Bochner Integration in Topological Vector Spaces

Lakhdar MEZIANI

Abstract

The subject of the present work deals with Bochner integration of bounded operators, acting on L_1 -type spaces. More precisely, let (S, \mathcal{F}, μ) be a finite measure space and let X be a Banach space or a locally convex space. We form the space $L_1(\mu, X)$ of all Bochner μ -integrable functions $f: S \to X$, with an adequate topology. We perform integration for a class of bounded operators $T: L_1(\mu, X) \to X$, whose integral structure is similar to that of bounded functionals on $L_1(\mu)$. The main setting is the Bochner integration process with respect to finite abstract measure and the results obtained may be considered as generalizations of the classical Riesz Theorem.

Keywords:

Bochner integration process; Bounded operators; Vector measures

Introduction

In the first part we consider a finite measure space (S, \mathcal{F}, μ) , a Banach space X and form the Banach space $L_1(\mu, X)$ of all Bochner μ -integrable functions $f: S \to X$, with $L_1(\mu, X) = L_1(\mu)$ if $X = \mathbb{R}$. We introduce a class of linear bounded operators $T: L_1(\mu, X) \to X$, whose Bochner integral structure is much similar to that of bounded functionals on $L_1(\mu)$. We give two complete characterizations of this class. The first one, which may be considered as a Riesz type theorem, is obtained via integrals by functions in $L_{\infty}(\mu)$. Actually the identified class will be isometrically isomorphic to $L_{\infty}(\mu)$. The second characterization is more specific. It pertains to an operator valued measure, that will be absolutely continuous with respect to μ and this property will be used to get another interesting characterization of the class under consideration.

In the second part, we assume that X is a locally convex space whose topology is defined by a family $\{p_{\alpha}\}$ of continuous seminorms. We assume that $\{p_{\alpha}\}$ is separating, this means that for each nonzero $x \in X$ there is a p_{α} such that $p_{\alpha}(x) \neq 0$. Moreover we assume that X is sequentially complete, that is, every Cauchy sequence in X is convergent. The construction of the Bochner integral we give in this context is, as far as we know, new (for other approachs see [1, 5, 13]). Finally, arrangements are made so that each Part of this work is mostly selfcontained and can be read independently.

Part 1.

The Integral structure of some bounded operators on $L_1(\mu, X)$

1.Operators on the space of Bochner integrable functions

Let (S, \mathcal{F}, μ) be a finite measure space and let X be a Banach space. We denote by $L_1(\mu, X)$ the Banach space of all Bochner μ -integrable functions $f: S \to X$, with $L_1(\mu, X) = L_1(\mu)$ if $X = \mathbb{R}$. For all properties of the Bochner integral, we refer the reader to [6]. For $f \in L_1(\mu, X)$, we put:

(1.2)
$$||f||_1 = \int_S ||f(s)|| d\mu(s)$$

Then it is well known that:

1.3. Proposition: Formula (1.2) defines a norm on $L_1(\mu, X)$, for which $L_1(\mu, X)$ is a Banach space. Moreover the measurable simple functions $s: S \to X$ form a dense subspace of $L_1(\mu, X)$. This means that for each $f \in L_1(\mu, X)$ there is a sequence s_n of simple functions such that $\|f - s_n\|_1 \to 0$.

The starting point that has motivated the present work is contained in the following simple observation:

1.4. Theorem: Fix a function g in $L_{\infty}(\mu)$ (the space of all μ -essentially bounded real functions on S) and consider the operator $T_g: L_1(\mu, X) \to X$ defined by:

(1.5)
$$f \in L_1(\mu, X), \qquad T_g(f) = \int_S fg \, d\mu$$
:

Then T_g is linear bounded and satisfies $||T_g|| = ||g||_{\infty}$.

Proof: Since $||f(s)g(s)|| \leq ||f(s)|| ||g||_{\infty}$ μ - a.e. we deduce from (1.5), $||T_g(f)|| \leq ||g||_{\infty} \cdot \int_S ||f(s)|| d\mu(s) = ||g||_{\infty} \cdot ||f||_1$. So the operator T_g is bounded and $||T_g|| \leq ||g||_{\infty}$. To prove the reverse inequality, apply T_g to a function $f \in L_1(\mu, X)$ of the form $f = \varphi \cdot x$, where $\varphi \in L_1(\mu)$, such that $||\varphi||_1 = 1$ and x fixed in X with ||x|| = 1. We get $||f||_1 = ||\varphi||_1 = 1$ and $T_g(f) = \int_S \varphi g x d\mu = (\int_S \varphi g \cdot d\mu) \cdot x$, by standard integration tools.

So we deduce $\|T_g(f)\| = \left|\int_S \varphi g d\mu\right| \le \|T_g\|$ and then

 $Sup \left\{ \left| \int_{S} \varphi g.d\mu \right|, \varphi \in L_{1}(\mu), \|\varphi\|_{1} = 1 \right\} \leq \|T_{g}\|.$ But the LHS of the preceding inequality is equal to $\|g\|_{\infty}$ by the Riesz duality theorem for $L_{1}(\mu)$. So we get $\|g\|_{\infty} \leq \|T_{g}\|$ and then $\|T_{g}\| = \|g\|_{\infty}$.

1.6. Remark: Another way to put the conclusion of **Theorem 1.4** is the following:

The map $\Phi: g \to T_g$ from $L_{\infty}(\mu)$ into $\mathcal{L}(L_1(\mu, X), X)$, the space of bounded operators $T: L_1(\mu, X) \to X$, is a linear isometry.

We can wonder whether Φ is onto. This is certainly true if $X = \mathbb{R}$ by the Riesz duality theorem for $L_1(\mu)$. But if dimension of X is greater than one, the following example shows that not all operators in $\mathcal{L}(L_1(\mu, X), X)$ can be written in the form (1.5) for some g in $L_{\infty}(\mu)$.

1.7. Example: Let $X = \mathbb{R}^2$, equipped with the norm: $z = (z_1, z_2)$, $||z|| = |z_1| + |z_2|$. If $f = (f_1, f_2) : S \to \mathbb{R}^2$ is Bochner μ -integrable with the Borel σ -field on \mathbb{R}^2 , then $f_1, f_2 : S \to \mathbb{R}$ are μ -integrable and $\int_S f d\mu = \left(\int_S f_1 d\mu, \int_S f_2 d\mu\right)$. Note also that $||f(s)|| = |f_1(s)| + |f_2(s)|$, so that $||f||_1 = \int_S |f_1| d\mu + \int_S |f_2| d\mu$. Now define the operator $T : L_1(\mu, \mathbb{R}^2) \to \mathbb{R}^2$, by $Tf = T(f_1, f_2) = \left(\int_S f_1 d\mu, \alpha \int_S f_2 d\mu\right)$, where $0 < \alpha < 1$ is a fixed constant. It is clear that T is linear and we have $||Tf|| = \left|\int_S f_1 d\mu\right| + \alpha \left|\int_S f_2 d\mu\right| \le ||f||_1$, so that T is bounded. If there were a $g \in L_\infty(\mu)$ such that $T(f) = \int_S fg d\mu$, we would have $\int_S f_1 d\mu = \int_S f_1 g.d\mu$ and $\alpha \int_S f_2 d\mu = \int_S f_2.g.d\mu$, for all μ -integrable functions f_1, f_2 . Taking f_1, f_2 both characteristic functions of sets in \mathcal{F} , this would imply g = 1, μ -a.e and $g = \alpha, \mu$ -a.e. This is impossible by the choice of α . Consequently the operator T cannot be written in the form (1.5).

The aim is to characterize those bounded operators $T : L_1(\mu, X) \to X$ that have integral form (1.5) with a function $g \in L_{\infty}(\mu)$. This amounts to describe the range of the operator Φ in **remark 1.6**. In section 2 we give the ingredients of this characterization which allows a representation of operators on the space $L_1(\mu, X)$, much simpler than those given in [10]. In section3 we prove integral representations by operator valued measures, for operators introduced in section 2. This leads to a rather precise description of such operators.

2 A Characterizing class

In this section we want to identify those operators $T \in \mathcal{L}(L_1(\mu, X), X)$, for which there is $g \in L_{\infty}(\mu)$ such that $T = T_g$. Let X^* be the topological dual of X. For each $x^* \in X^*$ consider the operator $\varphi_{x^*} : L_1(\mu, X) \to L_1(\mu)$, given by:

(2.1)
$$f \in L_1(\mu, X), \quad \varphi_{x^*} f = x^* \circ f$$

where $(x^* \circ f)(t) = x^*(f(t)), t \in S$. We collect some facts about φ_{x^*} for later use:

2.2. Proposition: (a) φ_{x^*} is linear bounded and $\|\varphi_{x^*}\| = \|x^*\|$. (b) φ_{x^*} is onto for each $x^* \neq 0$. (c) There exist $y^* \in X^*$ such that for each $h \in L_1(\mu)$ there is $f \in L_1(\mu, X)$ with $\|f\|_1 = \|h\|_1$ and $\varphi_{y^*}f = h$.

Proof: (a) $\|\varphi_{x^*}f\| = \int_S |x^* \circ f| \ d\mu \leq \|x^*\| \int_S \|f(s)\| \ d\mu(s) = \|x^*\| \|f\|_1$. So φ_{x^*} is bounded and $\|\varphi_{x^*}\| \leq \|x^*\|$. To see the reverse inequality apply φ_{x^*} to a function $f \in L_1(\mu, X)$ of the form $f(\bullet) = g(\bullet) .x$, with $g \in L_1(\mu)$ such that $\|g\|_1 = 1$ and x fixed in X with $\|x\| = 1$. We get $\|f\|_1 = 1$ and $\|\varphi_{x^*}f\| = \int_S |x^* \circ f| \ d\mu = |x^*(x)|$. Thus $|x^*(x)| \leq \|\varphi_{x^*}\|$ for every $x \in X$ with $\|x\| = 1$. Consequently $\|x^*\| = Sup\{|x^*(x)|, x \in X, \|x\|_1 = 1\} \leq \|\varphi_{x^*}\|$. (b) Let $x^* \neq 0$ and choose $x \in X$ such that $x^*(x) = 1$. Now if $h \in L_1(\mu)$ put f = h.x, then clearly we have $\varphi_{x^*}f = h$.. (c) Choose $x \in X$ with $\|x\| = 1$, then choose $y^* \in X^*$ such that $y^*(x) = \|x\| = 1$, $\|y^*\| = 1$, this is possible by Hahn-Banach theorem . If $h \in L_1(\mu)$, the function f = h.x is in $L_1(\mu, X)$ and fits the conclusion. ■

The following class of operators will play an essential role for the characterization we need:

2.3. Definition: Let \mathfrak{D} be the class of linear bounded operators $T \in \mathcal{L}(L_1(\mu, X), X)$ satisfying the following condition:

$$(2.4) x^*, y^* \in X^*, f, g \in L_1(\mu, X) : \varphi_{x^*}f = \varphi_{y^*}g \Longrightarrow x^*Tf = y^*Tg$$

It is easy to check that \mathfrak{D} is a closed subspace of $\mathcal{L}(L_1(\mu, X), X)$. Note also that every T_g as defined by (1.5) is in \mathfrak{D} . The important fact about \mathfrak{D} is:

2.5. Theorem: Let T be an operator in \mathfrak{D} , then there exists a unique bounded

linear functional $V : L_1(\mu) \to \mathbb{R}$ such that:

(2.6)
$$V \circ \varphi_{x^*} = x^* \circ T \quad for \ every \ x^* \in X^*$$

Proof: Let $h \in L_1(\mu)$ and $x^* \in X^*$, $x^* \neq 0$; by **Proposition 2.2**(b) there is an $f \in L_1(\mu, X)$ such that $\varphi_{x^*}f = h$. then we put:

$$(2.7) V(h) = x^*Tf$$

The functional V does not depend on the choice of x^* but depends only on T. For if V_{x^*} and V_{y^*} are defined as in (2.7), with $x^*, y^* \neq 0$, then $V_{x^*}(h) = x^*Tf$ if $h = \varphi_{x^*}f$ and $V_{y^*}(h) = y^*Tg$ if $h = \varphi_{y^*}g$; but condition (2.4) on T implies that $V_{x^*}(h) = V_{y^*}(h)$. It is easy to check that it is linear. We must show that V is bounded. Since φ_{x^*} is bounded and onto, by the open mapping principle there exists a constant $K = K_{x^*} > 0$ such that for every $h \in L_1(\mu)$, there is a solution $f \in L_1(\mu, X)$ of $\varphi_{x^*}f = h$, with $||f|| \leq K. ||h||$. From (2.7) we deduce that $||V(h)|| \leq ||x^*|| ||T|| ||f|| \leq ||x^*|| ||T|| K ||h||$, which proves that V is bounded.

. It remains to prove (2.6). For $f \in L_1(\mu, X)$ and $x^* \in X^*$, we have $h = \varphi_{x^*} f \in L_1(\mu)$, and (2.7) gives $V(h) = V(\varphi_{x^*} f) = x^*Tf$. Since f and x^* are arbitrary, (2.6) follows. Uniqueness is clear from (2.6) since φ_{x^*} is onto.

As a consequence of the preceding theorem let us note:

2.8. Theorem: There is an isometric isomorphism between the Banach space \mathfrak{D} and the topological dual $L_1^*(\mu)$ of $L_1(\mu)$, for each non trivial Banach space X.

Proof: Define the operator $\Psi : \mathfrak{D} \to L_1^*(\mu)$ by: $T \in \mathfrak{D}$, $\Psi(T) = V$, where V is the unique bounded functional on $L_1(\mu)$ attached to T by **theorem 2.5**. It is not difficult to see that Ψ is linear. We have to show that Ψ is an isometry, that is, ||V|| = ||T|| if $\Psi(T) = V$. First we prove the estimation

(2.9)
$$||V|| = Sup \{ ||V \circ \varphi_{x^*}|| : x^* \in X^*, ||x^*|| \le 1 \}$$

We have $\|V \circ \varphi_{x^*}\| \leq \|V\| \|\varphi_{x^*}\| = \|V\| \|x^*\|$, since $\|\varphi_{x^*}\| = \|x^*\|$ by 2.2(a). So we deduce $\|V \circ \varphi_{x^*}\| \leq \|V\|$, for all $x^* \in X^*$, with $\|x^*\| \leq 1$. Hence $Sup \{\|V \circ \varphi_{x^*}\| : x^* \in X^*, \|x^*\| \leq 1\} \leq \|V\|$. But $V \in L_1^*(\mu)$, consequently for each $\varepsilon > 0$ there is $h \in L_1(\mu)$ such that $\|h\|_1 \leq 1$ and $\|V\| - \varepsilon < |V(h)| \leq \|V\|$. Now let $y^* \in X^*$ as in 2.2 (c) and choose $f \in L_1(\mu, X)$, such that $\|f\|_1 = \|h\|_1$ and $\varphi_{y^*}f = h$. Then $\|f\|_1 \leq 1$ and $|V \circ \varphi_{y^*}(f)| = |V(h)| \leq \|V \circ \varphi_{y^*}\| \|f\|_1$. Thus $|V(h)| \leq \|V \circ \varphi_{y^*}\| \leq Sup \{\|V \circ \varphi_{x^*}\| : x^* \in X^*, \|x^*\| \leq 1\}$. From the choice of h we get $\|V\| - \varepsilon \leq Sup \{\|V \circ \varphi_{x^*}\| : x^* \in X^*, \|x^*\| \leq 1\}$. Letting $\varepsilon \downarrow 0$, we obtain $\|V\| \leq Sup \{\|V \circ \varphi_{x^*}\| : x^* \in X^*, \|x^*\| \leq 1\}$. So (2.9) is proved. To finish the norm equality $\|V\| = \|T\|$, we appeal to formula (2.6) and conclude: $\|V\| = Sup \{\|V \circ \varphi_{x^*}\| : x^* \in X^*, \|x^*\| \leq 1\} = Sup \{\|x^* \circ T\| : x^* \in X^*, \|x^*\| \leq 1\} = \|T\|$. To achieve the proof it remains to prove that Ψ is onto. If $V \in L_1^*(\mu)$, then by the Riesz duality theorem, there is a unique $g \in L_\infty(\mu)$ such that $V(h) = \int_S hg d\mu$, for all $h \in L_1(\mu)$. Consider the operator T_g on $L_1(\mu, X)$ given by formula (1.5). We have $T_g \in \mathfrak{D}$ and it is straightforward that V and T_g are linked by equation (2.6). So from the definition of the operator Ψ we deduce that $\Psi(T_g) = V.\blacksquare$

Since $L_1^*(\mu)$ is isometrically isomorphic to $L_{\infty}(\mu)$, we deduce the following corollary:

corollary: The class \mathfrak{D} is isometrically isomorphic to $L_{\infty}(\mu)$. In other words, a bounded operator $T: L_1(\mu, X) \to X$ is in \mathfrak{D} iff there is a unique $g \in L_{\infty}(\mu)$ such that $T = T_g$ and in this case $||T|| = ||g||_{\infty}$.

Now we turn to another description of the class \mathfrak{D} , namely by a space of measures. This will be achieved via integrals with respect to operator valued measures.

3 Operator valued measures representing the class \mathfrak{D}

3.1. The integration process we shall deal with in this section is performed by an operator valued additive set function $G: \mathcal{F} \to \mathcal{L}(X, E)$, where $\mathcal{L}(X, E)$ is the space of linear bounded operators of the Banach space X into the Banach space E. The integral will be defined for measurable functions $f: S \to X$, under the assumption that G is additive and with finite semivariarion. Let us recall that semivariation means the set function \widehat{G} on \mathcal{F} given by $\widehat{G}(B) =$ $Sup \left\| \sum_{i} G(A_i) \cdot x_i \right\|$, where $B \in \mathcal{F}$, and the supremum taken over all finite partitions $\{A_i\}$ of B in \mathcal{F} and all finite systems of vectors $\{x_i\}$ in X, with $||x_i|| \leq 1 \ \forall i$. The function G is said to be of finite semivariation if G(B) is finite for all $B \in \mathcal{F}$. A simple measurable function s on S with values in the Banach space X is a function of the form $s(\bullet) = \sum_{i} 1_{A_i}(\bullet) . x_i$, where $\{A_i\}$ is a finite partition of S in \mathcal{F} , and $\{x_i\}$ is a finite system of vectors in X. The symbol 1_{A_i} means the characteristic function of the set A_i . A function $f: S \to X$ is said to be measurable if there is a sequence s_n of measurable simple functions converging uniformly to f on S. If we denote by \mathcal{I} and \mathcal{M} the sets of simple functions and measurable functions, respectively then \mathcal{I} and \mathcal{M} are subspaces

Moreover \mathcal{I} is dense in \mathcal{M} . We define the integral of the simple function $s(\bullet) = \sum_{i} 1_{A_i}(\bullet) . x_i$ over the

of the Banach space of all bounded functions $f: S \to X$, with supremum norm.

set $B \in \mathcal{F}$, with respect to G by:

(3.2)
$$\int_B s \ dG = \sum_i G \left(A_i \cap B \right) . x_i$$

It is easy to check that the integral is well defined and satisfies:

(3.3)
$$\left\|\int_{B} s dG\right\| \le \|s\| . \widetilde{G}(B)$$

(||s|| =supremum norm)

Let us observe that estimation (3.3) implies that the linear operator $U_B : \mathcal{I} \to E$, with $U_B(s) = \int_B s \, dG$ is bounded. So we can extend it in a unique manner to a bounded operator on the closure \mathcal{M} of \mathcal{I} . This extension will be our integration process on the space \mathcal{M} of measurable functions. We shall denote it also by U_B with $U_B = U$ if B = S. Note that if $f \in \mathcal{M}$ and if s_n is a sequence in \mathcal{I} such that $||f - s_n|| \to 0$ then the integral of f is given by:

(3.4)
$$U_B(f) = \int_B f \ dG = \lim_n \int_B s_n \ dG$$

By (3.3) the integral (3.4) does not depend on the sequence s_n chosen converging to the function f. This simple integration process will be sufficient for our purpose. The outstanding facts are summarized in the following:

3.5 Theorem: Let G be an additive $\mathcal{L}(X, E)$ -valued set function with finite semivariation on \mathcal{F} . Then:

(a) The integral $\int_{B} f \, dG$ is linear in $f \in \mathcal{M}$ and satisfies:

(3.6)
$$\widetilde{G}(B) = Sup\left\{ \left\| \int_{B} f \, dG \right\|, \|f\| \le 1, \quad f \in \mathcal{M} \right\}$$

in other words the operator $U_B : \mathcal{M} \to E$ given by $U_B(f) = \int_B f \ dG$ is bounded with norm $||U_B|| = \widetilde{G}(B)$, for each $B \in \mathcal{F}$. Conversely: (b) Let $U : \mathcal{M} \to E$ be a bounded operator. Then there is a unique additive set function $G : \mathcal{F} \to \mathcal{L}(X, E)$, with finite semivariation such that:

(3.7)
$$\forall f \in \mathcal{M}, \forall B \in \mathcal{F}, U(f.1_B) = \int_B f \, dG$$

(c) Let $\Lambda : E \to Y$ be a bounded operator from E into the Banach space Y. Let us define $\Lambda G : \mathcal{F} \to \mathcal{L}(X, Y)$ by $(\Lambda G)(B) x = \Lambda(G(B)x), B \in \mathcal{F}, x \in X$. Then ΛG is an additive $\mathcal{L}(X, Y)$ -valued set function with finite semivariation and we have:

(3.8)
$$\forall f \in \mathcal{M}, \quad \int_{S} f \, d\Lambda G = \Lambda \left(\int_{S} f \, dG \right)$$

Proof: (a) To prove (3.6) start with f simple and use (3.2) and the definition of $\tilde{G}(B)$. For general f use (3.4).

(b) Define $G : \mathcal{F} \to \mathcal{L}(X, E)$ by $G(B) . x = U(1_B . x)$, for $B \in \mathcal{F}$, and $x \in X$. Then G is additive since U is linear and G is $\mathcal{L}(X, E)$ -valued because U is bounded. Now (3.7) is easily checked by (3.2) and (3.4).

(c) To prove (3.8) start with f simple and use the definition of ΛG , then apply (3.4), (recall that the operator Λ is bounded).

Actually, part (b) of this theorem is an integral representation of a bounded operator U on the space \mathcal{M} by means of an $\mathcal{L}(X, E)$ -valued set function G on \mathcal{F} .

The next step is to extend the preceding integration process from \mathcal{M} to the space $L_1(\mu, X)$. The reader should observe that the space \mathcal{M} is contained in $L_1(\mu, X)$, because functions in \mathcal{M} are bounded and μ is a finite measure. The extension of the integral (3.4) from \mathcal{M} to $L_1(\mu, X)$ will be achieved under the additional assumption that $||G(A)|| \leq k \cdot \mu(A)$ for some constant k > 0 and all $A \in \mathcal{F}$.

3.9 Theorem: Let G be an additive $\mathcal{L}(X, E)$ -valued set function with finite semivariation on \mathcal{F} . Assume that:

(3.10)
$$||G(A)|| \le k . \mu(A)$$

for some constant k > 0 and all $A \in \mathcal{F}$. Then we have:

(a) The integral (3.4) is a linear operator from \mathcal{M} to E which is continuous with the $L_1(\mu, X)$ -topology on \mathcal{M} and satisfies:

(3.11)
$$\forall f \in \mathcal{M}, \quad \left\| \int_{S} f dG \right\| \le k \int_{S} \|f\| \, d\mu$$

(b) The integral $\int_{S} f \, dG, f \in \mathcal{M}$, admits a unique extension to $L_1(\mu, X)$, still denoted by $\int_{S} f dG$, such that:

(3.12)
$$\forall f \in L_1(\mu, X), \quad \left\| \int_S f dG \right\| \le k \int_S \|f\| \, d\mu$$

(c) The operator $f \to \int_S f dG$ is linear and bounded from $L_1(\mu, X)$ to E.

Proof: (a) Let $s(\bullet) = \sum_{i} 1_{A_i}(\bullet) x_i$ be a simple measurable function with val-

ues in X. From (3.10) we deduce $\left\|\int_{S} s \ dG\right\| = \left\|\sum_{i} G(A_{i}) . x_{i}\right\| \leq \sum_{i} \|G(A_{i})\| . \|x_{i}\| \leq \sum_{i} k\mu(A_{i}) . \|x_{i}\| = k \sum_{i} \mu(A_{i}) . \|x_{i}\| = k \int_{S} \|s\| \ d\mu$. So (3.11) is true for every $s \in \mathcal{I}$. Now if $f \in \mathcal{M}$, let $s_{n} \in \mathcal{I}$ be such that $s_{n} \to f$ uniformly on S. As μ is finite we deduce that $\int_{S} \|f - s_{n}\| \ d\mu \to 0$ and so $\int_{S} \|s_{n}\| \ d\mu \to \int_{S} \|f\| \ d\mu$. But $\left\|\int_{S} s_{n} \ dG\right\| \to \left\|\int_{S} f \ dG\right\|$ by (3.4). From the estimation above we know that $\left\|\int_{S} s_{n} \ dG\right\| \leq k \int_{S} \|s_{n}\| \ d\mu$, for all n. Letting $n \to \infty$ the validity of (3.11) follows. Hence the continuity of the operator $f \to \int_{S} f \ dG$ with the $L_{1}(\mu, X)$ –topology on the space \mathcal{M} . Next to prove (b), we shall construct an E-valued integration process on $L_{1}(\mu, X)$ with the set function G, that coincides with the integral (3.4) on \mathcal{M} . This will be the desired extension. Recall that the integral $\int_{S} s \ dG$, for s simple, has been defined by formula (3.2). Now if $f \in L_{1}(\mu, X)$, there exist a sequence $s_{n} \in \mathcal{I}$ such that $\int_{S} \|f - s_{n}\| \ d\mu \to 0$. By(3.11) the sequence $\int_{S} s_n dG$ is fundamental in the Banach space E, so the limit $\lim_n \int_{S} s_n dG$ exists in E and it is easy to check that this limit is independent of the choice of the sequence s_n converging to f in $L_1(\mu, X)$. So we can define:

(3.13)
$$f \in L_1(\mu, X), \quad \int_S f dG = \lim_n \int_S s_n dG$$

where s_n is any sequence in \mathcal{I} converging to f in the $L_1(\mu, X)$ sense. Now if f is a function in \mathcal{M} , every sequence $s_n \in \mathcal{I}$ which converges uniformly to f, converges also in the $L_1(\mu, X)$ sense. So the integrals (3.4) and (3.13) are the same for such f and this proves that (3.13) is an extension of (3.4). To see the inequality (3.12), let $s_n \in \mathcal{I}$ converging in $L_1(\mu, X)$ to the function $f \in$ $L_1(\mu, X)$. By (3.11) we have $\|\int_S s_n dG\| \leq k \int_S \|s_n\| d\mu$, for all n. Taking limits for both sides we get (3.12) from which uniqueness of the extension follows.Part (c) is clear.

As a converse let us point out the following

3.10 Theorem: Let $T : L_1(\mu, X) \to E$ be a bounded operator from $L_1(\mu, X)$ to E. Then there exists a unique set function $G : \mathcal{F} \to \mathcal{L}(X, E)$ with finite semivariation satisfying (3.10), with the constant k = ||T|| and such that:

(3.14)
$$f \in L_1(\mu, X), \qquad Tf = \int_S f dG$$

Moreover G is σ -additive in the uniform topology of $\mathcal{L}(X, E)$.

Proof: Define G on \mathcal{F} by the formula:

(

$$(3.15) A \in \mathcal{F}, x \in X G(A) . x = T(1_A(\bullet) . x)$$

It is clear that G(A) is linear on X for each $A \in \mathcal{F}$ and we have $||G(A).x|| = ||T(1_A(\bullet).x)|| \le ||T||.\mu(A).||x||$. So we deduce that the function G sends \mathcal{F} to $\mathcal{L}(X, E)$ and satisfies $||G(A)|| \le ||T||.\mu(A)$, hence the validity of (3.10) with k = ||T||. On the other hand (3.14) is easily checked from (3.15) for simple functions by linearity, and then extended to arbitrary $f \in L_1(\mu, X)$, by the apropriate limiting process. Finally to get the σ -additivity of G, let A_n be a sequence in \mathcal{F} with $A_n \searrow \phi$, then $\mu(A_n) \to 0$ and since $||G(A_n)|| \le ||T||.\mu(A_n)$ for all n, we obtain $G(A_n) \to 0$ in the uniform topology of $\mathcal{L}(X, E)$, whence the σ -additivity of G.

Now we consider operators T in the class \mathfrak{D} . We prove that the operator valued function G attached to an operator $T \in \mathfrak{D}$, according to (3.15), allows an interesting characterization of such operators.

3.16 Theorem: Let $T : L_1(\mu, X) \to X$ be a bounded operator on $L_1(\mu, X)$ into X. Then T is in the class \mathfrak{D} if and only if the operator valued function attached to it according to (3.15) is of the form:

$$(3.17) A \in \mathcal{F}, x \in X G(A).(\bullet) = \lambda(A).I(\bullet)$$

where λ is a bounded measure absolutely continuous with respect to μ , and I is identity operator of X.

Proof: If T is in the class \mathfrak{D} , then by the corollary of theorem (2.8) there is a unique $g \in L_{\infty}(\mu)$ such that $T = T_g$, that is for all $f \in L_1(\mu, X)$, $Tf = \int_S fg d\mu$. On the other hand we have from (3.14), $Tf = \int_S fdG$ with G given

by (3.15). So taking $f = 1_A(\bullet) x$, for $A \in \mathcal{F}, x \in X$, in the two preceding expressions of Tf, we get $G(A) \cdot x = (\int_A g \cdot x \, d\mu) = (\int_A g \cdot d\mu) \cdot x$. Hence the validity of (3.17) with $\lambda(A) = \int_A g \ d\mu$. Since μ is finite, the function g is in $L_1(\mu)$ and then it is clear that λ is a bounded measure absolutely continuous with respect to μ . Now suppose that the operator valued function attached to T according to (3.15) is of the form: $G(A) \cdot x = \lambda(A) \cdot x$, with λ a bounded measure absolutely continuous with respect to μ . So we can write $\lambda(A) = \int_A g \ d\mu$, $A \in \mathcal{F}$, for some unique $g \in L_1(\mu)$. Actually the function g belongs to $L_{\infty}(\mu)$. Indeed by (3.15), $G(A) \cdot x = T(1_A(\bullet) \cdot x)$ and we deduce that $||G(A) \cdot x|| =$ $\left| \left(\int_{A} g d \mu \right) \right| \cdot \|x\| \leq \|T\| \mu(A) \|x\|$, which implies $\left| \left(\int_{A} g d \mu \right) \right| \leq \|T\| \mu(A)$, for all $A \in \mathcal{F}$. Consequently $||g||_{\infty} \leq ||T||$, that is $g \in L_{\infty}(\mu)$. Now let us write the formula $G(A).x = \lambda(A).x$ as $\int_{S} 1_A.xdG = \int_{S} g.1_A.xd\mu$, and extend it by linearity to $\int_{S} sdG = \int_{S} g.sd\mu$, for s simple in $L_{1}(\mu, X)$. If $f \in L_{1}(\mu, X)$, let s_n be a sequence of simple functions converging to f in $L_1(\mu, X)$. Then $g.s_n$ converges to g.f in $L_1(\mu, X)$, since $g \in L_\infty(\mu)$, so we deduce that $\int_S g.s_n$ $d\mu$ goes to $\int_{S} g.f \ d\mu$. But $\int_{S} s_n \ dG = \int_{S} g.s_n \ d\mu$, for all n and by (3.13), $\int_{S} f dG = \lim_{n \to S} \int_{S} s_n dG$, consequently $\int_{S} g.f \ d\mu = \int_{S} f dG$, for all $f \in L_1(\mu, X)$. But from (3.14) we have, $Tf = \int_S f dG$ for $f \in L_1(\mu, X)$, thus $Tf = \int_S g f dG$ $d\mu = T_q f$, that is $T \in \mathfrak{D}$.

Part 2.

Bochner integral in locally convex spaces

Let X be a locally convex Hausdorff space, whose topology is generated by a family $\{p_{\alpha}\}$ of continuous seminorms. We assume that $\{p_{\alpha}\}$ is separating, this means that for each nonzero $x \in X$ there is a p_{α} such that $p_{\alpha}(x) \neq 0$. Moreover we assume that X is sequentially complete, that is, every Cauchy sequence in X is convergent. For all details on such spaces, the reader is referred to [13], especially the sections 1.25, 1.36, 1.37 there. The construction of the Bochner integral we give in this context is, as far as we know, new. (for other approachs see [1, 5, 14]). On the space $L_1(\mu, X)$ of Bochner integrable functions we define a family of separating seminorms that make this space locally convex. Finally we introduce a special class of bounded operators from $L_1(\mu, X)$ into X whose structure is , in many respects, similar to some well known operators from $L_1(\mu)$ into \mathbb{R} . For the needs of measurability and integration, we fix an abstract measure space (S, \mathcal{F}, μ) , where \mathcal{F} is a σ -field on the set S and μ a finite positive measure on \mathcal{F} .

1. Measurability

1.1. Definition: A function $f: S \longrightarrow X$ is called elementary if its range f(S) is finite.

If we put $f(S) = \{x_1, x_2, ..., x_n\}$ and $A_j = \{s : f(s) = x_j\}$ then the sets A_j form a partition of S and we can write f in the consolidated form

 $f(\bullet) = \sum_{j=1}^{n} x_j \mathbf{1}_{A_j}(\bullet)$, where $\mathbf{1}_{A_j}$ is the characteristic function of the set A_j .

1.2. Definition: An elementary function $f(\bullet) = \sum_{j=1}^{n} x_j \mathbf{1}_{A_j}(\bullet)$ is measurable if we have $A_j \in \mathcal{F}$ for every j. We denote by $\mathcal{E}(X)$ the set of all elementary

able if we have $A_j \in \mathcal{F}$ for every j. We denote by $\mathcal{E}(X)$ the set of all elementary measurable functions $f: S \longrightarrow X$. Then we have:

1.3 Proposition: $\mathcal{E}(X)$ is a vector space on \mathbb{R} .

Proof: Let
$$f, g$$
 be in $\mathcal{E}(X)$ and $\lambda \in \mathbb{R}$. Put $f(\bullet) = \sum_{n} x_n \mathbf{1}_{A_n}(\bullet)$
 $g(\bullet) = \sum_{m} y_m \mathbf{1}_{B_m}(\bullet)$, then $(f+g)(\bullet) = \sum_{n,m} (x_n + y_m) \mathbf{1}_{A_n \cap B_m}(\bullet)$ and $(\lambda f)(\bullet) = \sum_{n} \lambda x_n \mathbf{1}_{A_n}(\bullet)$.

1.4. Remark: Let T be any mapping from X into Y. If $f(\bullet) = \sum_{n} x_n \mathbf{1}_{A_n}(\bullet)$ then $(T \circ f)(\bullet) = \sum_{n} T(x_n) \mathbf{1}_{A_n}(\bullet)$.

1.5. Definition: A function $f : S \longrightarrow X$ is measurable if there is a sequence (f_n) of elementary measurable functions such that:

$$\lim_{n} p_{\alpha} \left(f_n - f \right) = 0$$

for each p_{α} .

This means that for each $s \in S$, each $\epsilon > 0$, and each p_{α} , there is $N = N_{s,\epsilon,p_{\alpha}} \ge 1$ such that $\forall n \ge N$, $p_{\alpha} (f_n(s) - f(s)) < \epsilon$.

1.6. Proposition: The set M(X) of all measurable functions $f: S \longrightarrow X$ is a vector space on \mathbb{R} .

Proof: Let f, g be in M(X) and let f_n, g_n be sequences of elementary functions such that $p_\alpha(f_n - f) \longrightarrow 0$ and $p_\alpha(g_n - g) \longrightarrow 0$, for each p_α . Then we have $p_\alpha((f_n + g_n) - (f + g)) \le p_\alpha(f_n - f) + p_\alpha(g_n - g)$, so the sequence of elementary functions $f_n + g_n$ gives the measurability of f + g. Likewise for $\lambda \in \mathbb{R}$, we have $p_\alpha(\lambda f_n - \lambda f) = |\lambda| p_\alpha(f_n - f) \longrightarrow 0$, which gives

Likewise for $\lambda \in \mathbb{R}$, we have $p_{\alpha}(\lambda f_n - \lambda f) = |\lambda| p_{\alpha}(f_n - f) \longrightarrow 0$, which gives $\lambda f \in M(X)$.

2. Bochner integration

2.1. Definition: Let $f(\bullet) = \sum_{j=1}^{n} x_j \mathbf{1}_{A_j}(\bullet)$ be an elementary measurable function. We define the integral of f by the vector $\int_S f d\mu \in X$:

$$\int_{S} f d\mu = \sum_{j=1}^{n} \mu(A_j) . x_j$$

Since μ is finite this integral is well defined.

2.2. Proposition: (a) The integral is linear from $\mathcal{E}(X)$ into X. (b). For every $f \in \mathcal{E}(X)$ and every p_{α} we have $p_{\alpha}\left(\int_{S} f d\mu\right) \leq \int_{S} p_{\alpha}(f) d\mu$ where $p_{\alpha}(f)$ is the positive elementary function given by

 $p_{\alpha}(f)(\bullet) = \sum_{i=1}^{n} p_{\alpha}(x_{j}) \ \mathbf{1}_{A_{j}}(\bullet)$ whose integral is $\int_{S} p_{\alpha}(f) \ d\mu = \sum_{i=1}^{n} p_{\alpha}(x_{j}) \ \mu(A_{j})$. **Proof:** (a) Put $f(\bullet) = \sum_{j=1}^{n} x_j \mathbf{1}_{A_j}(\bullet), g(\bullet) = \sum_{k=1}^{m} y_k \mathbf{1}_{B_k}(\bullet)$ then $(f+g)(\bullet) = \sum_{j,k} (x_j + y_k) \mathbf{1}_{A_j \cap B_k}(\bullet)$ and $(\lambda f)(\bullet) = \sum_j \lambda x_j \mathbf{1}_{A_j}(\bullet)$. This yields $\int_{S} (f+g) d\mu \sum_{1 \le k \le m} \sum_{1 \le j \le n} (x_j + y_k) \mu (A_j \cap B_k) = \sum_{j=1}^{n} \mu (A_j) . x_j +$

 $\sum_{k=1}^{m} \mu(B_k) . y_k = \int_S f \, d\mu + \int_S g \, d\mu$ Likewise we can prove that $\int_{S} \lambda f \, d\mu = \lambda \int_{S} f \, d\mu$ for $\lambda \in \mathbb{R}$. (b) We have $p_{\alpha} \left(\int_{S} f \, d\mu \right) = p_{\alpha} \left(\sum_{j=1}^{n} \mu \left(A_{j} \right) . x_{j} \right) \leq$

(b) We have
$$p_{\alpha}\left(\int_{S} f(a\mu) - p_{\alpha}\left(\sum_{j=1}^{n} \mu(A_{j})\right)\right)$$

$$\sum_{j=1}^{n} \mu(A_{j}) \cdot p_{\alpha}(x_{j}) = \int_{S} p_{\alpha}(f) d\mu. \blacksquare.$$

2.3. Proposition: Let $T: X \longrightarrow Y$ be a linear operator from X into a locally convex space Y.

Let $f \in \mathcal{E}(X)$, then $T \circ f \in \mathcal{E}(Y)$ and we have:

$$T\left(\int_{S} f d\mu\right) = \int_{S} T \circ f d\mu.$$

Proof: Let $f(\bullet) = \sum_{i=1}^{n} x_j \mathbf{1}_{A_j}(\bullet)$, with $\int_S f d\mu = \sum_{i=1}^{n} \mu(A_j) \cdot x_j$, then $(T \circ f)(\bullet) =$ $\sum_{i=1}^{n} T(x_j) \ \mathbf{1}_{A_j}(\bullet) \text{ and }$ $\int_{S} T \circ f \, d\mu = \sum_{j=1}^{n} \mu(A_j) \cdot T(x_j) = T\left(\sum_{j=1}^{n} \mu(A_j) \cdot x_j\right), \text{ by the linearity of } T,$ so we deduce that $T\left(\int_{S} f d\mu\right) = \int_{S} T \circ \int d\mu.\blacksquare$.

2.4. Definition: A measurable function $f: S \longrightarrow X$ is Bochner integrable if there is a sequence f_n of elementary measurable functions such that for each p_{α} , Lim $p_{\alpha}(f_n - f) = 0$ uniformly on S. Since the measure μ is assumed finite, this implies that $\lim_{n} \int_{S} p_{\alpha} (f_n - f) d\mu = 0$, for each p_{α} .

To define the Bochner integral of f let us observe that if f_n is such a sequence of elementary functions we have:

 $\int_{S} p_{\alpha} \left(f_n - f_m \right) d\mu \leq \int_{S} p_{\alpha} \left(f_n - f \right) d\mu + \int_{S} p_{\alpha} \left(f_m - f \right) d\mu.$ So $\lim_{n,m} \int_{S} p_{\alpha} \left(f_n - f_m \right) d\mu = 0.$ But $p_{\alpha} \int_{S} \left(f_n - f_m \right) d\mu \leq \int_{S} p_{\alpha} \left(f_n - f_m \right) d\mu$

by **Proposition 2.2**(b), this implies that the sequence of integrals $\int_S f_n d\mu$ is Cauchy. As the space X is assumed sequentially complete, $\int_S f_n d\mu$ converges. This allows to define the Bochner integral of f by the vector:

$$\int_{S} f \, d\mu = \lim_{n} \int_{S} f_n \, d\mu.$$

If g_n is another sequence of elementary functions such that

 $p_{\alpha}(g_n - f) \longrightarrow 0$ uniformly on S, it is easy to check, from the continuity of p_{α} that $\lim_{n} \int_{S} f_{n} d\mu = \lim_{n} \int_{S} g_{n} d\mu$, so the Bochner integral $\int_{S} f d\mu$ is well defined.

In the sequel we will denote by $L_1(\mu, X)$ the set of all Bochner integrable functions $f: S \longrightarrow X$, where as usual two integrable functions are considered as identical if they are equal μ -almost everywhere.

2.5. Proposition: $L_1(\mu, X)$ is a vector space on \mathbb{R} and we have:

(a). The integral as defined is linear from $L_1(\mu, X)$ into X.

(b). For every $f \in L_1(\mu, X)$ and every p_{α} we have

$$p_{\alpha}\left(\int_{S} f d\mu\right) \leq \int_{S} p_{\alpha}(f) d\mu$$

Proof:

(a) Let f, g be in $L_1(\mu, X)$ and let f_n, g_n be in $\mathcal{E}(X)$ such that $p_{\alpha}(f_n - f) \longrightarrow 0$ and $p_{\alpha}(g_n - f) \longrightarrow 0$, uniformly on S. Since we have $p_{\alpha}\left((f+g)-(f_{n}+g_{n})\right) \leq p_{\alpha}\left(f_{n}-f\right)+p_{\alpha}\left(g_{n}-f\right) \longrightarrow 0, \text{ it follows that } p_{\alpha}\left((f+g)-(f_{n}+g_{n})\right) \longrightarrow 0$ 0 uniformly on S. This yields $\int_{S} (f+g) d\mu = \lim_{n} \int_{S} (f_{n} + g_{n}) d\mu = \lim_{n} \int_{S} f_{n} d\mu + \lim_{n} \int_{S} g_{n} d\mu = \int_{S} f d\mu + \int_{S} g d\mu.$ Likewise we have $\int_{S} \lambda . f d\mu = \lambda . \int_{S} f d\mu.$

(b) Let f_n be in $\mathcal{E}(X)$ defining $\int_S f d\mu$. By proposition **2.2**(b) $p_{\alpha}\left(\int_{S} f_{n} d\mu\right) \leq \int_{S} p_{\alpha}(f_{n}) d\mu$ for all n. This implies $p_{\alpha}\left(\int_{S} f d\mu\right) =$ $p_{\alpha}\left(\lim_{n}\int_{S}f_{n}\,d\mu\right) = \left(\lim_{n}p_{\alpha}\left(\int_{S}f_{n}\,d\mu\right)\right) \leq \liminf_{n}\int_{S}p_{\alpha}\left(f_{n}\right)\,d\mu \leq \liminf_{n}\left(\int_{S}p_{\alpha}\left(f_{n}-f\right)d\mu + \int_{S}p_{\alpha}\left(f\right)\,d\mu\right) = \int_{S}p_{\alpha}\left(f\right)\,d\mu.\blacksquare.$

2.6. Proposition: Let $T: X \longrightarrow Y$ be a linear continuous operator from X into a locally convex space Y.

Let $f \in L_1(\mu, X)$, then $T \circ f \in L_1(\mu, Y)$ and we have:

$$T\left(\int_{S} f d\mu\right) = \int_{S} T \circ f d\mu.$$

Proof: Let f_n be in $\mathcal{E}(X)$ defining $\int_S f d\mu$, i.e. $\lim_n p_\alpha(f_n - f) \longrightarrow 0$ uniformly on S. By the continuity of T, if q is a seminorm on Y there is a seminorm p_α on X such that $q(Tx) \leq p_\alpha(x)$, for every $x \in X$. It follows that $q(Tf_n - Tf) = qT(f_n - f) d\mu \leq p_\alpha(f_n - f) \to 0$ uniformly on S. We deduce that $q(Tf_n - Tf) \longrightarrow 0$ uniformly on S for each q. So the sequence Tf_n , which is in $\mathcal{E}(Y)$ by Proposition 2.3, is defining the integral of Tf by $\int_S Tf d\mu = \lim_n \int_S Tf_n d\mu$. By **Proposition 2.3** once more we have $\int_S Tf_n d\mu = T \int_S f_n d\mu$ for all n. Since $\lim_n f_n f_n d\mu = \int_S f_n d\mu$ for all n.

 $\int_{S} Tf_{n}d\mu = T \int_{S} f_{n}d\mu \text{ for all } n.$ Since $\lim_{n} \int_{S} f_{n}d\mu = \int_{S} f d\mu$, we get $\lim_{n} \int_{S} Tf_{n}d\mu = T\left(\int_{S} f d\mu\right)$, by the continuity of T. this gives $T\left(\int_{S} f d\mu\right) = \int_{S} T \circ f d\mu.$

3. Bounded operators on $\mathbf{L}_1(\mu, X)$

First we start by defining on $L_1(\mu, X)$ a family $\{\widetilde{p}_{\alpha}\}$ of continuous seminorms which will make $L_1(\mu, X)$ a locally convex space.

Let us observe that for each p_{α} , we have $p_{\alpha}(f)$ bounded on S if $f \in L_1(\mu, X)$. To see this let f_n be in $\mathcal{E}(X)$ defining $\int_S f d\mu$, i.e. $Limp_{\alpha}(f_n - f) = 0$ uniformly on S, (**Definition 2.4**), so if $\epsilon > 0$, there is $N \ge 1$ such that $|p_{\alpha}(f) - p_{\alpha}(f_N)| \le p_{\alpha}(f_N - f) < \epsilon$ uniformly on S. We deduce that $p_{\alpha}(f) < \epsilon + p_{\alpha}(f_N)$ on S and $p_{\alpha}(f_N)$ is bounded on S since $f_N \in \mathcal{E}(X)$.

Now define $\widetilde{p_{\alpha}}$ on $L_1(\mu, X)$ by:

(3.1)
$$f \in L_1(\mu, X) \qquad \widetilde{p_{\alpha}}(f) = \sup_{t \in S} p_{\alpha}(f(t))$$

Then $\widetilde{p_{\alpha}}$ is a seminorm on $L_1(\mu, X)$ and the family $\{\widetilde{p_{\alpha}}\}$ is separating. To see this, let f be in $L_1(\mu, X)$ with $f \neq 0$, that is $f(t) \neq 0$ for some $t \in S$. Since the family $\{p_{\alpha}\}$ is assumed separating on X, there is a p_{α} such that $p_{\alpha}(f(t)) > 0$, so that $\widetilde{p_{\alpha}}(f) > 0$.

Since the family of seminorms $\{\widetilde{p_{\alpha}}\}\$ is separating, it makes $L_1(\mu, X)$ a locally convex space such that each $\widetilde{p_{\alpha}}$ is continuous ([13], section 1.37).

In what follows we define a special class of bounded operators from $L_1(\mu, X)$ into X which are, in many respects, similar to some well known operators from $L_1(\mu)$ into \mathbb{R} . First let us observe:

3.2. Lemma: Let $g \in L_{\infty}(\mu)$, then for every $f \in L_1(\mu, X)$ $g.f \in L_1(\mu, X)$.

Proof: Since $g \in L_{\infty}(\mu)$, there is a sequence (g_n) of simple measurable functions $g_n : S \longrightarrow \mathbb{R}$ converging uniformly to g on S. Since $f \in L_1(\mu, X)$, there is a sequence f_n of elementary measurable functions such that for each p_{α} , $\lim_{n} p_{\alpha}(f_n - f) = 0$ uniformly on S. But $g_n \cdot f_n$ is elementary measurable, and we have:

$$p_{\alpha} (g_{n}.f_{n} - g.f) = p_{\alpha} [(g_{n}.f_{n} - g_{n}.f) + (g_{n}.f - g.f)]$$

$$\leq |g_{n} - g| \cdot p_{\alpha} (f) + |g_{n}| \cdot p_{\alpha} (f_{n} - f)$$

$$\leq |g_{n} - g| \cdot \widetilde{p_{\alpha}} (f) + |g_{n}| \cdot p_{\alpha} (f_{n} - f) \longrightarrow 0, \quad n \longrightarrow \infty, \quad \text{uniformly on } S.$$

Consequently we have $f.g \in L_1(\mu, X)$.

Now we define a class $\{T_g, g \in L_{\infty}(\mu)\}$ of operators T_g , by the following recipe:

3.3. Definition: For each fixed $g \in L_{\infty}(\mu)$, T_g sends $L_1(\mu, X)$ into X by the formula:

$$f \in L_1(\mu, X), \qquad T_g(f) = \int_S fg \, d\mu$$

3.4. Theorem:. Let $L_1(\mu, X)$ be endowed with the seminorms $\{\widetilde{p_{\alpha}}\}$ given by (3.1), and let X be equipped with the seminorms $\{p_{\alpha}\}$, then the operators T_g are linear and bounded.

Proof: The linearity is clear from **2.5** (a). To see boundedness, let p_{α} be a seminorm on X, by **2.5** (b) we have:

 $p_{\alpha}(T_g(f)) = p_{\alpha}\left(\int_S fg d\mu\right) \leq \int_S p_{\alpha}(fg) d\mu$. Since $p_{\alpha}(fg) = |g| p_{\alpha}(f)$, we deduce that $p_{\alpha}(T_g(f)) \leq \int_S |g| p_{\alpha}(f) d\mu \leq ||g||_{\infty} \cdot \widetilde{p_{\alpha}}(f) \cdot \mu(X)$, which proves that T_g is bounded.

In what follows, we quote some properties of the operators T_g , whose proof comes from facts about Bochner integral (2.5-2.6). We denote by E' the strong dual of the space E:

3.5. Proposition: (a) If $\theta \in X'$, then $\theta \circ T_g \in L'_1(\mu, X)$. (b) If $\theta \in X'$, then $\theta \circ T_g(f) = \int_S g \, \theta f \, d\mu$, for every $f \in L_1(\mu, X)$. (c) If θ, σ are in X', and φ, ψ in $L_1(\mu, X)$, then:

$$\theta \circ \varphi = \sigma \circ \psi \Longrightarrow \theta \circ T_{g}\left(\varphi\right) = \sigma \circ T_{g}\left(\psi\right)$$

These properties, especially property (c), lead to the following: **Open problem:** Let $T : L_1(\mu, X) \longrightarrow X$ be a linear bounded operator from $L_1(\mu, X)$ into X satisfying condition **3.5**(c), that is: If θ, σ are in X', and φ, ψ in $L_1(\mu, X)$, then:

$$\theta \circ \varphi = \sigma \circ \psi \Longrightarrow \theta \circ T\left(\varphi\right) = \sigma \circ T\left(\psi\right)$$

Does there exist a $g \in L_{\infty}(\mu)$ such that:

$$T(f) = \int_{S} fg d\mu$$
, for all $f \in L_1(\mu, X)$.

References

- [1] R. Beckmann and A. Deitmar, arXiv 403.320, [math F.A], 2014.
- [2] J.Diestel, Uhl, J.J Vector Measures, AMS Math.Surveys 15 1977.
- [3] N.Dinculeanu : Vector Measures, New York USA Pergamon Press 1967
- [4] N.Dunford, J.T.Schwartz : *Linear operators*, Part 1: General Theory

Wiley classics library.1988

[5] **R. K. Goodrich:** A Riesz representation theorem, Proc. Amer. Math. Soc. 1970 24 .629-636

- [6] E.Hille, R.S.Phillips :Functional Analysis and Semigroups, AMS Colloquium.1957
- [7] L.Meziani:Integral Representation for a class of Vector Valued Operators, Proc.Amer.Math.Soc.2002, 130, 2067-2077.

[8] L.Meziani : A theorem of Riesz type with Pettis integrals in topological vector spaces, J. Math. Anal. Appl.,2008. 340/2 817-824,

[9] L.Meziani, S. M Alsulami: Weak Integrals and Bounded Operators in TVS Advances in Pure Mathematics, 2013. 3 475-478,

[10] L.Meziani, Maha Noor Waly and Saleh Almezel, *Characterizing Linear Bounded Operators via Integral*, International Mathematical Forum, 2009 4, 233-240,

[11] Laurent Vanderputten : Representation of Operators Defined on the Space of Bochner Integrable Functions,

Extracta Mathematicae 2001.16, 383-391

[12] W.Rudin: Real and Complex Analysis, McGraw-Hill. 1970

[13] W.Rudin: Functional Analysis, McGraw-Hill. 1991

[14].V.I. Rybakov: A Generalization of The Bochner Integral to Locally Convex Spaces, Tula State Pedagogical Institute. Translated from Matematicheskie Zametki, Vol. 18 No.4 1975.