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Weakened well-posedness of a hyperbolic characteristic
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Abstract. We deal with a hyperbolic characteristic boundary value problem for
a Friedrichs symmetrizable system of first order with constant coefficients satisfying a
weakened version of the so-called Uniform Kreiss–Lopatinskii (UKL) Condition on the
boundary. The boundary value problem is weakly L2 well-posed in the sense that it admits
a unique solution satisfying an energy estimate where the failure of the UKL Condition
yields a loss of regularity with respect to the data. The proof consists in splitting the
original problem into two boundary value problems: a boundary value problem with a
strictly dissipative boundary condition and another boundary value problem with a null
source term in the interior equations. The L2 solvability has been obtained thanks to
a Fourier–Laplace analysis involving the weakened condition on the boundary.

We extend the analysis to an initial boundary value problem on a finite time interval
[0, T ] by incorporating an arbitrary initial data. Assuming that the UKL Condition holds,
we state a L2 well-posedness result in the characteristic case.

1. Introduction. In this paper, we consider a boundary value problem
(BVP) for a first order system of hyperbolic partial differential equations
with constant coefficients. The aim is to study the L2 well-posedness of the
problem where the differential operator is assumed to be Friedrichs sym-
metrizable (Assumption 1.1) and the boundary to be characteristic (As-
sumption 1.2) and satisfies a weakened version of the so-called Uniform
Kreiss–Lopatinskii Condition (Definition 1.1).

We consider the half-space

Ω := {x = (y, xd) ∈ Rd : xd > 0}, where y := (x1, . . . , xd−1) ∈ Rd−1,

whose boundary ∂Ω = {x ∈ Rd : xd = 0} is identified with Rd−1.
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We set Q = R×Ω and Σ = R× ∂Ω. We are interested in the following
boundary value problem:

(1.1)


Lu =

∂

∂t
u+

d∑
j=1

Aj
∂u

∂xj
= F in Q,

Bu = G on Σ.
Here A1, . . . , Ad are real N ×N matrices with constant coefficients defined
on Q. The unknown u = u(t, x) and the data F = F (t, x) are vector valued
functions defined on Q with N components.

B is a given real p × N constant matrix and G = G(t, x) is a vector
valued function defined on Σ with p components.

We study the problem (1.1) under the following assumptions:

Assumption 1.1. The operator L is Friedrichs symmetrizable, that is,
there exists a symmetric positive definite matrix S such that the matrices
SAj for j = 1, . . . , d are also symmetric.

Assumption 1.2. The boundary ∂Ω is characteristic for the BVP (1.1),
which means that the matrix Ad is singular. We assume that if m stands for
the dimension of its kernel, the matrix Ad admits block form

(1.2)

(
0m 0

0 ad

)
,

where the (N −m)× (N −m) block ad is invertible.

Accordingly, we decompose the unknown u as (uI , uII)T , where uII , val-
ued in CN−m, stands for the non-characteristic component of u.

Assumption 1.3. For any ξ = (ξ1, . . . , ξd−1, ξd) =: (η, ξd) ∈ Rd−1 × R
with ξ 6= 0, the symbol matrix

∑d
j=1 ξjAj := A(η) + ξdAd admits λ ≡ 0 as

an eigenvalue of multiplicity m, and the matrix A(η) =
∑d−1

j=1 ξjAj admits
block form

(1.3) A(η) =

(
0m a1,2(η)

a2,1(η) a2(η)

)
, η ∈ Rd−1.

Assumption 1.4. The matrix B is a real p×N matrix of maximal rank p
equal to the number of positive eigenvalues of Ad and satisfies kerAd ⊂ kerB,
which means that after a linear transformation B has block form

(1.4) B =
(

0p×m B2

)
with B2 a p× (N −m) matrix.

The above boundary value problem is assumed to satisfy a fairly general
boundary condition, namely a weakened version of the Kreiss–Lopatinskii
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Condition (see e.g. Eller [4], Métivier [9], Benzoni-Gavage–Serre [1]). In order
to define this condition, we introduce the frequency variables

ζ = (τ, η), τ = γ+ iσ ∈ C+, <e(τ) = γ > 0, =m(τ) = σ ∈ R, η ∈ Rd−1,
and set

Ξ = {(τ, η) ∈ C× Rd−1 \ (0, 0) : |τ |2 + |η|2 = 1, γ > 0}.
We also introduce E−(τ, η), the stable invariant space associated to the sin-
gular system

(1.5) (τIN + iA(η))φ+Ad
∂φ

∂xd
= 0,

obtained after performing the Fourier–Laplace transform with respect to the
tangential variables (t, y) for the problem (1.1) with F ≡ 0.

The invariant space E−(τ, η) is obtained after decoupling the singular
system into two systems with respect to the projector onto kerAd along the
range of Ad (see further details in [1]).

Definition 1.1. We say that the BVP (1.1) satisfies the s-weakened
Kreiss–Lopatinskii Condition (briefly s-WKL Condition) for some s ≥ 0 if

(1.6) ∃C > 0, ∀(τ, η) ∈ Ξ
(
v ∈ E−(τ, η))⇒ |Adv| ≤ Cγ−s|Bv|

)
.

Assumption 1.5. The BVP (1.1) satisfies the s-WKL Condition for some
s ≥ 0.

Let us point out that for s = 0, the condition (1.6) is the standard
formulation of the Uniform Kreiss–Lopatinskii (UKL) Condition.

Throughout this paper, the functions used may take either scalar, vector
or matrix values. We warn the reader that we adopt, here and henceforth,
with a slight abuse, the same notations for each type of values.

For a given r ∈ R, we make use of the usual Sobolev space Hr(Σ) of
tempered distributions equipped with the family of norms

(1.7) ‖u‖2r,γ :=
1

(2π)d

�

Rd

(γ2 + σ2 + |η|2)r|û(σ, η)|2 dη dσ,

where û is the Fourier transform of u and γ > 0 is a given parameter.
We also consider the weighted Sobolev space Hr

γ(Σ) = eγtHr(Σ), the
space of tempered distributions u such that e−γtu ∈ Hr(Σ).

We also use the space L2(R+, H
r(Σ)) equipped with the obvious family

of norms

(1.8) ~u~2
r,γ :=

�

R+

‖u(·, xd)‖2r,γ dxd.

If r = 0, we shall denote H0
γ(Σ) := L2

γ(Σ) and L2
(
R+, H

0
γ(Σ)

)
:= L2

γ(Q).
The first main result of this paper is the following
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Theorem 1.2. Assume that the above assumptions are fulfilled for some
s ≥ 0. There exists a constant C > 0 such that for all γ > 0 and all
F ∈ L2

(
R+, H

s
γ(Σ)

)
, G ∈ Hs

γ(Σ), the problem (1.1) admits a unique solution
u ∈ L2

γ(Q) such that uII|xd=0 ∈ L
2
γ(Σ). Furthermore, u satisfies the estimate

(1.9) γ‖e−γtu‖2L2(Q) + ‖e−γtuII|xd=0‖
2
L2(Σ)

≤ C
(

1

γ2s+1
~e−γtF~2

s,γ +
1

γ2s
‖e−γtG‖2s,γ

)
.

In the non-characteristic boundary case, that is, when detAd 6= 0, assum-
ing that the operator is strictly hyperbolic with C∞ coefficients H. O. Kreiss
[6] (see also Chazarain–Piriou [2]) was able to provide, under the UKL Con-
dition, an a priori energy estimate by constructing an algebraic tool, known
since as the Kreiss symmetrizer, leading to the L2 solvability of the BVP.
Majda and Osher [8] and Métivier [10] have extended this result to a class
of operators larger than the strictly hyperbolic ones as soon as the symbol
of the operator satisfies the so-called block structure condition.

Benzoni-Gavage and Serre [1] have constructed a Kreiss symmetrizer ma-
trix under the UKL Condition for a symmetric hyperbolic system with con-
stant coefficients and characteristic boundary, assuming that the symbol
matrix A(η) (1.3) has block form

A(η) =

(
0m aT2,1(η)

a2,1(η) a2(η)

)
, η ∈ Rd−1,

with a2(η) ≡ 0.
These results have the important consequence that under the UKL Con-

dition, one can provide an a priori energy estimate without loss of regularity
of the solution with respect to the data.

However, in many examples of physical interest like linear elasticity or
Euler equations from fluid dynamics, the UKL Condition breaks down. Re-
cently, some weakened forms of the UKL Condition have been treated.
Coulombel and Secchi [3] studied the linear stability of compressible vor-
tex sheet. They were able to provide an a priori energy estimate similar
to (1.9) in the case where s = 1. Eller [4] has proved under the s-WKL
Condition a version of Theorem 1.2 in the non-characteristic case where the
operator is constantly hyperbolic, and in the symmetric case.

In the present work, following a somewhat different approach, we give
another proof by using ideas taken from [8], [3], and [5], and despite the
general boundary conditions, we do not invoke specific algebraic tools like
Kreiss symmetrizers [1, 2, 6] or other techniques to study the well-posednesss.

The strategy of the proof consists in splitting the original problem into
two boundary value problems. In the first one, thanks to the assumption of
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Friedrichs symmetrizability, the interior equations are coupled with a chosen
strictly dissipative boundary condition with respect to the non-characteristic
component of the solution. This type of problem is part of the framework
of strictly dissipative hyperbolic BVPs for which we have well known results
(see e.g. Lax–Phillips [7], Métivier [9], Benzoni-Gavage–Serre [1]).

In the second BVP, the interior equations have a null source term, but the
boundary condition requires taking into account the s-WKL Condition. The
constant coefficients case allows us to study the well-posedness by means of
Fourier–Laplace analysis. The non-invertibility of the boundary matrix Ad
yields a singular system of ODEs. To overcome this difficulty, thanks to the
block structure of the symbol matrix A(ξ), we reduce the singular system to
a non-characteristic system of ODEs with respect to the non-characteristic
component after projecting the system onto kerAd along the range of Ad.

We build an explicit solution of the non-characteristic part of the reduced
system involving crucially the s-WKL Condition by means of the spectral
projector onto the stable invariant subspace of the reduced resolvant ma-
trix. We show finally that the original boundary value problem is weakly
well-posed in the sense that it admits a unique L2 solution, but only the
trace of the non-characteristic component of the solution on the boundary is
square integrable and an energy estimate is provided where the failure of the
Uniform Kreiss–Lopatinskii Condition yields a loss of regularity with respect
to the data.

Motivated by the conclusions of Theorem 1.2, it would be judicious to
extend the analysis to a mixed problem on a finite time interval [0, T ] by
incorporating an arbitrary initial data to the problem (1.1). We will do this
in the particular case where Assumption 1.5 is satisfied for s = 0, i.e. in the
case where the UKL Condition holds for the system (L,B).

For this purpose, for a given T > 0, we set

QT := [0, T ]×Ω with the boundary ΣT := [0, T ]× ∂Ω.
Consider the initial boundary value problem (IBVP)

(1.10)


Lu =

∂

∂t
u+

d∑
j=1

Aj
∂u

∂xj
= F in QT ,

Bu = G on ΣT ,
u|t=0 = u0 on Ω.

Consider the data F ∈ L2(QT ), G ∈ L2(ΣT ) and u0 ∈ L2(Ω). Under the
assumptions of Theorem 1.2 with s = 0, our second well-posedness result is
the following.

Theorem 1.3. Assume that the assumptions of Theorem 1.2 are fulfilled
for s = 0. Then, for all F ∈ L2(QT ), G ∈ L2(ΣT ), u0 ∈ L2(Ω), the problem
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(1.10) admits a unique solution u ∈ L2(QT ) such that uII|xd=0 ∈ L2(ΣT ).
In addition, u ∈ C([0, T ], L2(Ω)) and the following estimate holds for all
t ∈ [0, T ] and γ > 0:

(1.11) γ‖e−γtu‖2L2(Qt)
+ ‖e−γtuII|xd=0‖

2
L2(Σt)

+ e−2γt‖u(t)‖2L2(Ω)

≤ C
(

1

γ
‖e−γtF‖2L2(Qt)

+ ‖e−γtG‖2L2(Σt)
+ ‖u0‖2L2(Ω)

)
,

The main novelty of this result is that it provides, in the framework of
an operator with constant coefficients, semi-strong L2 well-posedness for the
IBVP (1.10), according to Lax–Phillips’s terminology in [7], and in a certain
way extends the statement of [5, Theorem 1.5] to the characteristic case.

The proof of Theorem 1.3 can be achieved by adopting the same strategy
as in the proof of Theorem 1.2. It consists in splitting the original IBVP
(1.10) into two initial boundary value problems. In the first one, we introduce
an auxiliary problem with a strictly dissipative boundary condition, already
considered in 2.1 by incorporating the nonzero initial data u0, but with null
data for the interior equations.

In the second IBVP, the initial datum has a null source term. The causal-
ity principle satisfied by the solution allows us to make use of the results of
Theorem 1.2, leading to a well-posedness result for the IBVP (1.10).

The paper is organized as follows. In Section 2, we prove Theorem 1.2. An
auxiliary strictly dissipative boundary value problem is studied in Subsec-
tion 2.1. Subsection 2.2 is devoted to developing a tangential Fourier–Laplace
analysis for a boundary value problem with null source term. The results ob-
tained in those two subsections allow us to conclude the proof of Theorem 1.2
by means of classical tools of harmonic analysis like the Paley–Wiener theo-
rem and Plancherel’s theorem. The proof of Theorem 1.3 is given in Section 3.

2. Proof of Theorem 1.2. For γ > 0, we introduce the new unknown
ũ = e−γtu and the new data F̃ := e−γtF, G̃ := e−γtG. Then the boundary
value problem (1.1) becomes equivalent to

(2.1)

{
Lγ ũ := Lũ+ γũ = F̃ in Q,

Bũ = G̃ on Σ.

2.1. An auxiliary strictly dissipative boundary value problem.
Thanks to the assumption of Friedrichs symmetrizability, we define an auxil-
iary boundary value problem where the interior equations of (2.1) are coupled
with a strictly dissipative boundary condition M with respect to the non-
characteristic component as follows.

In the context of a characteristic boundary case for a Friedrichs sym-
metrizable operator, we claim that a stricly dissipative boundary condition
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with respect to the non-characteristic component can always be chosen as
noticed in [5, part 3, Remark 1.2].

Indeed, by Assumptions 1.1 and 1.2, let S be a positive definite matrix
such that SAd is also symmetric, where Ad has the representation (1.2). It
follows readily that there exists an (N − m) × (N − m) positive definite
matrix Sd such that

(2.2) SAd =

(
0m 0

0 Sdad

)
,

where the matrix Sdad is also symmetric. Therefore, knowing that the sub-
matrix ad is invertible, in virtue of [5, part 3, Remark 1.2], there exists a
matrix Md of size p× (N −m) such that the matrix Sdad is negative definite
on kerMd. Setting

(2.3) M =
(

0p×m Md

)
,

the matrix SAd defined on kerM is obviously non-positive and vanishes only
on kerAd = {v ∈ CN : vII = 0}. This property is characterized by the fact
that there exist positive constants c and C such that for all w ∈ CN ,

(2.4) −〈SAdw,w〉CN ≥ c|wII |2 − C|Mw|2

(see [9, Chapter 2] for a proof in the non-characteristic case).
Consider the following BVP:

(2.5)


Lγw̃ =

(
∂

∂t
+ γ

)
w̃ +

d−1∑
j=1

Aj
∂w̃

∂xj
+Ad

∂w̃

∂xd
= F̃ in Q,

Mw̃ = 0 on Σ.

This problem enters into the framework of hyperbolic strictly dissipative
boundary value problems which has been treated by several authors (see
e.g. Lax–Phillips [7], Métivier [9], Benzoni-Gavage–Serre [1]) and for which
a well-posedness result has been established. Therefore, adapting for in-
stance the proof of Métivier [9] in the characteristic boundary context for a
Friedrichs symmetrizable operator (see [9, Proposition 2.2.13]), one gets

Theorem 2.1. Assume that the assumptions of Theorem 1.2 are fulfilled
for some s ≥ 0. Then there exists a constant C > 0 such that, for all γ > 0,
and for a given F ∈ L2(R+, H

s(Σ)), there exists a unique solution w̃ ∈
L2(R+, H

s(Σ)) of the problem (2.5) such that the trace w̃II|xd=0 is in Hs(Σ)

and satisfies the following energy estimate:

(2.6) γ~w̃~2
s,γ + ‖w̃II|xd=0‖

2
s,γ ≤

C

γ
~F̃~2

s,γ .
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2.2. A Fourier–Laplace analysis for a boundary value problem.
Denote by ũ a solution of the BVP (2.1) and by w̃ the solution of the BVP
(2.5) and define

(2.7) ṽ = ũ− w̃.
We expect that ṽ must be a solution of the BVP

(2.8)


Lγ ṽ = Ad

∂ṽ

∂xd
+

(
∂

∂t
+ γ

)
ṽ +

d−1∑
j=1

Aj
∂ṽ

∂xj
= 0 in Q,

B2ṽ
II = G̃−B2w̃

II
|xd=0 on Σ.

Performing the Fourier transform F with respect to the tangential variables
(t, y), the system (2.8) is rewritten as a singular ODE with respect to the
normal variable xd parametrized by ζ = (τ, η) = (γ + iσ, η) ∈ C+ × Rd−1 of
the form

(2.9)

Ad
∂φ

∂xd
(ζ, xd)−A(ζ)φ(ζ, xd) = 0, ζ ∈ C+ × Rd−1, xd > 0,

B2φ
II(ζ, 0) = H(ζ), ζ ∈ C+ × Rd−1, xd = 0.

,

where the unknown φ stands for F(ṽ), the Fourier transform with respect to
the tangential variables (t, y) of ṽ, the expected L2 solution of the problem
(2.8), and

A(ζ) := −(τIN + iA(η)), A(η) :=
d−1∑
j=1

ξjAj ,(2.10)

H(ζ) := F(G̃)(σ, η)−B2F(w̃II)(σ, η, 0).(2.11)

The strategy of the Fourier–Laplace analysis is to build a square in-
tegrable solution of the transformed system (2.9) that will satisfy energy
estimates. This is necessary to get the well posedness of the original prob-
lem (2.8) through the inverse Laplace transform and the theorem of Paley-
Wiener. The non-invertibility of the boundary matrix Ad yields a singular
system of ODEs. To overcome this difficulty, thanks to the block struc-
ture of the symbol matrix A(ξ), we reduce the singular system to a non-
characteristic system of ODEs with respect to the non-characteristic com-
ponent after projecting the system onto kerAd along the range of Ad.

Here and in what follows, with a slight abuse of notation, φII(ζ, 0) de-
notes the trace of the solution φII(ζ, ·) on Σ. Likewise, we denote by w̃II(·, 0)
the trace of w̃II which is well defined in L2(Σ).

According to Assumption 1.2, the block structure (1.2) of the boundary
matrix Ad permits one to consider the invertible matrix

(2.12) A−d :=

(
Im 0

0 a−1d

)
.
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Multiplying on the left by A−d the interior equation of the problem (2.9) we
get

(2.13) IN−m
∂φ

∂xd
(ζ, xd) = A−d A(ζ)φ(τ, η, xd),

where IN−m := diag(0m, IN−m). Taking into account the block structure of
the symbol matrix A(ξ) := A(η) + ξdAd (1.3) according to Assumption 1.3,
the matrix A−d A(ζ) takes the form

(2.14) A−d A(ζ) = −

(
τIm ia1,2(η)

ia−1d a2,1(η) ia−1d a2(η) + τa−1d

)
.

Applying the decomposition CN = Cm ⊕ CN−m, the system (2.9) with the
unknown φ = (φI , φII)T can actually be rewritten in decoupled form
(2.15)

τφI(ζ, xd) + ia1,2(η)φII(ζ, xd) = 0,

∂φII

∂xd
(ζ, xd) = −ia−1d

(
a2,1(η)φI(ζ, xd) + (a2(η) + iτIN−m)φII(ζ, xd)

)
.

We derive from the first equation of (2.15) an expression of φI as a function
of φII :

(2.16) φI(ζ, xd) = − i
τ
a1,2(η)φII(ζ, xd).

Plugging it into the second equation of (2.15), we get a reduced boundary
value problem for an ODE parametrized by ζ ∈ C+ × Rd−1 with values in
CN−m, with respect to the non-characteristic part φII , of the form

(2.17)


∂φII

∂xd
(ζ, xd)−A2(ζ)φII(ζ, xd) = 0,

B2φ
II(ζ, 0) = H(ζ),

where for all ζ ∈ C+ × Rd−1,

(2.18) A2(ζ) = −a−1d

(
τIN−m + ia2(η) +

1

τ
a21(η)a12(η)

)
.

The problem (2.17) appears as a “generalized resolvent type equation” as
pointed out by Guès, Métivier, Williams and Zumbrun [5].

In virtue of the deep analysis made by Benzoni-Gavage and Serre [1,
Chapter 6], the matrix A2(ζ) is hyperbolic, in the sense that:

(1) For <e(τ) = γ > 0, the matrix A2(ζ) does not have purely imaginary
eigenvalues.
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(2) Let E−(ζ) (resp. E+(ζ)) be the stable invariant subspace (resp. the un-
stable invariant subspace) of the matrix A2(ζ) with the decomposition

CN−m = E−(ζ)⊕ E+(ζ).

The stable subspace of A2(τ, η) has constant dimension when γ > 0.
This dimension equals p.

Let P−(ζ) be the spectral projector onto E−(ζ) along E+(ζ),

(2.19) P−(ζ) =
1

2πi

�

Γ−

(zIN−m −A2(ζ))−1dz,

with Γ− a closed contour enclosing all eigenvalues of A2(ζ) of negative real
part.

The s-WKL Condition (2.20) can then be rewritten in terms of the sub-
space E−(ζ) and the representation (1.4) of the matrix B:

(2.20) ∃C > 0, ∀ζ ∈ Ξ
(
v ∈ E−(ζ)⇒ |v| ≤ Cγ−s|B2v|

)
.

Let us introduce the operator

J(ζ) := B2P−(ζ).

As a consequence of the s-WKL Condition (2.20), for any ζ ∈ C+×Rd−1, the
operator J(ζ) is an isomorphism between E−(ζ) and Cp, so J−1H(ζ) ∈ E−(ζ).

Therefore, in virtue of the definition of the stable subspace, one can first
state the following crucial result.

Proposition 2.2. Assume that the assumptions of Theorem 1.2 are ful-
filled for some s ≥ 0. Then there exists a constant C > 0 such that, for
all γ > 0, and for any F̃ ∈ L2

(
R+, H

s(Σ)
)
, G̃ ∈ Hs(Σ), and any ζ ∈

C+ ×Rd−1, the problem (2.17) admits a unique solution φII(ζ, ·) ∈ L2(R+),
and it satisfies the following estimate:

(2.21)
�

Rd

|φII|xd=0(γ + iσ, η, 0)|2 dσ dη ≤ C
(

1

γ2s
‖G̃‖2s,γ +

1

γ1+2s
~F̃~2

s,γ

)
.

Proof. The problem (2.17) admits a unique L2(R+) solution of the form

(2.22) φII(ζ, xd) = exp(xdA2(ζ))J−1(H(ζ)).

The trace φII(ζ, 0) = J−1H(ζ) belongs to E−(ζ). Therefore, applying the
s-WKL Condition (2.20), and invoking homogeneity, for any ζ ∈ C+×Rd−1
one has

|φII(ζ, 0)|2 ≤ C |ζ|
2s

γ2s
|B2φ

II(ζ, 0)|2 = C
|ζ|2s

γ2s
|H(ζ)|2.
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Thus, from the identity (2.11), we get

(2.23) |φII(ζ, 0)|2 ≤ C |ζ|
2s

γ2s
(
|F(G̃)(σ, η)|2 + |Fw̃II(σ, η, 0)|2

)
.

Integrating the estimate (2.23) over R× Rd−1, we get

(2.24)
�

Rd

|φII|xd=0(γ + iσ, η, 0)|2 dσ dη

≤ C

γ2s

( �

Rd

(γ2 + σ2 + |η|2)s|F(G̃)(σ, η)|2 dσ dη

+
�

Rd

(γ2 + σ2 + |η|2)s|F(w̃II|xd=0)(σ, η)|2 dη dσ
)
.

The right hand side of the estimate (2.24) is none other than

C

γ2s

( �

Rd

(γ2 + σ2 + |η|2)s|F
(
e−γ.G

)
(σ, η)|2 dη dσ

+
�

Rd

(γ2 + σ2 + |η|2)s|F
(
e−γ.wII|xd=0

)
(σ, η)|2 dη dσ

)
.

In other words,

(2.25)
�

Rd

|φII|xd=0(γ + iσ, η, 0)|2 dσ dη ≤ C 1

γ2s
(‖G̃‖2s,γ + ‖w̃II|xd=0‖

2
s,γ).

Now, using the estimate (2.6) satisfied by the solution w̃ of the auxiliary
problem (2.5):

(2.26) ‖w̃II|xd=0‖
2
s,γ ≤

C

γ
‖F̃‖2s,γ ,

one has
�

Rd

|φII|xd=0(γ + iσ, η, 0)|2 dσ dη ≤ C
(

1

γ2s
‖G̃‖2s,γ +

1

γ1+2s
~F̃~2

s,γ

)
,

which ends the proof of the proposition.

Likewise, the equality (2.16) determines the characteristic component φI
which is also in L2(R+). We deduce readily that for any ζ ∈ C+×Rd−1, the
function φ(ζ, ·) = (φI(ζ, ·), φII(ζ, ·))T is the unique solution of the problem
(2.9) which belongs to L2(R+).

On the other hand, one can consider φ(ζ, ·) as a solution of the singular
ODE defined in (2.9), but coupled with the strictly dissipative boundary
condition Md defined in (2.3),
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(2.27)

Ad
∂φ

∂xd
(ζ, xd)−A(ζ)φ(ζ, xd) = 0, ζ ∈ C+ × Rd−1, xd > 0,

Mdφ
II(ζ, 0) := K(ζ).

The following proposition holds:

Proposition 2.3. There exists C > 0 such that for any γ > 0 and any
ζ ∈ C+ × Rd−1, one has

(2.28) γ‖φ(ζ, ·)‖2L2(R+) + |φII(ζ, 0)|2 ≤ C|K(ζ)|2 = C|Mdφ
II(ζ, 0)|2.

Proof. Thanks to the Friedrichs symmetrizable assumption 1.1, for all
j = 1, . . . , d, the matrices SAj are symmetric. Thus, for any η ∈ Rd−1, the
matrix SA(η) is also symmetric, where A(η) has the block structure (1.3),

A(η) =

(
0m a1,2(η)

a2,1(η) a2(η)

)
,

according to Assumption 1.3.
In particular, we have already seen that the submatrix Sd of the matrix

S, of size (N − m) × (N − m), defined in (2.2) is symmetric and positive
definite.

Returning to the singular ODE (2.9) and multiplying on the left by the
matrix S, in virtue of the expression (2.10) of the matrix A(ζ), one has

(2.29) SAd
∂φ

∂xd
(ζ, ·) + τSφ(ζ, ·) + iSA(η)φ(ζ, ·) = 0.

Now, taking the real part of the scalar product with φ in CN and using the
fact that SA(η) is symmetric, this implies that

(2.30) <e
〈
SAd

∂φ

∂xd
(ζ, ·), φ(ζ, ·)

〉
CN

= −γ〈Sφ(ζ, ·), φ(ζ, ·)〉CN .

Integration by parts with respect to xd on R+ yields

2γ(Sφ(ζ, ·), φ(ζ, ·))L2(R+) = 〈SAdφ(ζ, 0), φ(ζ, 0)〉CN

= 〈SdadφII(ζ, 0), φII(ζ, 0)〉CN−m .

(2.31)

At this stage, we use on the one hand the fact that S is positive, and on
the other hand the fact that the inequality (2.4) holds since the matrix Sdad
defined on kerMd is negative definite. It follows that there exists a constant
C > 0 such that

γ‖φ(ζ, ·)‖2L2(R+) ≤ C|Mdφ
II(ζ, 0)|2 − |φII(ζ, 0)|2,

and the proof of Proposition 2.3 is complete.
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Integrating once again over R×Rd−1 the estimate (2.28) and adding the
right hand side of (2.21), we get

γ
�

Rd+1
+

|φ(γ + iσ, η, xd)|2 dσ dη dxd +
�

Rd

|φII|xd=0(γ + iσ, η, 0)|2 dσ dη

≤ C|Md|2
(

1

γ2s
‖G̃‖2s,γ +

1

γ1+2s
~F̃~2

s,γ

)
.

(2.32)

Note that the function τ 7→ φ(τ, ·, ·) is holomorphic in C+ with values in
L2(Rd−1 × R+). The estimate (2.32) shows that

(2.33) sup
γ≥γ0

�

R

‖φ(γ + iσ, ·, ·)‖2L2(Rd−1×R+)dσ <∞

for all γ0 > 0. Thanks to the theorem of Paley–Wiener, the above properties
show that there exists a function v : (t, y, xd) 7→ ṽ(t, y, xd) such that e−γtv :=
ṽ ∈ L2(R × Rd−1 × R+) for γ > 0, and for which the function φ is exactly
its Fourier transform with respect to the (t, y) variables.

Applying the inverse Fourier operator to the problem (2.9), we deduce
that ṽ is the unique solution of Lγ ṽ = 0. Moreover, the trace ṽII|xd=0 is well
defined in L2(Σ) and satisfies the boundary conditionBṽII|xd=0 = G̃−Bw̃II|xd=0

on Σ.
Eventually, applying Plancherel’s theorem to (2.32), we see that the so-

lution v satisfies the estimate

(2.34) γ‖e−γtv‖2L2(Q) + ‖e−γtvII|xd=0‖
2
L2(Σ)

≤ C
(

1

γ2s+1
~e−γtF~2

s,γ +
1

γ2s
‖e−γtG‖2s,γ

)
.

Recall that the unique solution w̃ of the auxiliary problem (2.5) belongs to
L2(Q), with w̃II|xd=0 ∈ L

2(Σ) and satisfies the estimate (2.6).
Finally, setting ũ = ṽ − w̃ ∈ L2(Q), we see that u := eγtũ is the unique

solution of the problem (1.1) such that ũII|xd=0 ∈ L2(Σ) and satisfies the
energy estimate

γ‖e−γtu‖2L2(Q) + ‖e−γtuII|xd=0‖
2
L2(Σ)

≤ C
(

1

γ2s+1
~e−γtF~2

s,γ +
1

γ2s
‖e−γtG‖2s,γ

)
,

which completes the proof of Theorem 1.2.

3. Proof of Theorem 1.3

3.1. Solutions of the boundary value problem localized in time.
As a consequence of Theorem 1.2, we find that the solution of the BVP (1.1)
satisfies the causality principle when the data vanish in {t < 0}.



14 S. Brahimi and A. Z. Mokrane

Proposition 3.1. In the framework of Theorem 1.2 in the case s = 0,
for any γ > 0, if both F ∈ L2

γ(Q) and G ∈ L2
γ(Σ) vanish for t < 0, then the

solution u ∈ Lγ(Q) of the BVP (1.1) vanishes for t < 0.

Proof. We refer for instance to [1, 2, 9] for a proof which remains true in
the context of Theorem 1.2.

For a given T > 0, we introduce the sets

ΩT := ]−∞, T ]×Ω with boundary ωT := ]−∞, T ]× ∂Ω.
Consider now the BVP (1.1) but defined in the time interval ]−∞, T ]:

(3.1)

{
Lu = F in ΩT := ]−∞, T ]× Rd+,
Bu|xd=0 = G on ωT := ]−∞, T ]× Rd−1.

The causality principle stated in Proposition 3.1 implies the following im-
portant result for the boundary value problem (3.1).

Theorem 3.2. Assume that the assumptions of Theorem 1.2 are satisfied
for s = 0. Let F ∈ L2(ΩT ) and G ∈ L2(ωT ) be such that F ≡ 0 and
G ≡ 0 for t < 0. Then there exists a unique solution u ∈ L2(ΩT ) of the
problem (3.1) such that uII|xd=0 ∈ L

2(ωT ) and u vanishes for t < 0. In addition
u ∈ C([0, T ], L2(Ω)) and for any γ > 0, it satisfies the estimate

(3.2) γ‖e−γtu‖2L2(Ωt)
+ ‖e−γtuII|xd=0‖

2
L2(ωt)

+ e−2γt‖u(t)‖2L2(Ω)

≤ C
(

1

γ
‖e−γtF‖2L2(Ωt)

+ ‖e−γtG‖2L2(ωt)

)
for all t ∈ [0, T ].

Proof. Extend F and G by zero for t > T and get π(F ) ∈ L2(Q) and
π(G) ∈ L2(Σ). One deduce readily from the assumptions about F and G
that π(F ) ∈ L2

γ(Q) and π(G) ∈ L2
γ(Σ) for all γ > 0. Consequently, by

Theorem 1.2, there exists a unique ŭ ∈ L2
γ(Q) with ŭII ∈ L2

γ(Σ) which is a
solution of the BVP

(3.3) Lŭ = π(F ) in Q, Bŭ|xd=0 = π(G) in Σ.

Moreover ŭ satisfies the estimate (1.9) in the case s = 0. Applying Propo-
sition 3.1 one deduces from the properties of F and G that ŭ vanishes for
t < 0. Set u := ŭ|ΩT

. Then u ∈ L2(ΩT ) and vanishes for {t < 0}. Further-
more, uII|xd=0 ∈ L

2(ωT ) and one can readily verify that u is a solution of the
BVP (3.1) in the sense of distributions. Therefore, in virtue of (1.9),

(3.4) γ‖e−γtu‖2L2(Ωt)
+ ‖e−γtuII|xd=0‖

2
L2(ωt)

≤ C
(

1

γ
‖e−γtF‖2L2(Ωt)

+ ‖e−γtG‖2L2(Σt)

)
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for all t ∈ [0, T ]. As a consequence of the causality principle, the uniqueness
of the solution u is obtained easily by using a truncation procedure as for
instance in [1, 9].

The solution u can be seen as defined in QT = [0, T ]×Rd+. The last step
of the proof is to show that u is continuous in the time variable. Consider
the solution ŭ ∈ L2

γ(Q) of the problem (3.3). Using a standard mollifier jε
in tangential variables supported in {t > 0} and the associated convolution
operator Jε, one can consider a suitable regularized sequence (wε) defined
by

wε = eγtJεe
−γtŭ ∈ L2(R+, H

∞
γ (Σ)).

This sequence satisfies (wε)II|xd=0 ∈ H
+∞
γ (Σ). As ŭ vanishes for t < 0 and the

mollifier jε is supported in {t > 0}, wε also vanishes for t < 0. In addition,
the operator L having constant coefficients, wε is a solution of the BVP

(3.5) Lwε = f ε in Q, Bwε|xd=0
= gε on Σ,

where f ε := eγtJε(e
−γtπ(F )) ∈ L2(R+, H

+∞
γ (Σ)) and gε := eγtJε(e

−γtπ(G))

∈ H+∞
γ (Σ)). Furthermore, the following convergences hold:

(3.6)

wε −−−→
ε→0

ŭ in L2
γ(Q),

(wε|xd=0)
II −−−→

ε→0
(ŭ|xd=0)

II in L2
γ(Σ),

Lwε −−−→
ε→0

π(F ) in L2
γ(Q),

Bwε|xd=0 −−−→ε→0
π(G) in L2

γ(Σ).

The assumptions of Theorem 1.2 are fulfilled by the BVP (3.5) for s = 0.
Moreover the source terms f ε and gε vanish in {t < 0}, as also does the
solution wε, so for any γ > 0 we have an estimate similar to (3.4),

(3.7) γ‖e−γtwε‖2L2(Ωt)
+ ‖e−γt(wε)II|xd=0‖

2
L2(ωt)

≤ C
(

1

γ
‖e−γtf ε‖2L2(Q) + ‖e−γtgε‖2L2(Σ)

)
for all 0 ≤ t ≤ T . Using Assumption 1.1 of Friedrichs symmetrizability of L,
we derive by integration by parts the following estimate for all ε > 0:

(3.8) e−2γt‖wε(t)‖2L2(Ω)

≤ C
(

1

γ
‖e−γtLwε‖2L2(Ωt)

+ γ‖e−γtwε‖2L2(Ωt)
+ ‖e−γt(wε)II|xd=0‖

2
L2(ωt)

)
.

We refer to [1] for the derivation of this estimate. Combining estimates (3.7)
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and (3.8) we get

(3.9) γ‖e−γtwε‖2L2(Ωt)
+ ‖e−γt(wε)II|xd=0‖

2
L2(ωt)

+ e−2γt‖wε(t)‖2L2(Ω)

≤ C
(

1

γ
‖e−γtf ε‖2L2(Q) + ‖e−γtgε‖2L2(Σ)

)
.

Applying (3.9) to the difference (wε − wε′)|QT
, we deduce from (3.6) that

(wε|QT
) is a Cauchy sequence in the Banach space C([0, T ], L2(Ω)), so con-

vergent in C([0, T ], L2(Ω)). We deduce thanks to (3.6) that the limit can
only be u the solution of the BVP (3.1), by invoking the uniqueness of
the solution. Moreover, passing to the limit in (3.9), we obtain the esti-
mate (3.2).

3.2. End of the proof of Theorem 1.3. We introduce an auxiliary
problem with a strictly disspative boundary condition, already considered in
Section 2.1 by incorporating the nonzero initial data u0. Consider the matrix
M defined in (2.3). The matrix SAd defined on kerM is obviously non-
positive and vanishes only on kerAd. Consider then the following auxiliary
IBVP:

(3.10)


Lw = F in QT ,
Mw = 0 on ΣT ,
w|t=0 = u0 in Ω.

The problem (3.10) is a hyperbolic strictly dissipative initial boundary value
problems for which a well-posedness result has been established by several
authors [7, 8, 9, 1].

Theorem 3.3. There is a constant C > 0 such that for all F ∈ L2(QT )
and u0 ∈ L2(Ω), there exists a unique solution w ∈ L2(QT ) of the problem
(3.10) for which wII|xd=0 ∈ L

2(ΣT ). Furthermore w ∈ C([0, T ], L2(Ω)) and the
following estimate holds for all t ∈ [0, T ] and γ > 0:

(3.11) γ‖e−γtw‖2L2(Qt)
+ ‖e−γtwII|xd=0‖

2
L2(Σt)

+ e−2γt‖w(t)‖2
L2(Rd

+)

≤ C
(

1

γ
‖e−γtF‖2L2(Qt)

+ ‖u0‖2L2(Ω)

)
.

Consider now the solution w of the problem (3.10) for which wII|xd=0 ∈
L2(ΣT ), and the following homogeneous IBVP:

(3.12)


Lv = 0 in QT ,
Bv|xd=0 = G−Bw|xd=0 on ΣT ,

v|t=0 = 0 in Ω.



Weakened well-posedness of a characteristic BVP 17

The data (G−Bw|xd=0) =
(
G−B2w

II
|xd=0

)
of the boundary condition belongs

to L2(ΣT ). Extend it by 0 from ΣT to ωT and get a function in L2(ωT ).
The assumptions of Theorem 3.2 are then fulfilled in the case s = 0 for
the problem (3.12). Thus, there exists a solution v ∈ L2(ΩT ) of the IBVP
(3.12) which vanishes on {t < 0} such that vII|xd=0 ∈ L

2(ωT ). Furthermore
v ∈ C([0, T ], L2(Ω)) and it satisfies for all t ∈ [0, T ] the estimate

(3.13) γ‖e−γtv‖2L2(Qt)
+ ‖e−γtvII|xd=0‖

2
L2(Σt)

+ e−2γt‖v(t)‖2L2(Ω)

≤ C(‖e−γtG‖2L2(Σt)
+ ‖e−γtwII‖2L2(Σt)

).

Then u := v + w is obviously a solution of the IBVP (1.10) in L2(QT ) such
that uII|xd=0 ∈ L

2(ΣT ). In addition, u ∈ C([0, T ], L2(Ω)) and, by combining
estimates (3.11), (3.13), it satisfies the estimate (1.11). The uniqueness of
the solution u follows readily from the uniqueness of solution of the prob-
lem (3.1). This completes the proof of Theorem 1.3.
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