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1 Introduction 
Modelling, identification and control are important research 
topics in control systems engineering (Kang et al., 2018; 
Azar and Serrano, 2018; Han et al., 2018; Rajani et al., 
2018; Benamor and Messaoud, 2018; Chibani et al., 2018; 
Lien et al., 2019; Vaidyanathan et al., 2019). 

Unlike linear automation, nonlinear automation does not 
have universal solutions for either system analysis or 
controller design. Most nonlinear control approaches require 
knowledge of a mathematical model of the system. 

The performances guaranteed will be directly linked  
to the accuracy of the model used. Indeed, obtaining a 
mathematical model that is precise, relevant and simple to 
use, is sometimes difficult and complex. To solve these 
problems, the use of controllers based on human expertise 
can be a reliable alternative. 

Among these approaches is the fuzzy logic control 
which does not require knowledge of the mathematical 
model of the process to be controlled, so it exploits the 
information linguistic skills of the human expert.  
In addition, fuzzy systems have the ability to approximate 
any unknown nonlinear function with a given degree of 
precision (Wang, 1994). Most often fuzzy controllers are 
used in systems that have unknown intrinsic variations.  
The goal is therefore to maintain good overall system 
performance by adapting the controller according to system 
variations. 

This goal can be achieved by so-called intelligent 
control whose fuzzy logic has been applied in many fields in 
the control of nonlinear systems. An adaptive fuzzy system 
is used to approximate the unknown system dynamics and 
the system stability is analysed by Lyapunov stability theory 
(Khalil, 2002). 

Synergetic control has evolved only in recent years, 
which is similar in its conceptual approach to sliding  
mode control. Synergetic control is seen as a powerful 
methodology for robust control design (Rebai et al., 2016). 
Synergetic control technique has been successfully applied 
in the field of power electronics where, for example,  
its application to a boost converter has been studied 
(Kolesnikov et al., 2002), and some practical aspects 
concerning simulation and hardware have been discussed 
(Kondratiev et al., 2004; Monti et al., 2003). Some of the 
successful practical applications of synergetic control in 
industry are battery chargers (Jiang and Dougal, 2004). 

Like the fuzzy adaptive control (Li et al., 2017,  
2018; Chen et al., 2014, 2015), we develop the design and 
implementation of the adaptive fuzzy synergetic control  
in this work. Fuzzy type-1 systems are initially used to 
approximate the dynamics of unknown nonlinear systems. 
Then type-2 fuzzy systems (Theodoridis et al., 2010; 
Bounemeur et al., 2018; Chemachema, 2012) are used in 
our new design. 

The stability of the closed-loop system is ensured by the 
synthesis of Lyapunov in the sense that all the signals are 
bounded and the parameters of the controller adjusted by  
an adaptation law provided with a projection algorithm. 

Control laws and adaptation laws are obtained using the 
Lyapunov method. 

This research work is organised as follows. Section 2 
describes the problem formulation and control objective  
of adaptive fuzzy synergetic control design. Section 3 
details the construction of adaptive fuzzy synergetic control. 
Section 4 discusses the adaptation laws. Section 5 illustrates 
an application of the proposed fuzzy synergetic control  
to an inverted pendulum and discusses the numerical 
simulations in detail. Section 6 draws the main conclusions 
of this work. 

2 Problem formulation and control objective 
In this section, we describe the problem formulation and 
control objective for the adaptive fuzzy synergetic control. 
We first use the objectives of the command to develop 
synergistic adaptive controllers based on fuzzy systems to 
achieve these same goals (Rebai et al., 2016). 

Consider the single-input single-output (SISO) system 
of the nth order: 

( ) ( 1) ( 1)( , , , ) ( , , , )n n nx f x x x g x x x u
y x

− −⎧ = +
⎨

=⎩

… …
 (1) 

In system form, the ODE (1) can be expressed in the Isidori-
Byrnes normal form (Isidori, 1989) as follows: 
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2 3
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In the system (2), f  and g  are continuous and unknown 
functions, u R∈  and y R∈  are the input and output of the 
system (2) respectively and  

1

2

n

x
x

x

x
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 is the state vector of the system (2). 

We can also write the output y  as ,Ty c x=  where  

1
0
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0
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For the control system (2) be controllable and feedback 
linearisable, it is required that ( ) 0g x ≠  for x  in certain 
controllability region .n

cU R⊂  Without loss of generality, 
the following assumption is made (Wang et al., 2002): 

Assumption A: ( ) 0g x  for all .cx U∈  
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It is worth noting that several nonlinear systems can be 
given the form (2) and satisfy the Assumption A, e.g., 
Duffing chaotic system, Chua’s circuit, aircraft wing rock, 
induction servo-motor drive, inverted pendulum, and many 
others (Boulkroune et al., 2008). 

The control objective is to regulate the output y  of the 
system (2) to track the bounded reference signal my  under 
the constraint that any signal involved is bounded. 

This is determined by a status feedback control 
( / )u u x θ=  and an adaptation law for adjusting the 

parameter vector such that the following conditions are 
satisfied. 

• The system to evolve with a dynamic chosen in 
advance by the designer. 

• The macro-variable ( )eψ  must be as small as possible 
under the constraint indicated by the following 
equation: 0,   ( 0).T Tψ ψ+ =  

3 Construction of adaptive fuzzy synergetic 
control 

We start by defining a macro-variable ( )eψ  in the error 
state space, which is usually defined as: 

( ) Te c eψ =  (3) 

It is desired to complete a zero error between the output of 
the system and the reference signal by forcing the system to 
evolve towards a domain chosen by the designer to know: 

( ) 0eψ =  

One of the simplest methods to achieve this is to choose the 
dynamics of evolution of the macro-variable using a 
constraint such as: 

( ) ( ) 0T e eψ ψ+ =  

where me y x= −  is the error, and c  is chosen so that all the 
roots of the polynomial 1 1

1 1( ) n n
nh c cλ λ λ− −

−= + + +  are in 
the left half-plane of the complex space. T  is a control 
parameter that indicates the rate of convergence of the 
closed-loop system to the indicated domain. 

We consider the system (2). If the functions f and g are 
known, then the control law solving the output regulation 
problem is given by: 

( ) ( )1 ( )
( )

n n
mu f x y e

g x
⎡ ⎤= − + −⎣ ⎦  (4) 

According to the equation ( ) ( ) 0,T e eψ ψ+ =  we have: 
1

( ) ( )

1

1 ( )
n

n i
ie c e e

T
ψ

−

= − −∑  (5) 

The substitution of equation (5) in equation (4) makes it 
possible to write: 

1
( ) ( )

1

1 1( ) ( )
( )

n
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m i
i

u f x y c e e
g x T

ψ
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∑  (6) 

However, in the general case, the functions f  and g  are 
unknown, which makes the approximation of f  and g  
necessary. For this purpose, we use the fuzzy systems which 
are universal approximators (Wang and Mendel, 1992). 

Next, we describe the design of fuzzy systems used in 
this work. 

In our study we will approximate the functions f  and 
g  by fuzzy systems that allow us to write in the following 
form: 

( ) ( )Ty x xθ ξ=  (7) 

In equation (7), 
1
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is a vector of parameters and 
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is the basic fuzzy function vector that is calculated as 
follows. 

For fuzzy systems of type-1, the fuzzy basic functions 
(FBF) are given by the following equations: 

11
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The functions f̂  and ĝ  are estimates given by: 

ˆ ( / ) ( )

ˆ( / ) ( )

T
f f f

T
g g g

f x x

g x x
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θ θ ξ

⎧ =⎪
⎨
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For fuzzy systems of type-2, the FBF are given by the 
following equations: 

1
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where i
fw  and i

gw  are the activation intervals (degree of 
membership) corresponding to the same rule of fuzzy 
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systems type-2 f̂  and ĝ , respectively, i
fθ  and i

gθ  are the 
centres of consistent sets that also represent the adjustable 
parameters of our adaptive control. 

The functions f̂  and ĝ  are estimates given by: 

ˆ ( )
2 2

l r l r

T T
f f f f f fT T

f f ff x
θ ξ θ ξ ξ ξ

θ θ ξ
+ +⎡ ⎤

= = =⎢ ⎥
⎣ ⎦

 (14) 

ˆ ( )
2 2

l r l r

T T
g g g g g gT T

g g gg x
θ ξ θ ξ ξ ξ

θ θ ξ
+ +⎡ ⎤

= = =⎢ ⎥
⎣ ⎦

 (15) 

where ( ) / 2
l rf f fξ ξ ξ= +  is the average vector of FBF of f̂  

and ( ) / 2
l rg g gξ ξ ξ= +  is the average vector of FBF of ĝ . 

The algorithm of Karnik and Mendel (Karnik et al., 
1999) is used to calculate , , ,

r l r

i i i i
f f g glw w w w  and allows to 

build the FBF , , , .
r l rf f g glξ ξ ξ ξ  

4 Adaptation laws 
The next task is to replace f̂  and ĝ  by the specific formula 
of fuzzy systems (9) and to develop adaptation laws to 
adjust the parameters for the purpose to ensure the 
convergence of the closed-loop system. 

First, we define: 

ˆarg min sup ( / ) ( )
f f C

f f
x U

f x f x
θ

θ θ∗

∈Ω ∈

⎡ ⎤= −⎢ ⎥⎣ ⎦
 (16) 

ˆarg min sup ( / ) ( )
g g C

g g
x U

g x g x
θ

θ θ∗

∈Ω ∈

⎡ ⎤= −⎢ ⎥⎣ ⎦
 (17) 

where fΩ  and gΩ  are sets of constraints for fθ  and gθ  
respectively, specified by the expert. These sets are defined 
as follows: 

{ }:f f fMθ θΩ = ≤  (18) 

{ }:g g gMθ θΩ = ≤  (19) 

where fM and gM  are positive constants specified by the 
expert. 

The minimum approximation error is defined by 

ˆ ˆ( ( / ) ( )) ( ( ) / ) ( ))f gw f x f x g x g x uθ θ∗ ∗= − + −  (20) 

Then the equation of the macro-variable (3) can be  
rewritten as: 

1( ) ( ) ( ) ( ) ( ) ( )
T T

T T
f gf ge x x u e w

T
ψ θ θ ξ θ θ ξ ψ

∗ ∗
= − + − − +  (21) 

Here, f fϕ θ θ
∗

= − , g g gϕ θ θ
∗

= −  and ξ  is the basic fuzzy 
function. 

1( ) ( ( ) ( ) ( )T T
f ge x x u e w

T
ψ θ ξ θ ξ ψ= + − +  (22) 

 
 

Now, we consider the following candidate Lyapunov 
function: 

2

1 2

1 1 1( )
2 2 2

T T
f f g gV eψ ϕ ϕ ϕ ϕ

γ γ
= + +  (23) 

where 1γ  and 2γ  are positive constants. 
The derivative of V  with respect to time is given by: 

1
1

2
2

2

1 ( ( ) ( ) )

1 ( ( ) ( ) )

1 ( ) ( )

T
f f

T
g g

V e x

e x u

e e
T

ϕ γ ψ ξ θ
γ

ϕ γ ψ ξ θ
γ

ψ ψ
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− +

 (24) 

If we choose the following adaptation laws: 

1

2

( ) ( )

( ) ( )
f

g

e x

e x u

θ δ ψ ξ

θ δ ψ ξ

= −

= −
 (25) 

Then from equation (25) we will have: 

21 ( ) ( )V e e w
T

ψ ψ= − +  (26) 

The influence of the term ( )e wψ  is minimal in the order of 
the minimal approximation error which is too small,  
since the fuzzy systems f̂  and ĝ  have an ability to 
approximate nonlinear functions f  and g  with great 
precision because they are universal approximators that can 
approximate any continuous real function with arbitrary 
precision. 

So, using sufficient rules to build f̂  and ĝ  allows us to 
have w  very small. When w  tends to 0, the inequality (26) 
becomes: 

21 ( ) 0V e
T

ψ≤ − ≤  (27) 

This guarantees the convergence of the closed-loop system 
by Lyapunov stability theory (Khalil, 2002). 

5 Application to an inverted pendulum 
This involves applying the adaptive controller fuzzy 
developed to an inverted pendulum shown on Figure 1. 

The dynamics of this pendulum is described by the 
differential equation (28) (Slotine and Li, 1991): 

1 2
2
2 1 1 1

1

2 2 2
1 1

cos( )sin( ) cos( )sin( )

cos ( ) cos ( )4 4
3 3

c c

c c

x x
mlx x x xg x

m m m m
x u

m x m xl l
m m m m

=

−
+ +

= +
⎛ ⎞ ⎛ ⎞

− −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 (28) 
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where 1x θ=  is the angle of rotation, 2x θ=  speed angular, 
29.8 m/sg =  the acceleration of gravity, cm  the mass of the 

trolley, m  the mass of the beam, 2l  the length of the beam 
and u  applied force. 

Figure 1 Diagram of an inverted pendulum 

 

The goal of the controller is to force the angle of the 
pendulum θ  to follow the desired trajectory defined by:  

( ) sin( )
30my t tπ=  

The parameters of the pendulum are: 1 kgcm = , 
0.1 kgm = , 0.5 ml = . 

The design parameters of the proposed controller are 
thus chosen: 

1 2 1 2

10 0
, 2, 1, 50, 1,

0 10
16, 1,6 and 0.7f g

Q k k

M M

γ γ

ε

⎡ ⎤
= = = = =⎢ ⎥
⎣ ⎦
= = =

 

5.1 Fuzzy adaptive synergistic control type-1 

We choose 1 2 5m m= =  since / 6ix π≤  with 1, 2i = .  
We consider the membership functions defined on the 
universe [ ]/ 6, / 6π π−  We will take 1 50γ =  and 2 1γ = . 

Table 1 gives the inference matrices for both functions 
1 2( , )f x x  and 1 2( , )g x x .  

Table 1 Inference matrices for 1 2( , )f x x  and 1 2( , )g x x  

 
 
 
 

5.1.1 Simulation results 
The simulation results of fuzzy adaptive synergistic  
control type-1 are obtained for two cases, first  
in the absence of disturbances with the initial  
state  

/ 60
(0)

0
x

π−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

and then in the presence of a strong constant amplitude 
disturbance d = 2 at the instant t = 14 s. 

Without disturbance: 

Figures 2 and 3 show that the output of the  
system y(t) follows its reference yr(t) for the two initial 
conditions. 

Figure 2 Response in system position 

 

Figure 3 Speed response of the system 

 

Figures 4 and 5 give the appearance of the overall control  
of the system for the two initial conditions. The control 
signal has switching in the transient regime in the case 
where the initial condition is far from that of the reference 
signal. 

[ ](0) /10,0 Tx π= −  

These switches are due to the activation of the  
supervisory command us which is not enabled (null) in the 
case of the initial condition [ ](0) / 60,0 Tx π= −  
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Figure 4 Control signal 

 

Figure 5 Signal of the macro-variable 

 

With disturbance: 

Figure 6 Response in system position 

 

Figure 7 Speed response of the system 

 
 

Figures 6–9 shows the output of the system y(t) which 
achieves an acceptable tracking of the reference signal ym(t) 
despite the presence of external disturbances. 

Figure 8 Control signal 

 

Figure 9 Signal of the macro-variable 

 

5.2 Fuzzy adaptive synergistic control type-2 
The design steps for this control remain the same as for 
type-1 except that f̂  and ĝ  are obtained by fuzzy type-2 
systems. 

• In this case we choose 3( 1, 2)im i= =  fuzzy sets  
type-2, on the discourse universe ,

6 6
π π⎡ ⎤−⎢ ⎥⎣ ⎦

, these fuzzy 
sets type-2 are constructed from the type-1 antecedents, 
adding to them a region of uncertainty represented  
by the variation of the mean [ ]1 2,M M M∈ with a 
constant standard deviation σ . To facilitate the 
manipulation of these sets, each of them will be 
represented by its superior membership functions 

( )l
i

iF
u x=  and lower 

( )
l

i
iF

u x
−

=  

where [ ]11,..., , / 24, 0.3491, 0, 0.3491K mi Mσ π= = = −  
and [ ]2 0.4491,0,0.2491M = − . 

• The bases of the rules are constructed in the same way 
as for type-1 fuzzy systems, except that the antecedents 
are fuzzy sets type-2, and the consequent sets as the 
centres of fuzzy sets type-1 in the interval [–3, 3] for 
the function f(x) and in the interval [1, 1, 3] are initially 
chosen for the function g(x), later these centres will be 
adjusted using adaptation laws. 
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• The fuzzy functions of the left base are calculated 
l

i
fξ , 

l

i
gξ  and right 

r

i
fξ , 

r

i
gξ , in order to calculate ˆ ( , )ff x θ  

and ˆ( , )gg x θ . 

5.2.1 Simulation results 
The simulation results of fuzzy type-2 adaptive control  
are obtained for both cases, namely with and without 
disturbance for initial conditions [ ](0) / 60,0 Tx π= − .  
The perturbation used is constant of amplitude d = 2 at the 
instant t = 14 s. 

Without disturbance: 

Figures 10–13 show that the output of our system y(t) 
performs a good tracking of the reference signal ym(t) for the 
two initial conditions. 

Figure 10 Answer in system position 

 

Figure 11 Speed response of the system 

 

Figure 12 Control signal 

 

Figure 13 Evolution of the macro-variable 

 

The control signal has switching in the regime transient  
in the case where the initial condition is far from  
the reference signal (0) [ / 60, 0]Tx π= −  These switches are 
due to the activation of the supervisory command us , this 
command is not enabled (null) in the case of 

(0) [ / 60, 0]Tx π= − . 

With disturbance: 

Figure 14 System response in position 

 

Figure 15 System speed response 

 

Figures 14 and 15 shows that despite the presence of 
external disturbances, the output of the system keeps a good 
tracking of the reference signal. 

On the other hand, Figures 4, 8, 12 and 16 show that  
the control signal in the case of type-2 has a smoother  
shape and has less significant stress variation compared  
to that of type-1, especially for the initial condition 

(0) [ / 60, 0]Tx π= − . 
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Figure 16 Control signal 

 

Figure 17 Evolution of the macro-variable 

 

6 Conclusions and future work 

It is clear from the simulation results concerning the control 
signals and those concerning the error signals that the 
synergetic approach has certain advantages with a much 
shorter response time. The main advantages of synergetic 
control are that it is well-suited for digital implementation,  
it gives constant switching frequency operation, and it gives 
better control of the off-manifold dynamics. The hard 
implementation of these approaches as well as the 
optimisation of the parameters specific to synergetic  
control constitutes our main perspective. The stability and 
robustness of the closed-loop system is ensured by the 
Lyapunov synthesis in the sense that all the signals are 
bounded while the controller parameters are adjusted in line 
via the adaptation laws developed. Finally, the proposed 
methods have been applied to the control of a number of 
nonlinear systems, the simulation results under the Matlab 
environment prove that the adaptive synergistic controller is 
fuzzy and robust enough to provide acceptable despite 
disturbances. 

Another technique based on the application of the 
adaptive fuzzy synergetic terminal control for nonlinear 
systems will be studied in future work. 
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