Université Batna 2

Le 21 / 02 /2021

Faculté des sciences SNV

Matière : Mathématique

Département SC SNV

(Analyse)

Série des exercices N : 02 Intégrabilité des fonctions réelles (changement de variables, intégrer par partie, de différents types ou bien par décomposition en éléments simples)

Exercice 1 : Calculer par changement de variable les intégrales suivantes :

1-
$$\int \frac{dx}{1+\sqrt{1+x}}$$
 2- $\int \frac{(4x+3)}{(x-2)^3} dx$ 3- $\int \frac{\sqrt{x}}{\sqrt{x}-\sqrt[3]{x}} dx$ 4- $\int \frac{1}{x^2+\sqrt{a^2+x^2}} dx$ (Poser $x = \frac{1}{t}$ ou $x = \arctan g(t)$)

$$5-\int \sqrt{\sin(x)} \cdot \cos(x) \, dx \qquad 6-\int \frac{\sin(x)}{1+\cos(x)} \, dx \quad 7-\int \frac{1}{x^2} \cdot \cos\left(\frac{1}{x}\right) \cdot dx$$

$$8-\int \frac{\sqrt{1+\ln(x)}}{x.\ln(x)} dx$$

Exercice 2 : En intégrant par partie, calculer les intégrales suivantes :

1-
$$\int x \cdot \ln(x) dx$$
 2- $\int x \cdot \sin(x) dx$ 3- $\int x^2 (1 + \cos(x)) dx$ 4- $\int \frac{Arcsin\sqrt{x}}{\sqrt{1-x}} dx$ 5- $\int \frac{Ln^2(x)}{\sqrt{x^5}} dx$ 6- $\int x^n \cdot Ln(x) dx$ (avec $n \neq -1$)
7- $\int e^x \cdot \sin\left(\frac{x}{2}\right) dx$

Exercice 3 : Calculer les intégrales suivantes :

$$1-\int \frac{x}{\sqrt{1+x^2}} dx \qquad 2-\int \frac{x^2}{x^2+1} dx \qquad 3-\int 3x. \sqrt{2+x^2} dx$$

$$4-\int \cos(x). \sin^2\left(\frac{1}{2}x\right) dx$$

Exercice 4: A l'aide de la méthode de décomposition des fonctions fractionnelles en éléments simples, calculer les intégrales suivantes :

1-
$$\int \frac{x}{(x+1)(2x-1)} dx$$
 2- $\int \frac{1}{(1+2x^2)^2} dx$ 3- $\int \frac{x^5+x^4-8}{x^3-4x} dx$ 4- $\int \frac{x}{x^4-3x^2+2} dx$
5- $\int \frac{x^3-6}{x^4+6x^2+8} dx$ 6- $\int \frac{1-2\sin^2(\frac{1}{2}x)-\sin(x)}{1-\cos(x)-\sin(x)+\sin(x)\cos(x)} dx$