$, then $(f+g)(\bullet)=\sum_{n, m}\left(x_{n}+y_{m}\right) 1_{A_{n} \cap B_{m}}(\bullet)$ and $(\lambda f)(\bullet)=\sum_{n} \lambda x_{n} 1_{A_{n}}(\bullet)$
1.4. Remark: Let T be any mapping from X into Y.

If $f(\bullet)=\sum_{n} x_{n} 1_{A_{n}}(\bullet)$ then $(T \circ f)(\bullet)=\sum_{n} T\left(x_{n}\right) 1_{A_{n}}(\bullet)$.
1.5. Definition: A function $f: S \longrightarrow X$ is measurable if there is a sequence $\left(f_{n}\right)$ of elementary measurable functions such that:

$$
\operatorname{Lim}_{n} p_{\alpha}\left(f_{n}-f\right)=0
$$

for each p_{α}.
This means that for each $s \in S$, each $\epsilon>0$, and each p_{α}, there is $N=N_{s, \epsilon, p_{\alpha}} \geq 1$ such that $\forall n \geq N, p_{\alpha}\left(f_{n}(s)-f(s)\right)<\epsilon$.
1.6. Proposition:The set $M(X)$ of all measurable functions
$f: S \longrightarrow X$ is a vector space on \mathbb{R}.
Proof: Let f, g be in $M(X)$ and let f_{n}, g_{n} be sequences of elementary functions such that $p_{\alpha}\left(f_{n}-f\right) \longrightarrow 0$ and $p_{\alpha}\left(g_{n}-g\right) \longrightarrow 0$, for each p_{α}. Then we have $p_{\alpha}\left(\left(f_{n}+g_{n}\right)-(f+g)\right) \leq p_{\alpha}\left(f_{n}-f\right)+p_{\alpha}\left(g_{n}-g\right)$, so the sequence of elementary functions $f_{n}+g_{n}$ gives the measurability of $f+g$.
Likewise for $\lambda \in \mathbb{R}$, we have $p_{\alpha}\left(\lambda f_{n}-\lambda f\right)=|\lambda| p_{\alpha}\left(f_{n}-f\right) \longrightarrow 0$, which gives $\lambda f \in M(X)$.

2. Bochner integration

2.1. Definition: Let $f(\bullet)=\sum_{j=1}^{n} x_{j} 1_{A_{j}}(\bullet)$ be an elementary measurable function. We define the integral of f by the vector $\int_{S} f d \mu \in X$:

$$
\int_{S} f d \mu=\sum_{j=1}^{n} \mu\left(A_{j}\right) \cdot x_{j}
$$

Since μ is finite this integral is well defined.
2.2. Proposition: (a) The integral is linear from $\mathcal{E}(X)$ into X.
(b). For every $f \in \mathcal{E}(X)$ and every p_{α} we have
$p_{\alpha}\left(\int_{S} f d \mu\right) \leq \int_{S} p_{\alpha}(f) d \mu$
where $p_{\alpha}(f)$ is the positive elementary function given by
$p_{\alpha}(f)(\bullet)=\sum_{j=1}^{n} p_{\alpha}\left(x_{j}\right) 1_{A_{j}}(\bullet)$ whose integral is $\int_{S} p_{\alpha}(f) d \mu=\sum_{j=1}^{n} p_{\alpha}\left(x_{j}\right) \mu\left(A_{j}\right)$.
Proof: (a) Put $f(\bullet)=\sum_{j=1}^{n} x_{j} 1_{A_{j}}(\bullet), g(\bullet)=\sum_{k=1}^{m} y_{k} 1_{B_{k}}(\bullet)$
then $(f+g)(\bullet)=\sum_{j, k}\left(x_{j}+y_{k}\right) 1_{A_{j} \cap B_{k}}(\bullet)$ and $(\lambda f)(\bullet)=\sum_{j} \lambda x_{j} 1_{A_{j}}(\bullet)$.
This yields $\int_{S}(f+g) d \mu \sum_{1 \leq k \leq m} \sum_{1 \leq j \leq n}\left(x_{j}+y_{k}\right) \mu\left(A_{j} \cap B_{k}\right)=\sum_{j=1}^{n} \mu\left(A_{j}\right) \cdot x_{j}+$ $\sum_{k=1}^{m} \mu\left(B_{k}\right) \cdot y_{k}=\int_{S} f d \mu+\int_{S} g d \mu$
Likewise we can prove that $\int_{S} \lambda . f d \mu=\lambda . \int_{S} f d \mu$ for $\lambda \in \mathbb{R}$.
(b) We have $p_{\alpha}\left(\int_{S} f d \mu\right)=p_{\alpha}\left(\sum_{j=1}^{n} \mu\left(A_{j}\right) \cdot x_{j}\right) \leq$ $\sum_{j=1}^{n} \mu\left(A_{j}\right) \cdot p_{\alpha}\left(x_{j}\right)=\int_{S} p_{\alpha}(f) d \mu$.
2.3. Proposition: Let $T: X \longrightarrow Y$ be a linear operator from X into a locally convex space Y.
Let $f \in \mathcal{E}(X)$, then $T \circ f \in \mathcal{E}(Y)$ and we have:

$$
T\left(\int_{S} f d \mu\right)=\int_{S} T \circ f d \mu
$$

Proof: Let $f(\bullet)=\sum_{j=1}^{n} x_{j} 1_{A_{j}}(\bullet)$, with $\int_{S} f d \mu=\sum_{j=1} \mu\left(A_{j}\right) \cdot x_{j}$, then $(T \circ f)(\bullet)=$ $\sum_{j=1}^{n} T\left(x_{j}\right) 1_{A_{j}}(\bullet)$ and
$\int_{S} T \circ f d \mu=\sum_{j=1}^{n} \mu\left(A_{j}\right) \cdot T\left(x_{j}\right)=T\left(\sum_{j=1}^{n} \mu\left(A_{j}\right) \cdot x_{j}\right)$, by the linearity of T,
so we deduce that $T\left(\int_{S} f d \mu\right)=\int_{S} T \circ f d \mu$.
2.4. Definition: A measurable function $f: S \longrightarrow X$ is Bochner integrable if there is a sequence f_{n} of elementary measurable functions such that for each $p_{\alpha}, \operatorname{Lim}_{n} p_{\alpha}\left(f_{n}-f\right)=0$ uniformly on S. Since the measure μ is assumed finite, this implies that $\operatorname{Lim}_{n} \int_{S} p_{\alpha}\left(f_{n}-f\right) d \mu=0$, for each p_{α}.
To define the Bochner integral of f let us observe that if f_{n} is such a sequence of elementary functions we have:

$$
\int_{S} p_{\alpha}\left(f_{n}-f_{m}\right) d \mu \leq \int_{S} p_{\alpha}\left(f_{n}-f\right) d \mu+\int_{S} p_{\alpha}\left(f_{m}-f\right) d \mu .
$$

So $\operatorname{Lim}_{n, m} \int_{S} p_{\alpha}\left(f_{n}-f_{m}\right) d \mu=0$. But $p_{\alpha} \int_{S}\left(f_{n}-f_{m}\right) d \mu \leq \int_{S} p_{\alpha}\left(f_{n}-f_{m}\right) d \mu$
by Proposition $2.2(b)$, this implies that the sequence of integrals $\int_{S} f_{n} d \mu$ is Cauchy. As the space X is assumed sequentially complete, $\int_{S} f_{n} d \mu$ converges. This allows to define the Bochner integral of f by the vector:

$$
\int_{S} f d \mu=\operatorname{Lim}_{n} \int_{S} f_{n} d \mu
$$

If g_{n} is another sequence of elementary functions such that $p_{\alpha}\left(g_{n}-f\right) \longrightarrow 0$ uniformly on S, it is easy to check, from the continuity of p_{α} that $\operatorname{Lim}_{n} \int_{S} f_{n} d \mu=\operatorname{Lim}_{n} \int_{S} g_{n} d \mu$, so the Bochner integral $\int_{S} f d \mu$ is well defined.

In the sequel we will denote by $L_{1}(\mu, X)$ the set of all Bochner integrable functions $f: S \longrightarrow X$, where as usual two integrable functions are considered as identical if they are equal μ-almost everywhere.
2.5. Proposition: $L_{1}(\mu, X)$ is a vector space on \mathbb{R} and we have:
(a). The integral as defined is linear from $L_{1}(\mu, X)$ into X.
(b). For every $f \in L_{1}(\mu, X)$ and every p_{α} we have

$$
p_{\alpha}\left(\int_{S} f d \mu\right) \leq \int_{S} p_{\alpha}(f) d \mu
$$

Proof:

(a) Let f, g be in $L_{1}(\mu, X)$ and let f_{n}, g_{n} be in $\mathcal{E}(X)$ such that $p_{\alpha}\left(f_{n}-f\right) \longrightarrow 0$ and $p_{\alpha}\left(g_{n}-f\right) \longrightarrow 0$, uniformly on S. Since we have $p_{\alpha}\left((f+g)-\left(f_{n}+g_{n}\right)\right) \leq p_{\alpha}\left(f_{n}-f\right)+p_{\alpha}\left(g_{n}-f\right) \longrightarrow 0$, it follows that $p_{\alpha}\left((f+g)-\left(f_{n}+g_{n}\right)\right) \longrightarrow$ 0 uniformly on S. This yields
$\int_{S}(f+g) d \mu=\operatorname{Lim}_{n} \int_{S}\left(f_{n}+g_{n}\right) d \mu=\operatorname{Lim}_{n} \int_{S} f_{n} d \mu+\operatorname{Lim}_{n} \int_{S} g_{n} d \mu=$ $\int_{S} f d \mu+\int_{S} g d \mu$. Likewise we have $\int_{S} \lambda . f d \mu=\lambda . \int_{S} f d \mu$.
(b) Let f_{n} be in $\mathcal{E}(X)$ defining $\int_{S} f d \mu$. By proposition $2.2(b)$ $p_{\alpha}\left(\int_{S} f_{n} d \mu\right) \leq \int_{S} p_{\alpha}\left(f_{n}\right) d \mu$ for all n. This implies $p_{\alpha}\left(\int_{S} f d \mu\right)=$ $p_{\alpha}\left(\operatorname{Lim}_{n} \int_{S} f_{n} d \mu\right)=\left(\operatorname{Lim}_{n} p_{\alpha}\left(\int_{S} f_{n} d \mu\right)\right) \leq \liminf _{n} \int_{S} p_{\alpha}\left(f_{n}\right) d \mu \leq$ $\liminf _{n}\left(\int_{S} p_{\alpha}\left(f_{n}-f\right) d \mu+\int_{S} p_{\alpha}(f) d \mu\right)=\int_{S} p_{\alpha}(f) d \mu$.
2.6. Proposition: Let $T: X \longrightarrow Y$ be a linear continuous operator from X into a locally convex space Y.
Let $f \in L_{1}(\mu, X)$, then $T \circ f \in L_{1}(\mu, Y)$ and we have:

$$
T\left(\int_{S} f d \mu\right)=\int_{S} T \circ f d \mu
$$

Proof: Let f_{n} be in $\mathcal{E}(X)$ defining $\int_{S} f d \mu$, i.e $\operatorname{Lim}_{n} p_{\alpha}\left(f_{n}-f\right) \longrightarrow 0$ uniformly on S. By the continuity of T, if q is a seminorm on Y there is a seminorm p_{α} on X such that $q(T x) \leq p_{\alpha}(x)$, for every $x \in X$. It follows that $q\left(T f_{n}-T f\right)=q T\left(f_{n}-f\right) d \mu \leq p_{\alpha}\left(f_{n}-f\right) \rightarrow 0$ uniformly on S. We deduce that $q\left(T f_{n}-T f\right) \longrightarrow 0$ uniformly on S for each q. So the sequence $T f_{n}$, which is in $\mathcal{E}(Y)$ by Proposition $\mathbf{2 . 3}$, is defining the integral of $T f$ by $\int_{S} T f d \mu=\operatorname{Lim}_{n} \int_{S} T f_{n} d \mu$. By Proposition 2.3 once more we have $\int_{S} T f_{n} d \mu=T \int_{S} f_{n} d \mu$ for all n.
Since $\operatorname{Lim} \int_{S} f_{n} d \mu=\int_{S} f d \mu$, we get $\operatorname{Lim} \int_{S} T f_{n} d \mu=T\left(\int_{S} f d \mu\right)$, by the continuity of T. this gives $T\left(\int_{S} f d \mu\right)=\int_{S} T \circ f d \mu$.

3. Bounded operators on $\mathbf{L}_{1}(\mu, X)$

First we start by defining on $L_{1}(\mu, X)$ a family $\left\{\widetilde{p_{\alpha}}\right\}$ of continuous seminorms which will make $L_{1}(\mu, X)$ a locally convex space.

Let us observe that for each p_{α}, we have $p_{\alpha}(f)$ bounded on S if $f \in$ $L_{1}(\mu, X)$.To see this let f_{n} be in $\mathcal{E}(X)$ defining $\int_{S} f d \mu$, i.e $\operatorname{Limp} p_{\alpha}\left(f_{n}-f\right)=0$ uniformly on S, (Definition 2.4), so if $\epsilon>0$, there is $N \geq 1$ such that $\left|p_{\alpha}(f)-p_{\alpha}\left(f_{N}\right)\right| \leq p_{\alpha}\left(f_{N}-f\right)<\epsilon$ uniformly on S. We deduce that $p_{\alpha}(f)<$ $\epsilon+p_{\alpha}\left(f_{N}\right)$ on S and $p_{\alpha}\left(f_{N}\right)$ is bounded on S since $f_{N} \in \mathcal{E}(X)$.

Now define $\widetilde{p_{\alpha}}$ on $L_{1}(\mu, X)$ by:

$$
\begin{equation*}
f \in L_{1}(\mu, X) \quad \widetilde{p_{\alpha}}(f)=\operatorname{Sup}_{t \in S} p_{\alpha}(f(t)) \tag{3.1}
\end{equation*}
$$

Then $\widetilde{p_{\alpha}}$ is a seminorm on $L_{1}(\mu, X)$ and the family $\left\{\widetilde{p_{\alpha}}\right\}$ is separating. To see this, let f be in $L_{1}(\mu, X)$ with $f \neq 0$, that is $f(t) \neq 0$ for some $t \in S$. Since the family $\left\{p_{\alpha}\right\}$ is assumed separating on X, there is a p_{α} such that $p_{\alpha}(f(t))>0$, so that $\widetilde{p_{\alpha}}(f)>0$.
Since the family of seminorms $\left\{\widetilde{p_{\alpha}}\right\}$ is separating, it makes $L_{1}(\mu, X)$ a locally convex space such that each $\widetilde{p_{\alpha}}$ is continuous ([13], section 1.37).

In what follows we define a special class of bounded operators from $L_{1}(\mu, X)$ into X which are, in many respects, similar to some well known operators from $L_{1}(\mu)$ into \mathbb{R}. First let us observe:
3.2. Lemma: Let $g \in L_{\infty}(\mu)$, then for every $f \in L_{1}(\mu, X)$
$g . f \in L_{1}(\mu, X)$.
Proof: Since $g \in L_{\infty}(\mu)$, there is a sequence $\left(g_{n}\right)$ of simple measurable functions $g_{n}: S \longrightarrow \mathbb{R}$ converging uniformly to g on S. Since $f \in L_{1}(\mu, X)$, there is a sequence f_{n} of elementary measurable functions such that for each $p_{\alpha}, \operatorname{Lim}_{n} p_{\alpha}\left(f_{n}-f\right)=0$ uniformly on S. But $g_{n} \cdot f_{n}$ is elementary measurable, and we have:

$$
\begin{aligned}
& p_{\alpha}\left(g_{n} \cdot f_{n}-g \cdot f\right)=p_{\alpha}\left[\left(g_{n} \cdot f_{n}-g_{n} \cdot f\right)+\left(g_{n} \cdot f-g \cdot f\right)\right] \\
& \leq\left|g_{n}-g\right| \cdot p_{\alpha}(f)+\left|g_{n}\right| \cdot p_{\alpha}\left(f_{n}-f\right) \\
& \leq\left|g_{n}-g\right| \cdot \widetilde{p_{\alpha}}(f)+\left|g_{n}\right| \cdot p_{\alpha}\left(f_{n}-f\right) \longrightarrow 0, \quad n \longrightarrow \infty, \quad \text { uniformly on } S .
\end{aligned}
$$

Consequently we have $f . g \in L_{1}(\mu, X)$
Now we define a class $\left\{T_{g}, g \in L_{\infty}(\mu)\right\}$ of operators T_{g}, by the following recipe:
3.3. Definition: For each fixed $g \in L_{\infty}(\mu), T_{g}$ sends $L_{1}(\mu, X)$ into X by the formula:

$$
f \in L_{1}(\mu, X), \quad T_{g}(f)=\int_{S} f g d \mu
$$

3.4. Theorem:. Let $L_{1}(\mu, X)$ be endowed with the seminorms $\left\{\widetilde{p_{\alpha}}\right\}$ given by (3.1), and let X be equipped with the seminorms $\left\{p_{\alpha}\right\}$, then the operators T_{g} are linear and bounded.

Proof: The linearity is clear from $\mathbf{2 . 5}$ (a). To see boundedness, let p_{α} be a seminorm on X, by 2.5 (b) we have:
$p_{\alpha}\left(T_{g}(f)\right)=p_{\alpha}\left(\int_{S} f g d \mu\right) \leq \int_{S} p_{\alpha}(f g) d \mu$. Since $p_{\alpha}(f g)=|g| p_{\alpha}(f)$, we deduce that $p_{\alpha}\left(T_{g}(f)\right) \leq \int_{S}|g| p_{\alpha}(f) d \mu \leq\|g\|_{\infty} \cdot \widetilde{p_{\alpha}}(f) \cdot \mu(X)$, which proves that T_{g} is bounded.■.

In what follows, we quote some properties of the operators T_{g}, whose proof comes from facts about Bochner integral (2.5-2.6).We denote by E^{\prime} the strong dual of the space E :
3.5. Proposition: (a) If $\theta \in X^{\prime}$, then $\theta \circ T_{g} \in L_{1}^{\prime}(\mu, X)$.
(b) If $\theta \in X^{\prime}$, then $\theta \circ T_{g}(f)=\int_{S} g \theta f d \mu$, for every $f \in L_{1}(\mu, X)$.
(c) If θ, σ are in X^{\prime}, and φ, ψ in $L_{1}(\mu, X)$, then:

$$
\theta \circ \varphi=\sigma \circ \psi \Longrightarrow \theta \circ T_{g}(\varphi)=\sigma \circ T_{g}(\psi)
$$

These properties, especially property (c), lead to the following:
Open problem: Let $T: L_{1}(\mu, X) \longrightarrow X$ be a linear bounded operator from $L_{1}(\mu, X)$ into X satisfying condition $\mathbf{3 . 5}(c)$, that is:
If θ, σ are in X^{\prime}, and φ, ψ in $L_{1}(\mu, X)$, then:

$$
\theta \circ \varphi=\sigma \circ \psi \Longrightarrow \theta \circ T(\varphi)=\sigma \circ T(\psi)
$$

Does there exist a $g \in L_{\infty}(\mu)$ such that:

$$
T(f)=\int_{S} f g d \mu, \text { for all } f \in L_{1}(\mu, X) .
$$

References

[1] R. Beckmann and A. Deitmar, arXiv 403.320, [math F.A], 2014.
[2] J.Diestel, Uhl, J.J Vector Measures, AMS Math.Surveys 151977.
[3] N.Dinculeanu : Vector Measures, New York USA Pergamon Press 1967
[4] N.Dunford, J.T.Schwartz : Linear operators, Part 1: General Theory

Wiley classics library. 1988
[5] R. K. Goodrich: A Riesz representation theorem, Proc. Amer. Math. Soc. 197024 ,629-636
[6] E.Hille, R.S.Phillips :Functional Analysis and Semigroups, AMS Colloquium. 1957
[7] L.Meziani:Integral Representation for a class of Vector Valued Operators,Proc.Amer.Math.Soc.2002, 130, 2067-2077.
[8] L.Meziani : A theorem of Riesz type with Pettis integrals in topological vector spaces, J. Math. Anal. Appl.,2008. 340/2 817-824,
[9] L.Meziani, S. M Alsulami: Weak Integrals and Bounded Operators in TVS Advances in Pure Mathematics,2013. 3 475-478,
[10] L.Meziani, Maha Noor Waly and Saleh Almezel, Characterizing Linear Bounded Operators via Integral, International Mathematical Forum,2009 4, 233-240,
[11] Laurent Vanderputten : Representation of Operators Defined on the Space of Bochner Integrable Functions, Extracta Mathematicae 2001.16, 383-391
[12] W.Rudin: Real and Complex Analysis, McGraw-Hill. 1970
[13] W.Rudin: Functional Analysis, McGraw-Hill. 1991
[14].V.I. Rybakov: A Generalization of The Bochner Integral to Locally Convex Spaces, Tula State Pedagogical Institute. Translated from Matematicheskie Zametki, Vol. 18 No. 41975.

