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Abstract

The subject of the present work deals with Bochner integrationl of bounded
operators, acting on Li-type spaces. More precisely, let (S,F,u) be a finite
measure space and let X be a Banach space or a locally convex space. We form
the space Ly (i, X) of all Bochner p—integrable functions f : S — X, with an
adequate topology. We perform integration for a class of bounded operators
T : Ly (1, X) — X, whose integral structure is similar to that of bounded
functionals on L; (u).The main setting is the Bochner integration process with
respect to finite abstract measure and the results obtained may be considered
as generalizations of the classical Riesz Theorem.
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Introduction

In the first part we consider a finite measure space (.9, F, i), a Banach space
X and form the Banach space Ly (1, X) of all Bochner p—integrable functions
f:8S — X, with Ly (4, X) = Ly (p) if X = R. We introduce a class of linear
bounded operators T : L (u, X) — X, whose Bochner integral structure is
much similar to that of bounded functionals on Ly (1). We give two complete
characterizations of this class. The first one, which may be considered as a
Riesz type theorem, is obtained via integrals by functions in Lo, (p). Actually
the identified class will be isometrically isomorphic to Lo, (¢t). The second
characterization is more specific. It pertains to an operator valued measure, that
will be attached to each operator of the class. This operator valued measure
will be absolutely continuous with respect to p and this property will be used
to get another interesting characterization of the class under consideration.

In the second part, we assume that X is a locally convex space whose topol-
ogy is defined by a family {p,} of continuous seminorms. We assume that {p, }
is separating, this means that for each nonzero z € X there is a p, such that
Do () # 0. Moreover we assume that X is sequentially complete, that is, every
Cauchy sequence in X is convergent. The construction of the Bochner inte-
gral we give in this context is, as far as we know, new (for other approachs
see [1,5,13]). Finally, arrangements are made so that each Part of this work is
mostly selfcontained and can be read independently.



Part 1.

The Integral structure of some bounded operators on L; (i, X)

1.0Operators on the space of Bochner integrable functions

Let (S,F, ) be a finite measure space and let X be a Banach space. We
denote by Lj (i, X) the Banach space of all Bochner p—integrable functions
f:S— X, with Ly (u, X) = Ly (p) if X = R. For all properties of the Bochner
integral, we refer the reader to [6].

For f € Ly (u, X), we put:

(1.2) 1£ll = Js I1F ()l dpe (s)

Then it is well known that:

1.3. Proposition: Formula (1.2) defines a norm on Ly (u, X), for which
Ly (u, X) is a Banach space. Moreover the measurable simple functions s : S —
X form a dense subspace of L1 (u, X). This means that for each f € Ly (u, X)
there is a sequence s, of simple functions such that || f — sn||; — 0.

The starting point that has motivated the present work is contained in the
following simple observation:

1.4. Theorem: Fix a function g in Lo, (u) ( the space of all p—essentially
bounded real functions on S ) and consider the operator T, : Ly (u, X) — X
defined by:

(1.5) f € Ly (n, X), Ty (f) = Js f9 dp:
Then Ty is linear bounded and satisfies || Ty|| = ||g|| -

Proof: Since | f(s)g ()]l < [[f(s)] |9l p— a.e. we deduce from (1.5),
1Ty (F)1 < gl - s 17(5) 1 gt (5) = lglcs - 11l So the operator T, is bounded
and ||T,]| < |lg|l..- To prove the reverse inequality, apply T, to a function
f € Li(p, X) of the form f = ¢.x, where ¢ € Ly (1), such that [j¢[|; =1 and
z fixed in X with ||z|| = 1. We get ||fll; = ll¢ll; = 1 and T, (f) = fs ©g
xdy = (fs gpg.d,u) .z, by standard integration tools.

So we deduce || Ty (f)|| = | [ g-du| < || Ty]| and then

Sup {|[seg-du|, ¢ € L1 (1), |l¢ll; =1} < [Tyl But the LHS of the preceding
inequality is equal to ||g|| ., by the Riesz duality theorem for L; (). So we get
gl < IT,l| and then [[T5]| = gl 8



1.6. Remark: Another way to put the conclusion of Theorem 1.4 is the
following:

The map ® : g — Ty from Lo (1) into L (L1 (u, X) , X), the space of bounded
operators T : Ly (u, X) — X, is a linear isometry.

We can wonder whether ® is onto. This is certainly true if X = R by the
Riesz duality theorem for L; (p). But if dimension of X is greater than one,
the following example shows that not all operators in £ (L (4, X),X) can be
written in the form (1.5) for some ¢ in Loo (1) .

1.7. Example: Let X = R? equipped with the norm: z = (21, 22), ||z| = |21]+
|z2]. If f = (f1,f2) : S — R? is Bochner p—integrable with the Borel o—field

on R?, then fi, fo : S — R are u—integrable and /fdu = (/ f du,/fg du).
s s S
Note also that | f (s)[| = | f1 (s)[+[f2 (s)], so that [ f]l, = /S |fl du+/s | fa| dps.

Now define the operator T : Ly (M,R2) —R2 by Tf =T (f1,f2) = (/ f1du, a/fg du),
s s
where 0 < a < 1 is a fixed constant. It is clear that T is linear and we have
ITfl = ‘/fl du‘ +a ‘/fg du| < ||flly, so that T is bounded. If there were a
s s

g € Lo (1) such that T'(f) = [4 fg du, we would have /f1 dp = /f1 g.du
s s

and a/ fodu = /fg.g.du, for all u—integrable functions f1, fo. Taking f1, fo

both ch%racteristiég functions of sets in F, this would imply ¢ = 1, p—a.e and
g = a, p—a.e. This is impossible by the choice of . Consequently the operator
T cannot be written in the form (1.5).

The aim is to characterize those bounded operators T': Lq (i, X) — X that
have integral form (1.5) with a function g € Lo (). This amounts to describe
the range of the operator ® in remark 1.6. In section 2 we give the ingredients
of this characterization which allows a representation of operators on the space
L; (p, X), much simpler than those given in [10]. In section3 we prove integral
representations by operator valued measures, for operators introduced in section
2. This leads to a rather precise description of such operators.



2 A Characterizing class

In this section we want to identify those operators T' € L (L (i, X), X), for
which there is g € L (1) such that T'=T,. Let X* be the topological dual of
X. For each 2* € X* consider the operator ¢,. : Ly (u, X) — L1 (1), given by:

(2.1) fEL(wX), ¢pf=a'of

where (z*o f) (t) =2* (f (1)), t € S.
We collect some facts about ¢,. for later use:

2.2. Proposition: (a) ¢. is linear bounded and ||¢,-
(b) @« 1s onto for each x* # 0.

(¢) There exist y* € X* such that for each h € Ly (u) there is f € Ly (p, X)
with |[f[ly = [|klly and @, f = h.

= [lz"]-

Proof: (a) [l¢,- f] = /Iw*OfI dp < la*|| [ 1)l dp(s) = N[ £1];-

s
So ¢, is bounded and [j¢,«]| < ||z*||. To see the reverse inequality apply
.- to a function f € Li (u, X) of the form f(e) = g(e).z, with g € Ly (i)
such that ||g|l; = 1 and  fixed in X with |[z| = 1. We get ||f]|; = 1 and

oo~ fIl = / |27 o fldp = [z* (z)[. Thus |2* (2)] < [[¢,- | for every z € X with

s
[#]] = 1. Consequently [[z*|| = Sup {|z* (z)| ;& € X, [lz], =1} < [l¢,-
(b) Let x* # 0 and choose z € X such that z* (z) = 1. Now if h € Ly (i) put
f = h.z, then clearly we have ¢ . f = h..
(¢) Choose z € X with ||z|| = 1, then choose y* € X* such that y* (z) = ||z| =
1, |ly*|| = 1, this is possible by Hahn-Banach theorem . If h € L; (u), the
function f = h.xz is in Ly (i, X) and fits the conclusion.ll

The following class of operators will play an essential role for the character-
ization we need:

2.3. Definition: Let ® be the class of linear bounded operators T € £ (Lq (1, X), X)
satisfying the following condition:

(2.4) vyt e X¥ f,g€ Ly (1, X) 1 f =g = " Tf =y*Tg

Tt is easy to check that © is a closed subspace of £ (L (i, X), X). Note also
that every T, as defined by (1.5) is in ®.
The important fact about ® is:

2.5. Theorem: Let T be an operator in ®, then there exists a unique bounded
linear functional V : L (u) — R such that:

(2.6) Vop, =a*oT for every x* € X*.



Proof: Let h € Ly (1) and z* € X*, 2* # 0; by Proposition 2.2(b) there is
an f € Ly (u, X) such that ¢ . f = h. then we put:

(2.7) V (h) = 2*Tf

The functional V' does not depend on the choice of z* but depends only on T
For if V- and V- are defined as in (2.7), with z*,y* # 0, then V« (h) = 2*T'f
if h = p,.f and Vi« (h) = y*Tg if h = ¢,.g; but condition (2.4) on T implies
that Vg (h) = Vi~ (h). It is easy to check that it is linear. We must show that
V' is bounded. Since ¢,. is bounded and onto, by the open mapping principle
there exists a constant K = K,« > 0 such that for every h € Ly (u), there
is a solution f € L (u,X) of ¢, .f = h, with ||f|| < K.||h||. From (2.7) we
deduce that ||V (R)|| < [|l2*|| ITI IF1l < l|lz*|| IT]] K ||h]|, which proves that V is
bounded.

. It remains to prove (2.6). For f € L; (u, X) and z* € X*, wehave h = . f €
L (p), and (2.7) gives V (h) =V (¢ - f) = 2*Tf. Since f and z* are arbitrary,
(2.6) follows. Uniqueness is clear from (2.6) since ¢, . is onto.l

As a consequence of the preceding theorem let us note:

2.8. Theorem: There is an isometric isomorphism between the Banach space
D and the topological dual LT (u) of Ly (u), for each non trivial Banach space
X.

Proof: Define the operator ¥ : © —Lj (u) by: T € ©, U (T) =V, where V
is the unique bounded functional on L; (1) attached to T' by theorem 2.5. Tt
is not difficult to see that W is linear. We have to show that ¥ is an isometry,
that is, |V|| = ||T|| if ¥ (T") = V. First we prove the estimation

(2.9) VI = Sup{[[V o ¢,-

cxt e X* ||z <1}

We have [[V o g, || < ||V ||y || = IV [[2*]]; since [[¢,- || = [lz*[| by 2.2(a). So
we deduce ||V og,.|| < [|[V]], for all z* € X*, with ||z*|| < 1. Hence

Sup {||Vo | :a* € X* |lz*|| <1} < ||[V|. But V € Lj (1), consequently for
each € > 0 thereis h € L; (1) such that [|h||; <1and |V]—e < |V (R)| < |V].
Now let y* € X* as in 2.2 (¢) and choose f € Ly (u, X), such that || f||; = ||k,
and g, f = h. Then |, < 1and |V o 0,. ()] = V(0] < [V oy [ 1711
Thus |V (k)| < ||V0g0y* < Sup{||Vopy| :2* € X* |lz*|| <1}. From the
choice of h we get |V|| — e < Sup{||Vop,.| :z* € X* |lz*|| <1}. Letting
€ 1 0, weobtain |V < Sup {||[V o g .| : 2* € X*,|lz*|| < 1}. So (2.9) is proved.
To finish the norm equality ||V|| = ||T||, we appeal to formula (2.6) and conclude:
VI = Sup{lIV o, :a” € X7, [lz*|| <1} = Sup{[la* o T|| : 2™ € X*, [la”| <
IIT|| . To achieve the proof it remains to prove that ¥ is onto. If V € L7 (),
then by the Riesz duality theorem, there is a unique g € Lo () such that
V(h) = [4 hg du, for all h € Ly (u). Consider the operator Ty on Ly (1, X)
given by formula (1.5). We have T, € © and it is straightforward that V" and




Ty are linked by equation (2.6). So from the definition of the operator ¥ we
deduce that ¥ (T;) = V.l

Since L7 (u) is isometrically isomorphic to L, (1), we deduce the following
corollary:

corollary: The class D is isometrically isomorphic to Lo (). In other words,
a bounded operator T : L1 (11, X) — X is in D iff there is a unique g € Loo (1)
such that T =T, and in this case |T|| = ||g]| - -

Now we turn to another description of the class ®, namely by a space of
measures. This will be achieved via integrals with respect to operator valued
measures.

3 Operator valued measures representing the class ©

3.1. The integration process we shall deal with in this section is performed by
an operator valued additive set function G : F — L(X, E), where L(X, E) is
the space of linear bounded operators of the Banach space X into the Banach
space F. The integral will be defined for measurable functions f : S — X,
under the assumption that G is additive and with finite semivariarion. Let
us recall that semivariation means the set function G on F given by G(B) =

ZG(Ai).a:i , where B € F, and the supremum taken over all finite
partitions {A4;} of B in F and all finite systems of vectors {z;} in X, with
lz;|| <1 Vi. The function G is said to be of finite semivariation if G(B) is finite
for all B € F. A simple measurable function s on S with values in the Banach

space X is a function of the form s (o) = Z 14, (®).z;, where {A;} is a finite

Sup

K3

partition of S in F, and {z;} is a finite system of vectors in X. The symbol
14, means the characteristic function of the set A;. A function f: S — X is
said to be measurable if there is a sequence s,, of measurable simple functions
converging uniformly to f on S. If we denote by Z and M the sets of simple
functions and measurable functions, respectively then Z and M are subspaces
of the Banach space of all bounded functions f : S — X, with supremum norm.
Moreover 7 is dense in M.

We define the integral of the simple function s (e) = Z 14, () .x; over the

3

set B € F, with respect to G by:

(3.2) [psdG=> G(A;NB).x

It is easy to check that the integral is well defined and satisfies:



(3.3) |/ sdG|| < |Is]| .G(B)

(||s]] = supremum norm)

Let us observe that estimation (3.3) implies that the linear operator Ug : T—F,
with Up (s) = fB s dG is bounded. So we can extend it in a unique manner to a
bounded operator on the closure M of Z. This extension will be our integration
process on the space M of measurable functions.We shall denote it also by Up
with Ugp = U if B = S. Note that if f € M and if s,, is a sequence in Z such
that || f — s,|| — 0 then the integral of f is given by:

(3.4) Ug (f) = [ f dG = lim,, [}, s, dG

By (3.3) the integral (3.4) does not depend on the sequence s,, chosen converg-
ing to the function f. This simple integration process will be sufficient for our
purpose. The outstanding facts are summarized in the following:

3.5 Theorem: Let G be an additive L(X, E)-valued set function with finite
semivariation on F.Then:
(a) The integral [, f dG is linear in f € M and satisfies:

(3.6) G(B) = Sup{| [ f G|, If| <1, feM}

in other words the operator Up : M — E given by Up (f) = [, f dG is
bounded with norm ||Ug|| = G(B), for each B € F. Conversely:
(b) Let U : M — E be a bounded operator. Then there is a unique additive set
function G : F — L(X, E), with finite semivariation such that:

(3.7) VieEM, YVBeF, U(flg)=[,[dC

(¢) Let A : E — Y be a bounded operator from E into the Banach space Y.
Let us define AG : F — L(X,Y) by (AG)(B)z =A(G(B)z), Be F,xz € X.
Then AG is an additive L(X,Y )-valued set function with finite semivariation
and we have:

(38) VY feM, [,fdAG=A([,fdG)

Proof: (a) To prove (3.6) start with f simple and use (3.2) and the definition
of G(B). For general f use (3.4).

(b) Define G : F — L(X,E) by G(B).x =U(1g.z), for B € F, and z € X.
Then G is additive since U is linear and G is L(X, E)-valued because U is
bounded. Now (3.7) is easily checked by (3.2) and (3.4).

(¢) To prove (3.8) start with f simple and use the definition of AG, then apply
(3.4), ( recall that the operator A is bounded).l



Actually, part (b) of this theorem is an integral representation of a bounded
operator U on the space M by means of an £L(X, E)-valued set function G on
F.

The next step is to extend the preceding integration process from M to the
space L (p, X). The reader should observe that the space M is contained in
Ly (4, X)), because functions in M are bounded and p is a finite measure. The
extension of the integral (3.4) from M to Ly (u, X) will be achieved under the
additional assumption that |G (A)|| < k. (A) for some constant k > 0 and all
AeF.

3.9 Theorem: Let G be an additive L(X, E)-valued set function with finite
semivariation on F. Assume that:

(3.10) 1G (A < ki (4)

for some constant k > 0 and all A € F. Then we have:
(a) The integral (3.4) is a linear operator from M to E which is continuous
with the Ly (1, X) —topology on M and satisfies:

(3.11) VieM, ||[sfdG|| <k [¢IIf]ldu

(b) The integral [ f dG, f € M, admits a unique extension to Ly (pu, X), still
denoted by fS fdG, such that:

(3.12) Vf €Ly (mX), ||[s fdG| <k [s 11l du

(¢) The operator f — fs fdG is linear and bounded from Lq (u, X) to E.

Proof: (a) Let s ( Z 14, () .x; be a simple measurable function with val-
ues in X. From (3.10) we deduce || [ s dG|| = | < Z |G (A - x| <
Zk,u Az = kZu Nlzill = & [ |Isll dp. So (3.11) is true for every

5 6 Z. Now if f € /\/l, let s, € Z be such that s, — f uniformly on S. As
p is finite we deduce that [g||f — sl dp — 0 and so [q ||snlldp — [ || f] dp.
But || [ sndG|| — ||[q fdG|| by (3.4). From the estimation above we know
that || [gsn dG| < k [ |[snlldp, for all n. Letting n — oo the validity of
(3.11) follows. Hence the continuity of the operator f — [ fdG with the
Ly (u, X) —topology on the space M. Next to prove (b), we shall construct an
E—valued integration process on L (1, X) with the set function G, that coin-
cides with the integral (3.4) on M. This will be the desired extension. Recall
that the integral [ 58 dG, for s simple, has been defined by formula (3.2). Now
if f € Ly (p, X), there exist a sequence s,, € Z such that [¢||f — s,[ldp — 0.



By(3.11) the sequence fS spdG is fundamental in the Banach space F, so the
limit lim,, f ¢ 5ndG exists in F and it is easy to check that this limit is indepen-
dent of the choice of the sequence s, converging to f in Lj (u, X). So we can
define:

(3.13) fel(wX), [qfdG=lim, [¢s,dG

where s,, is any sequence in Z converging to f in the L (u, X) sense.

Now if f is a function in M, every sequence s,, € Z which converges uniformly
to f, converges also in the L; (4, X) sense. So the integrals (3.4) and (3.13) are
the same for such f and this proves that (3.13) is an extension of (3.4). To see
the inequality (3.12), let s, € T converging in Ly (4, X) to the function f €
Ly (p, X). By (3.11) we have || ¢ $,dG|| < k [4 ||snl| dp, for all n. Taking limits
for both sides we get (3.12) from which uniqueness of the extension follows.Part
(c) is clear.l

As a converse let us point out the following

3.10 Theorem: Let T : Ly (u, X) — E be a bounded operator from Ly (u, X)
to E. Then there exists a unique set function G : F — L(X,E) with finite
semivariation satisfying (3.10), with the constant k = |T|| and such that:

(3.14) feLi(mX),  Tf=[sfdG

Moreover G is o—additive in the uniform topology of L(X, E).
Proof: Define G on F by the formula:

(3.15) AeF,zeX GA).ax=T(1a(e).x)

Tt is clear that G (A) is linear on X for each A € F and we have |G (A4) .z|| =
1T (14 (o)) < ||IT|I.1¢(A).||z||. So we deduce that the function G sends F
to L(X, E) and satisfies |G (A)|| < ||T|| .« (4), hence the validity of (3.10) with
E = ||T||. On the other hand (3.14) is easily checked from (3.15) for simple
functions by linearity, and then extended to arbitrary f € L (u, X), by the
apropriate limiting process. Finally to get the o—additivity of G, let A,, be a
sequence in F with A4, \, ¢, then 1 (A,,) — 0 and since ||G (4,)]] < ||IT|| -1 (An)
for all n, we obtain G (A,) — 0 in the uniform topology of L(X, E), whence the
o—additivity of G.H

Now we consider operators T in the class ®. We prove that the operator

valued function G attached to an operator T € D, according to (3.15), allows
an interesting characterization of such operators.

3.16 Theorem: Let T : Ly (1, X) — X be a bounded operator on Ly (u, X)
ito X. Then T is in the class ® if and only if the operator valued function
attached to it according to (3.15) is of the form:



(3.17) AeF,zeX G(A).(o)=A(A).I(e)

where A is a bounded measure absolutely continuous with respect to wu, and I is
identity operator of X.

Proof: If T is in the class ©, then by the corollary of theorem (2.8) there is
a unique g € Lo (1) such that T = Ty, that is for all f e Ly (u, X), Tf = [
fg dp. On the other hand we have from (3.14), Tf = fs fdG with G given

by (3.15). So taking f = 14 (e).z, for A € F, z € X, in the two preceding
expressions of T'f, we get G (A) .z = (ng.;v du) = (ng d,u) .x. Hence the
validity of (3.17) with A(A) = [, g du. Since p is finite, the function g is in
L; (i) and then it is clear that A is a bounded measure absolutely continuous
with respect to p. Now suppose that the operator valued function attached to T’
according to (3.15) is of the form: G (4).x = A (A) .z, with A a bounded measure
absolutely continuous with respect to u. So we can write A (A) = ng du,
A € F, for some unique g € Ly (). Actually the function g belongs to Lo, ().
Indeed by (3.15), G(A).x = T (14 (e).z) and we deduce that |G (A).x| =
([ 9i)] - lzll < I ¢ (A) Je], which implies |([ gdu)| < IITl s (A). for all
A € F. Consequently [|g||., < ||T], that is g € Lo (1t). Now let us write
the formula G (A).z = A(A) .z as [(14.2dG = [;g.1a.zdp, and extend it
by linearity to [y sdG = [ g.sdu, for s simple in Ly (p, X). If f € Ly (u, X),
let s, be a sequence of simple functions converging to f in Lq (1, X). Then
g.sp converges to g.f in Ly (1, X), since g € Lo (1), so we deduce that [gg.s,
dp goes to [gg.f dp. But [gs, dG = [qg.5, dp, for all n and by (3.13),
[s fdG = lim,, [ 5,dG, consequently [¢g.f du = [4 fdG, forall f € Ly (p, X).
But from (3.14) we have, Tf = [¢ fdG for f € Ly (u, X), thus Tf = [gg.f
dp=Tyf, thatis T € ©.1

Part 2.

Bochner integral in locally convex spaces

Let X be a locally convex Hausdorff space, whose topology is generated by
a family {p,} of continuous seminorms. We assume that {p,} is separating, this
means that for each nonzero € X there is a p,, such that p, (z) # 0. Moreover
we assume that X is sequentially complete, that is, every Cauchy sequence in
X is convergent. For all details on such spaces, the reader is referred to [13],
especially the sections 1.25,1.36,1.37 there. The construction of the Bochner
integral we give in this context is, as far as we know, new. (for other approachs
see [1,5,14]). On the space L (i, X) of Bochner integrable functions we define
a family of separating seminorms that make this space locally convex. Finally
we introduce a special class of bounded operators from L; (u, X) into X whose
structure is , in many respects, similar to some well known operators from L; ()
into R.

10



For the needs of measurability and integration, we fix an abstract measure
space (S, F, ), where F is a c—field on the set S and p a finite positive measure
on F.

1. Measurability

1.1. Definition: A function f : S — X is called elementary if its range
f(S) is finite.
If we put f(S) = {z1,22,...,x,} and A; = {s: f(s) = x;} then the sets A;
form a partition of S and we can write f in the consolidated form

n
f (o) = lej 14, (e), where 14, is the characteristic function of the set A;.
j=

1.2. Definition: An elementary function f (e) = Xn:xj 14, (e) is measur-
able if we have A; € F for every j. We denote by & (X) %;é set of all elementary
measurable functions f : S — X. Then we have:

1.3 Proposition: £ (X) is a vector space on R.

Proof: Let f,g bein £(X) and A € R. Put f(e) => x, 14, (o)

9(8) = Sy, (o), then (F+9)(8) = T @0+ ) 1a,np, (¢) and

(M) (#) = S0, L, (o). o

1.4. Remark: Let T be any mapping from X into Y.
If f (o) =2 xn 14, (o) then (T'o f) (o) =3 T (xn) 14, (o).

1.5. Definition: A function f : S — X is measurable if there is a sequence
(fn) of elementary measurable functions such that:

L?"Impa (fn_f) =0

for each p,.
This means that for each s € S, each € > 0, and each p,, thereis N = N, ., > 1
such that Vn > N, po (fn (s) — f (s)) <.

1.6. Proposition:The set M (X) of all measurable functions
f:S — X is a vector space on R.

Proof: Let f,g be in M (X) and let f,,g, be sequences of elementary
functions such that p, (f, — f) — 0 and p, (g — g) — 0, for each p,. Then
we have po ((fn + gn) — (f +9)) < Pa(fa — £) +Pa (g1 — 9), 0 the sequence of
elementary functions f,, + g, gives the measurability of f + g.

Likewise for A € R,we have py (Afn, — Af) = |A| pa (fn — f) — 0, which gives
AfeM((X).R

11



2. Bochner integration

2.1. Definition: Let f(e) = > x;14, (e) be an elementary measurable
=1

J
function. We define the integral of f by the vector fS fdpe X
n
Js fdp= Zl n(4;) x;
]:

Since p is finite this integral is well defined.

2.2. Proposition: (a)The integral is linear from & (X) into X.
(b). For every f € £(X) and every p, we have
pa ([s fdp) < 5 pa(f) dp

where p,, (f) is the positive elementary function given by

Do (f) (0) = ngl Pa () 14, (o) whose integral is fs Do (f) du= ngl Pa (z5) 1 (4;).

Proof: (a) Put f () = zijlxj 14, (9), g (o) = éyk 15, (o)
then (f+g) () = 2 (@ +yk) Lasnm, (o) and (Af)(0) = DAz 14, (¢).

This yields [q (f+9)dn > > (zj+uye) p(ANBy) = 3 p(4y) .25 +
1<k<m 1<j<n j=1
kzlu(Bk) k= Jg fdu+ [y gdu
Likewise we can prove that fs Afdu= A fs fdu for A € R.
(b) We have Pa (fs fdﬂ) = Pa <Zl'u (A]) ':L‘j> <
j=

1 (4;j) pa (z5) = fs pa (f) dp. B

K.
it:

2.3. Proposition: Let T : X — Y be a linear operator from X into a
locally convex space Y.
Let f € £(X), then To f € £(Y) and we have:

T ([s fdp)=[sTo fdp

Proof: Let f (o) = f:lxj L, (o), with [ fdp = Zl,u (Aj).xj, then (T'o f) (o) =
Jj= j=
iT(l‘]) lAj (.) and
j=1
JsTo fdu= anlu (A).T(x;) =T anlu (4)) .a:j>, by the linearity of T,
j= =

‘7_
so we deduce that T' ([ fdu) = [¢T o fdu. M.
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2.4. Definition: A measurable function f : S — X is Bochner integrable
if there is a sequence f,, of elementary measurable functions such that for each
Do, Lim pa (frn — f) = 0 uniformly on S. Since the measure y is assumed finite,

n
this implies that Lim fS Do (fn — f) du =0, for each p,.
n

To define the Bochner integral of f let us observe that if f,, is such a sequence
of elementary functions we have:

fs_'pa(fn _fm) dug f,s pa(fn_f) du+fs pa(fm _f) d,u-
So [nlzm fspoc (fn - fm) dM = 0. But p, fS (fn - fm) dﬂ < fspa (fn - fm) d/l
by Proposition 2.2(b), this implies that the sequence of integrals |, g Jn dpis

Cauchy. As the space X is assumed sequentially complete, f g Jn dp converges.
This allows to define the Bochner integral of f by the vector:

s fdu=Lim [g fn dp.

If g,, is another sequence of elementary functions such that
Do (gn — f) — 0 uniformly on S, it is easy to check, from the continuity of
Do that L%'lm S fn dp = L77jlm Js gn dp, so the Bochner integral [¢ fdpu is well
defined.

In the sequel we will denote by L (u, X) the set of all Bochner integrable
functions f : S — X, where as usual two integrable functions are considered
as identical if they are equal p—almost everywhere.

2.5. Proposition: L; (u, X) is a vector space on R and we have:
(a). The integral as defined is linear from L; (u, X) into X.
(b). For every f € L1 (u, X) and every p, we have

pa (fs fdu) < [¢ pa (f) dp

Proof:
(a) Let f,g bein Ly (u, X) and let f,, g, be in £ (X) such that
Do (fn—f) — 0 and p, (9, — f) — 0, uniformly on S. Since we have

pa ((f +9) = (fn + 9n)) < Pa (fn — [)+Pa (gn — ) — 0, it follows that po ((f +g) — (fn + 9n)) —
0 uniformly on S. This yields

Js (F+9) dp = Lim [g(fo+gn) du = Lim [qfo dp+ Lim [ggn dp =
Js fdu+ [4 gdu. Likewise we have [ X\.fdu =X [¢ fdp.
(b) Let f,, be in £ (X) defining [ fdpu. By proposition 2.2(b)
Pa (fs fdp) < J Pa (fn) dp for all n. This implies p, (fs fdp) =
Do (L%'Lm fs b d”) = (LTL Pa (fs fn dﬂ)) < limTiLnf fs Pa (fn) dp <
lim inf (fg po (fu = f) dpt+ [g Pa (f) i) = [ pa (f) dp. M.
2.6. Proposition: Let T: X — Y be a linear continuous operator from

X into a locally convex space Y.
Let f € Ly (u, X), then To f € L1 (1,Y) and we have:

T ([s fdp)=[sTo fdp

13



Proof: Let f, be in £ (X) defining [¢ fdu, i.e Lim po (fn—f) — 0

uniformly on S. By the continuity of T, if ¢ is a seminorm on Y there is a
seminorm p, on X such that ¢ (Tx) < p, (), for every x € X. Tt follows
that Q(Tfn - Tf) =4qT (fn - f) dp < pa (fn - f) — 0 uniformly on S. We
deduce that ¢ (T'f, — Tf) — 0 uniformly on S for each ¢. So the sequence
Tf,, which is in £ (Y) by Proposition 2.3, is defining the integral of T'f by
Js Tfdp= Lim Js T fndp. By Proposition 2.3 once more we have

fs Tfrdu = Tfs fndp for all n.
Since Lim [ fadp = [g fdp, we get Lim [ Tfudp = T (fg fdp), by the
continuity of T'. this gives T ([ fdu) = [¢T o fdu.M.

3. Bounded operators on Lj (u, X)

First we start by defining on L; (1, X) a family {p, } of continuous seminorms
which will make L (u, X) a locally convex space.

Let us observe that for each p,, we have p, (f) bounded on S if f €
Ly (u, X).To see this let f,, be in £ (X)) defining fs fdu,ie Limps (fn, — f)=0
uniformly on S, (Definition 2.4), so if ¢ > 0, there is N > 1 such that
Do (f) = Pa (fN)| < po (fn — f) < € uniformly on S. We deduce that p, (f) <
€+ po (fn) on S and p, (fn) is bounded on S since fy € € (X).

Now define p, on Ly (u, X) by:

(3.1) fe€Ly(uX) Pa (f) = feug? Pa (f (1))

Then p,, is a seminorm on L (u, X) and the family {p5} is separating. To see
this, let f be in Ly (i, X) with f #£ 0, that is f (¢) # 0 for some ¢t € S. Since the
family {p,} is assumed separating on X, there is a p, such that p, (f (¢)) > 0,
so that pq (f) > 0.

Since the family of seminorms {p,} is separating, it makes L; (i, X) a locally
convex space such that each p, is continuous ([13], section 1.37).

In what follows we define a special class of bounded operators from Lq (p, X)
into X which are, in many respects, similar to some well known operators from
L (p) into R. First let us observe:

3.2. Lemma: Let g € L, (1), then for every f € Ly (u, X)

g'f €Ly (MaX) :

Proof: Since g € Lo (1), there is a sequence (g,) of simple measurable
functions g, : S — R converging uniformly to g on S. Since f € L (u, X),
there is a sequence f, of elementary measurable functions such that for each
DPas Lign Pa (fn — f) = 0 uniformly on S. But g,.f, is elementary measurable,

and we have:
Pa (gnfn - gf) = Pa [(gnfn - gnf) + (gnf - gf)]
< |gn_g| Pa (f)+|gn|-pa (fn_f)
S |gn - g| ]3; (f) + |gn| -Pa (fn - f) - 07 n — 00, uniformly on S.
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Consequently we have f.g € Ly (1, X) .l

Now we define a class {T, ,g € Lo ()} of operators Ty, by the following
recipe:

3.3. Definition: For each fixed g € Lo (1), Ty sends Lq (1, X) into X by
the formula:

feli(wX), Ty(f)=[s fodu

3.4. Theorem:. Let Lq (i, X) be endowed with the seminorms {p,} given
by (3.1), and let X be equipped with the seminorms {p,}, then the operators
T, are linear and bounded.

Proof: The linearity is clear from 2.5 (a). To see boundedness, let p, be a
seminorm on X, by 2.5 (b) we have:

Pa (Ty () = pa ([s fgdp) < [s pa (fg) dp. Since pa (fg) = |g| pa (f), we
deduce that pa (T (f)) < [g |9l Pa (f) diw < llgllo Pa (f) -0 (X), which proves
that T}, is bounded.W.

In what follows, we quote some properties of the operators Ty, whose proof
comes from facts about Bochner integral (2.5-2.6).We denote by E' the strong
dual of the space F :

3.5. Proposition: (a) If € X', then o T, € L/1 (1, X) .

(b) It 6 € X', then § o T, (f) = Js 90f du, for every f e Ly (p, X).

(¢) If 0,0 are in X', and ¢, in Ly (i, X), then:

fop=ootp = 00T, (p)=00T,(¥)

These properties, especially property (c), lead to the following;:

Open problem: Let T : Ly (1, X) — X be a linear bounded operator from
L; (p, X) into X satisfying condition 3.5(c), that is:

If 6,0 are in X/, and ¢, in Ly (u, X), then:

Bop=0o0y)=>0oT(p)=0o0T ()
Does there exist a g € Lo, () such that:

T(f)=[g fgdu, forall fe Ly (u,X).
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