Matière : Risque électrique

Institut Hygiène et Sécurité Batna 02

<u>Département</u> départem.secur indu

Année universitaire 2019/2020

<u>Ch1</u>- L'installation BT alimentée par un poste HT/BT. <u>3LQHSE</u> (Suite Exercices)

Enseignant: Ounissi. A

Puissance dans les systèmes triphasés

En triphasé on considère les puissances relatives aux trois phases simultanément. Puissance active.

la puissance active en fonction de la valeur efficace des tensions composées :

 $P = 3.V. I.\cos\phi = \sqrt{3.U.I.\cos\phi}$ (W)

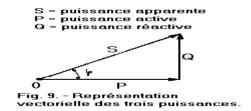
Puissance réactive

La puissance réactive globale est la somme des puissances réactives par phase, d'où les expressions en régime sinusoïdal équilibré :

 $Q = 3.V.I.\sin\phi = \sqrt{3}.U.I.\sin\phi$ (VAR)

Puissance apparente.

Exercice 01


Une installation triphasée alimente deux lampes L1 (entre phase et neutre) et L2 (entre phase 1et phase 2.

1-calculer la résistance L1et L2.

- 2-Quelle est la tension de L1 et L2 de chaque lampe lorsqu'on alimente par une tension composée.
- 3-Est –ce que les tensions calculer respecte les normes, Commenter l'observation des lampes L1 et L2.

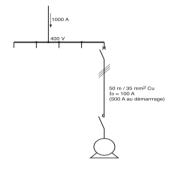
Exersice 02:

Relations métriques dans le triangle rectangle. Le triangle rectangle ci-dessous représente le triangle de puissance :

1) $\cos \varphi = \dots \sin \varphi = \dots \tan \varphi = \dots$

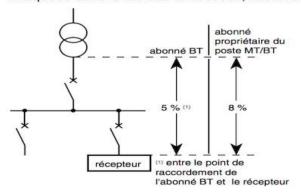
2)	Donner	S	en	fonction	de	P	et	Q	:
3)	Donner	Q	en	fonction	de	P	et	φ	:

EXERCICE03:


une installation alimentée par un transformateur de 400 KVA sous $\cos \varphi = 0.75$. On désire installer un nouveau récepteur consommant 75 KW sous $\cos \varphi = 0.8$.

- 1-Quelle est la puissance totale apparente consommé par l'installation.
- 2-Comparer la puissance calculer par rapport à la puissance de transformateur.
- 3- Est -ce que l'installation délivre la puissance aux récepteurs ? Sinon quelle est la solution proposé.

EXERCICE04:


Un câble triphasé cuivre de 35 mm², 50 m alimente un moteur 400 V consommant : 100 A sous cos φ = 0,8 en régime permanent,La chute de tension à l'origine de la ligne est en régime normal (consommation totale distribuée par le tableau : 1000 A) de 10 V entre phases.1-Quelle est la chute de tension aux bornes du moteur :

- en service normal ?
- au démarrage ?

Les normes limitent les chutes de tension en ligne

La norme NF C 15-100 impose que la chute de tension entre l'origine de l'installation BT et tout point d'utilisation n'excède pas les valeurs du tableau ci-dessous. D'autre part la norme NF C 15-100 § 559-6-1 limite la puissance totale des moteurs installés chez l'abonné BT tarif bleu. Pour des puissances supérieures aux valeurs indiquées dans le tableau ci-dessous, l'accord du distributeur d'énergie est nécessaire.

Chute de tension maximale entre l'origine de l'installation BT et l'utilisation

éclairage	autres usages (force motrice)		
3%	5%		
6%	8% (1)		
	3%		

(1) Entre le point de raccordement de l'abonné BT et le moteur.