
Batna 2 university Mathematics and computer science faculty

Computer science department Engineer (Network) 3rd year 2024-2025

Operating systems: Synchronization and communication

Chapter III: Parallelism management: synchronization and communication tools 1 Dr. Saadi Leila

Chapter III: Parallelism management: synchronization and

communication tools

Part 1: Mutual exclusion

I/ Introduction:

The cooperation of processes to accomplish a common task requires the existence of a mechanism that

enables the exchange of information between them, as well as synchronization and mutual exclusion tools

to control their execution order.

II/ Mutual Exclusion:

a. Introductory example:

Let's consider two processes (can be heavy or light):

Integer X = 2000
Process 1
------ Instructions -------
X := X+1000
------ Instructions -------

Process 2
------ Instructions -------
X := X-2000
------ Instructions -------

There are several possible cases of execution:

1st case: sequential execution

Integer X = 2000
Process 1
------ Instructions -------
X := X+1000
------ Instructions -------

Process 2
------ Instructions -------
X := X-2000
------ Instructions -------

mov (Register Ax, X)
mov (Register Bx, 1000)
add (Register Ax, Register Bx)
store (X, Register Ax)

 mov (Register Ax, X)
mov (Register Bx, 1000)
sub (Register Ax, Register Bx)
store (X, Register Ax)

 Running both processes either P1<P2 or P2<P1 gives the same, correct result.

Batna 2 university Mathematics and computer science faculty

Computer science department Engineer (Network) 3rd year 2024-2025

Operating systems: Synchronization and communication

Chapter III: Parallelism management: synchronization and communication tools 2 Dr. Saadi Leila

2nd case: Parallel execution (in a time-sharing system)

Integer X = 2000
Process 1
------ Instructions -------
X := X+1000
------ Instructions -------

Process 2
------ Instructions -------
X := X-2000
------ Instructions -------

mov (Register Ax, X)
mov (Register Bx, 1000)

 mov (Register Ax, X)
mov (Register Bx, 1000)
sub (Register Ax, Register Bx)
store (X, Register Ax)

add (Register Ax, Register Bx)
store (X, Register Ax)

 In this case, it is possible to imagine several execution scenarios where different results are

obtained at each run inconsistent results

 The problem of using the same variable X a critical resource.

b/ Definitions:

1/ Resource: is any object that a process needs to progress in its execution (main memory, CPU, signals, etc.).

2/ Shareable resource: can be allocated at the same time to several processes can be shared at n access points.

3/ Critical resource: can be shared at a single access point can only be allocated to one process at a time.

4/ Critical section: a critical section of a process is a sequence of instructions that use a critical resource.

c/ Mutual exclusion definition:

Mutual exclusion is a protocol that protects a critical resource from simultaneous access by several

cooperating or competing processes. It allows access to be restricted to one process at a time.

In other words, processes exclude each other from accessing a critical resource.

d/ Mutual exclusion protocol properties:

Each solution used to achieve mutual exclusion must comply with :

o Definition: at any time, no more than one process may be in the critical section.

o Reachability: if several processes are blocked waiting for the critical section and no process is in the

critical section, then one of them must reach it in a finite time.

o Progression: a process waiting to reach the critical section in a finite time.

o Same solution: all processes must use the same solution, and no process plays a privileged role.

o A process outside its critical section or entry protocol must not influence the mutual exclusion protocol

(on one of the other processes).

Batna 2 university Mathematics and computer science faculty

Computer science department Engineer (Network) 3rd year 2024-2025

Operating systems: Synchronization and communication

Chapter III: Parallelism management: synchronization and communication tools 3 Dr. Saadi Leila

o No assumptions should be made about process speeds.

e/ Mutual exclusion solutions:

To write the mutual exclusion between processes, we most often use :

o Active waiting: lock variables, test & set, alternation)

o Passive wait: (semaphores, monitors)

o Hardware solutions (shared memory, interrupt masking)

1/ interrupt masking:

Each process hides interrupts before entering its critical section, so the clock interrupt won't occur and the

processor can't be allocated to another process.

Disadvantages:

1/ This approach is not interesting: it's dangerous to allow user processes to mask interrupts Fear of forgetting

to unmask interrupts would be the end of the system.

2/ If the system has several processors with shared memory, interrupt masking will only take place in the original

processor, while the others continue to access the shared memory.

2/ Mutual exclusion by active waiting:

• Lock variables:

Consider a single lock variable that initially has the value 0. The process must test this lock before accessing the

critical section:

integer X = 2000, integer verrou = 0
Process 1
------ Instructions -------
if verrou = 0 than

Verrou 1
else Waits (tests the value of verrou)
 Verrou 1
end if

X := X+1000
Verrou 0

------ Instructions -------

Process 2
------ Instructions -------
if verrou = 0 than

Verrou 1
else Waits (tests the value of verrou)
 Verrou 1
end if

X := X-2000
Verrou 0

------ Instructions -------

if verrou = 0 than

Verrou 1

Process enten in his SC

else if verrou = 1 than

Waits until the process in

SC returns it 0 after the

end of its SC

Batna 2 university Mathematics and computer science faculty

Computer science department Engineer (Network) 3rd year 2024-2025

Operating systems: Synchronization and communication

Chapter III: Parallelism management: synchronization and communication tools 4 Dr. Saadi Leila

Disadvantage: simultaneous lock test by two processes (for example) and lock is set to 0 both change the value

to 1 and enter their SCs.

• Alternation:

Let's consider the integer variable Tour taking the values 0 and 1 alternately between two processes:

integer X = 2000, integer Tour = 0
Process 1
------ Instructions -------
While (Tour <> 0) do

Waits (tests the value ofTour) X := X+1000
Tour 1
------ Instructions -------

Process 2
------ Instructions -------
While (Tour <> 1) do

Waits (tests the value of Tour) X := X-2000
Tour 0
------ Instructions -------

Disadvantage: Not a valid solution if there is a big difference in speed between the processes.

• Test & test instruction:

Most processors have a TAS instruction (elementary hard-wired mechanism) which allows both testing and

changing the value of a memory word in an exclusive way. Algorithmically, TAS can be written as follows:

Block the access to memory word M

if (M = 0) than
M 1
Enable access to memory word M

COCO + 2
End if
if (M = 1) than

Enable access to memory word M

CO CO + 1
End if

End

Note: this instruction is executed indivisibly.

integer X = 2000, integer P = 0
Process 1
------ Instructions -------
E : TAS(P)

Go to E
X := X+1000
P 0

------ Instructions -------

Process 2
------ Instructions -------
E : TAS(P)

Go to E
X := X-2000
P 0

------ Instructions -------

Batna 2 university Mathematics and computer science faculty

Computer science department Engineer (Network) 3rd year 2024-2025

Operating systems: Synchronization and communication

Chapter III: Parallelism management: synchronization and communication tools 5 Dr. Saadi Leila

3/ Mutual exclusion by passive waiting:

• Semaphores:

A semaphore is an integer variable that is the solution commonly used to restrict access to shared resources. The

semaphore was invented by Edsger Dijkstra in 1965.

A semaphore S consists of :

▪ An intgere e(s).

▪ A queue f(s).

▪ Two primitives P(s) et V(s)

o P = Proberen (can I)

o V = Verhogen (go to)

Such that:

Use for mutual exclusion:

The semaphore used for mutual exclusion is initialized to 1, and all processes using this semaphore must respect:

Example:

intger X = 2000, semaphore s = 1
Process 1 Process 2
------ Instructions ------- ------ Instructions -------
P(s) P(s)
X := X+1000 X := X-2000
V(s) V(s)
------ Instructions ------- ------ Instructions -------

P(s)
e(s) e(s) – 1

if (e(s) < 0) than

stat(p) blocked

enter(p, f(s))

end if
end

V(s)

e(s) e(s) + 1

if (e(s) <= 0) than

go out (f(s), q)

stat(q, ready)

enter(q, f(p.ready))

end if

end

Process
P(s)

< SC >

V(s)
end

- At any one time, at most one process is in its critical section.

- When no process is in its critical section, SC is entered after a
finite time.

- Both primitives run indivisibly.

Batna 2 university Mathematics and computer science faculty

Computer science department Engineer (Network) 3rd year 2024-2025

Operating systems: Synchronization and communication

Chapter III: Parallelism management: synchronization and communication tools 6 Dr. Saadi Leila

Notes:

1/ The choice of a process in the queue depends on the way queues are managed in the system; the description

of V does not indicate how a process is chosen.

2/ P and V are implemented as system primitives.

3/ A semaphore cannot be initialized to a negative value, but can become one after a certain number of

executions of P.

• Monitors:

Definition:

The monitor is a programmed concept for implementing OS, offering facilities for ensuring mutual exclusion and

synchronization between processes.

Monitors are proposed by Hoare and Brinch Hensen.

Features:

• A monitor is a set of:

- Stat variables

- Internal procedures

- External procedures (point of entry)

- Conditions

- Synchronization primitives

State variables can only be manipulated by external procedures.

• Only one process can be active in the monitor at any given time.

• Mutual exclusion is ensured at monitor level by the compiler.

• Instructions that manipulate critical resources are stored in the monitor's internal procedures.

To block processes, use conditions with two associated primitives Wait and Signal.

Wait(C)

stat(p) blocked place the process in the queue associated with condition C

Enter(p, f(C)

Fin

Signal (C)

if (f(C) != null) than go

out(f(C), q)

stat(q) ready / output the following process from the queue associated with C

Enter(q, f(ready process))

end if

Fin

Batna 2 university Mathematics and computer science faculty

Computer science department Engineer (Network) 3rd year 2024-2025

Operating systems: Synchronization and communication

Chapter III: Parallelism management: synchronization and communication tools 7 Dr. Saadi Leila

Several processes may be waiting for a signal from the scheduler.

example:

integer X = 2000,

Monitor Example X-
libre : condition
Test : boolean

Procedure ProtegerX()

if Test than
Wait(X-libre)

end if
Test true

Fin
Procedure LibérerX()

Test false
Signal(X-libre)

end
begin

Test false
end
Process 1
------ Instructions -------
Example.ProtegerX()
X := X+1000
Example.LibererX()
------ Instructions -------

Process 2
------ Instructions -------
Example.ProtegerX()
X := X-2000
Example.LibererX()
------ Instructions -------

Notes :

1/ Monitors are a programmed concept, the compiler needs to know about them, C and Pascal don't have

monitors, they are predefined in a few rare languages like Concurrent Euclid and Java.

2/ Brinch Hensen and Hoare each define a different approach to monitors:

Brinch Hensen
When process P1 wakes up process P2, it exits
the monitor and completes its execution outside
the parallel monitor.

Hoare
When process P1 wakes up process P2, P2
enters the monitor.
P1 goes directly to the activator queue and waits
until the monitor is free to enter and continue
execution.

