
Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 1 Dr. Saadi Leila

Chapter IV: Case study Intel 8086 processor

I/ Introduction:

This chapter studies an example of architecture to reinforce all information required from the last

chapters. The case is Intel 8086 processor.

We will take a look for the contents and registers in this processor and practice the assembling

language.

II/ History and generalities:

Intel introduced the microprocessor in November 1971 with the advertisement, "Announcing a New

Era in Integrated Electronics." The fulfillment of this prophecy has already occurred with the delivery of

the 8008 in 1972, the 8080 in 1974, the 8085 in 1976, and the 8086 in 1978. During this time, throughput

has improved 100-fold, the price of a CPU chip has declined from $300 to $3, and microcomputers have

revolutionized design concepts in countless applications. They are now entering our homes and cars.

The principal way in which MPU & microcomputer are categorized in term of the maximum number of

binary bits in the data they process that is, their word length. Processor vary in their speed, capacity of

memory, register and data bus, below are a brief description of various Intel processor in Table.

Intel introduced 8086 microprocessor in 1978. This 16-bit microprocessor was a major improvement

over the previous generation of 8080/8085 series of microprocessors.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 2 Dr. Saadi Leila

It has characteristics:

▪ 133 instructions

▪ 9 flags

▪ 1 megabytes memory size

▪ 64K input/output ports

▪ 40 processor pins

▪ 20 address bus

▪ 16 data lines

▪ 8086 microprocessors come in many variants, such as 8086-1 and 8086-2. The clock speed of

8086 is 5 MHz, 8086-2 is 8MHz and 8086-1 is 10 MHz. It consists of 29,000 transistors.

▪ It was mainly designed for assembly languages and high-level programming languages. Also, it

can be operated in both single processor and multiprocessor configurations for performing task

more accurately and speedily.

▪ It was the first 16-bit processor having 16 bit ALU and 16-bit external data bus.

▪ Addressing mode Memory direct/ Memory indirect/ Register/ Immediate/ Indexing

III/ Intel 8086 architecture:

Internal organization of the 8086 microprocessor:

The 8086 consists of two units operating in parallel:

▪ the Execution Unit (EU): executes the instructions contained in the queue.

▪ the Bus Interface Unit (BIU): fetches instructions from memory and stores them in a queue.

Both units operate simultaneously, speeding up the program execution process (pipe-line operation

(we will see later)).

The 8086 microprocessor contains 14 registers divided into 4 groups:

▪ General registers: 4 16-bit registers

AX = (AH,AL) ;

BX = (BH,BL) ;

CX = (CH,CL) ;

DX = (DH,DL)

They can also be considered as 8 8-bit registers. They are used to temporarily hold data. They are

general registers, but can be used for specific operations. Example: AX = accumulator, CX = counter.

▪ Pointer and index registers: we have 4 registers (16-bit registers).

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 3 Dr. Saadi Leila

Pointers :

SP: Stack Pointer (the stack is an area where data is saved during program execution);

BP: Base Pointer, used to address data on the stack.

Index :

SI: Source Index ;

DI: Destination Index. They are used to transfer byte strings between two memory areas.

Note: Pointers and indexes contain memory cell addresses.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 4 Dr. Saadi Leila

▪ Instruction pointer (ordinal or program counter) and flags (PSW Process Stat Word flags): we

have 2 registers (16-bit registers).

Instruction pointer IP: contains the address of the next instruction to be executed.

PSW Flags :

CF: carry indicator;
PF: parity indicator;
AF: auxiliary hold indicator;
ZF: zero indicator;
SF: sign indicator;
TF: trap indicator;
IF: interrupt authorization flag;
DF: decrement indicator;
OF: overflow flag.
▪ Segment registers: we have 4 registers (16-bit registers).

CS: Code Segment register;

DS: Data Segment register;

SS: Stack Segment;

ES: Extra Segment, additional segment registers for data;

Note: Segment registers, together with pointers and indexes, enable the 8086 microprocessor to

address the entire memory.

▪ Instruction decoder (ID): analyzes the instruction's operation code to distribute the various

elementary commands.

▪ Sequencer: orders all micro-commands to all units (memory, ALU, etc.) to process the instruction.

Note: The registers are used according to the 8086 architectures:

16 bits registers High part 8 to
15 bits

Low part 0 to
7 bits

use

AX
BX
CX
DX
SI
DI
BP,
SP

AH
BH
CH
DH
/

AL
BL
CL
DL
/

Accumulator, multiplication, division
Access memory
Counter, repetition, offset
In, out, multiplication, division
Index source, lods, movs
Index destination, stos, movs
Base pointer, stack
Stack pointer, stack top

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 5 Dr. Saadi Leila

IV/ The structure of the main memory in intel 8086:

The 8086's addressable memory space is 220 = 1,048,576 bytes = 1 MB (20 address bits). This space

is divided into segments. A segment is a 64 KB (65,536 bytes) memory area defined by its starting

address, which must be a multiple of 16.

In such an address, the 4 least significant bits are set to zero. We can therefore represent a segment

address with only its 16 most significant bits, the 4 least significant bits being implicitly set to 0.

To designate one of the 216 = 65,536 memory locations contained in a segment, all you need is a 16-

bit value.

Thus, a memory location is identified by the 8086 using two 16-bit quantities:

• a segment address;

• a displacement or offset (also called effective address) within this segment.

 This method of memory management is called memory segmentation.

A (segment,offset) pair defines a logical address, expressed as  segment : offset

The address of a memory cell given as a 20-bit quantity (5 hex digits) is called the physical address,

as it corresponds to the value actually sent on the A0 - A19 address bus.

At any given moment, the 8086 has access to 4 segments whose addresses are in the segment

registers CS, DS, SS and ES. The code segment contains the program instructions, the data segment

contains the data manipulated by the program, the stack segment contains the backup stack, and the

additional segment may also contain data.

The CS register is associated with the IP instruction pointer, so the next instruction to be executed is

at the logical address CS : IP.

The physical address for the location of the instruction is generated by shifting the CS left one hex

digit and then adding it to the IP. IP contains the offset address.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 6 Dr. Saadi Leila

physical address = 16 X segment + offset

Similarly, the segment registers DS and ES can be associated with an index register. Example: DS:

SI, ES: DI. The stack segment register can be associated with pointer registers: SS: SP or SS: BP.

Note: in other systems, memory is organized into pages - Memory pagination.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 7 Dr. Saadi Leila

V/ What is assembling language:

✓ Assembly language or simply Assembler - ASM  is a low-level language that represents machine

language in human-readable form.

✓ The bit combinations of machine language are represented by so-called "mnemonic" symbols (from

the Greek mnêmonikos, relating to memory),  easy to remember.

✓ The assembler program converts these mnemonics into machine language to create, for example,

an executable file.

✓ On early computers, the assembly task was performed manually by the programmer.

✓ Each computer is equipped with a processor that performs the computer's arithmetic, logic and

control activities.

✓ Each processor family has its own set of instructions for handling different operations, such as

keyboard input, displaying information on the screen and performing various other tasks. We call

this sequence "machine language instructions".

✓ A processor only understands machine language instructions, which are sequences of ones and

zeros.

✓ However, machine language is too obscure and complex to use for software development. So,

assembly language is designed for a specific family of processors that represent different instructions

in symbolic code and in a more comprehensible form.

✓ Assembly language is the symbolic programming language closest to machine language in form and

content. Assembly language is useful when :

▪ We need to carefully control the steps in our program, down to byte and even bit level.

▪ We need to write subroutines for functions that are not provided by other symbolic

programming languages, such as COBOL, Java or C.

Advantages of assembly language :

Knowing this basic language makes you more aware of how:

▪ Programs work with the operating system, processor and BIOS.

▪ Data is displayed in memory.

▪ Processor executes instructions.

▪ Process instruction data.

▪ A program accesses external device.

The advantages of using assembly language are :

▪ Requires less memory and execution time.

▪ Assembler simplifies complex hardware-specific tasks.

▪ Suitable for urgent tasks.

▪ Ideal for writing interrupt routines and other memory-resident programs.

Special features:

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 8 Dr. Saadi Leila

▪ Processor-specific language

▪ Machine instructions

▪ Assembly language directives: assembly languages have additional directives for assembling

data blocks and assigning addresses to instructions by defining labels.

▪ Machine language reversibility: it is theoretically possible to translate code in both directions

without loss of information. The transformation of assembly code into machine language is

accomplished by a program called assembler, and in the other direction by a disassembler

program. These operations are called assembly and disassembly respectively.

▪ A disassembler: is a computer program that translates machine language (an executable file)

into assembly language (also known as "low-level" language). This operation, disassembly, is the

reverse of that performed by an assembler program, assembly.

How it works :

▪ Computers come with a specific set of basic instructions that correspond to the basic operations

the computer can perform. For example, a "Load" instruction causes the processor to move a

series of bits from a location in processor memory to a special repository called a register.

▪ The programmer can write a program using one of these assembly instructions.

▪ This sequence of assembler instructions, known as the source code or source program, is then

specified in the assembler program when we start the program.

▪ The assembler program takes each program instruction in the source program and generates a

corresponding bitstream or pattern (a series of zeros and ones of a certain length).

▪ The output of the assembler program is called object code or object program in relation to the

input source program. The series of zeros and ones that make up the object program is also

called machine code.

▪ We can then run the object program at any time.

II/ The assembler language:

A/ Source file:

Machine language and assembler language:

✓ A machine language program is a sequence of instructions and binary data blocks in memory.

✓ Assembly language is a symbolic form of a machine-language program

• human-readable (+/-)

• symbolic constants, addresses and instruction names

• arithmetic during assembly - address calculations, constants

• synthetic instructions (not supported by our assembler)

• macro instruction expansion (not supported by our assembler)

• assembly directives (pseudo-instructions)

✓ memory allocation, memory initialization, conditional assembly (not supported by our assembler).

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 9 Dr. Saadi Leila

To create an assembler program, we go through the following steps:

✓ Assembler is a non-interactive utility. The program you wish to translate into machine language

(known as an assembler) must be placed in a text file (with the extension .ASM under DOS).

✓ Keyboard entry of the source program requires a program called a text editor.

✓ The assembly operation translates each instruction in the source program into a machine instruction.

The result of assembly is saved in a file with the extension .OBJ (object file).

✓ The .OBJ file is not directly executable. In fact, it often happens that an executable program is built

from several source files. You need to link the object files using a utility called a link editor (even if

you only have one). The linker produces an executable file with the .EXE extension.

✓ The .EXE file is directly executable. A special utility in the operating system (DOS in this case), the

loader, is responsible for reading the executable file, placing it in main memory and then launching

the program.

✓ There are several software packages that allow you to switch between the three phases shown in

the previous figure: MASM (Microsoft Assembler: with LINK as link editor), TASM (Turbo Assembler:

with TLINK as link editor) and NASM etc...

✓ Other file formats can be generated from an object file for systems other than the PC (IBM

compatible). The best-known forms are INTEL HEX, ASCII HEX etc. ...

✓ The assembler is used to be closer to the machine, to know exactly what instructions are being

generated (to control or optimize an operation):

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 10 Dr. Saadi Leila

• programming of basic machine systems (keyboard control, screen control, etc.),

• certain parts of the operating system,

• control of new peripherals (printers, scanners, etc.).

• access to system resources,

✓ Like any program, a program written in assembler (source program) comprises definitions, data and

instructions, each of which is written on a line of text.

✓ Data are declared by directives, special key words understood by the assembler and therefore

intended for the assembler. Instructions are intended for the microprocessor.

B/ Instructions:

✓ An assembly language instruction in a source file has the form:

{Label} {Mnemonic {Operand}} {;Comment}

✓ Each entity is a field  label, mnemonic, operands and a comment field.

❖ Label field: is (usually) an optional field containing a symbolic label for the current instruction 

mark target lines for use in GOTO jumps.

• We can also specify variable names, procedure names and other entities using symbolic labels.

• Some mnemonics, however, require a label, while others do not.

• In general, labels should always begin in the first column (this makes programs easier to read).

❖ Mnemonic field:

• A mnemonic is an instruction name (e.g. mov, add, etc.). The mnemonic  memory load MOV is

much easier to remember than the binary equivalent of MOV.

• - The mnemonic field contains an assembler instruction.

• - Instructions are divided into three classes: 80x86 Machine instructions, assembler directives and

pseudo-opcodes.

✓ 80x86 instructions, of course, are assembler mnemonics that correspond to the actual 80x86

Instructions.

✓ Assembler directives are special instructions that provide information to the assembler but do

not generate any code. Example: segment, equ, assume, end, ...

✓ A pseudo-opcode is a message to the assembler, just like an assembler directive, however a

pseudo-opcode will emit bytes of object code. Example: byte, word, dword, tbyte, ...

❖ The operand field:

• The operand field contains the operands or parameters for the instruction specified in the

mnemonic field.

• Operands never appear on lines by themselves

• The type and number of operands (zero, one, two or more) depend entirely on the specific

instruction.

❖ The comments field:

• The comment field is used to annotate each line of program source code.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 11 Dr. Saadi Leila

• Note that the comment field always begins with a semicolon.

• When the assembler processes a line of text, it completely ignores everything on the source line

following a semi colon.

Each assembly language instruction then appears on its own line in the source file:

C/ Assembler directives:

• A directive is an information provided by the programmer to the compiler. It is not transformed

into a machine language instruction. It therefore adds no bytes to the compiled program. So

directives are declarations that guide the assembler.

• A directive is used, for example, to create memory space for variables, to define constants, etc...

• To declare a directive, use the following syntax:

{Name} Directive {operand} { ; comment}

• The operand field depends on the directive

• The comment field has the same properties as seen in the previous paragraph.

• The Name field indicates the name of variables: this is an optional field (depending on the

directive).

D/ Location or line counter:

• Remember: all addresses in 80x86 memory space consist of a segment address and an offset within

that segment.

✓ The assembler, in the process of converting your source file into object code, must keep track

of the offsets in the current segment.

• The location (line) counter is an assembler variable that manages this.

• Each time a segment is created in the source file, the assembler associates the current value of the

location counter with it. The location counter contains the current offset in the segment.

• The value of the location counter varies throughout the assembly process.

• MASM increments the location counter for each byte written to the object code file.

✓ For example, MASM increments the location counter by two after encountering mov ax, bx,

since this instruction is two bytes long.

Example:
 ET1 : MOV AX , 500 ; set the value 500 in the AX register

; this section to position the cursor

; left position:

 mov X, 0

 mov Y, 0

; change cursor position

; screen to clear the video display:

 ; etc.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 12 Dr. Saadi Leila

• The or, and and xor instructions are each three bytes long.

• the mov instruction is two bytes long

• the remaining instructions are all one byte long

• If these instructions appear at the beginning of a segment, the location counter would be the same

as the numbers immediately to the left of each instruction above.

• For example, the or instruction above starts at offset zero. Since the or instruction is three bytes

long, the following and instruction follows at offset three. Similarly, and is three bytes long, so xor

follows at offset six, ...

E/ Symbols:

• A symbol, identifier or label is a name associated with a particular value.

✓ An offset in a segment, a constant, a string, a segment address, an offset in a record, or even

an operand for an instruction.

• In all cases, a label provides the ability to represent a value otherwise incomprehensible with a

familiar name.

• A symbolic name consists of a sequence of letters, digits and special characters, with the following

restrictions:

✓ A symbol cannot begin with a numeric digit.

✓ A name can have any combination of upper- or lower-case alphabetic characters (assembler

treats them the same).

✓ A symbol can contain any number of characters, but only the first 31 are used.

✓ The symbols _, $, ? and @ can appear anywhere in a symbol.

✓ A symbol cannot match any name that is a reserved symbol.

✓ Register names are also reserved

0: or ah, 9
3: and ah, 0c9h
6: xor ah, 40h
9: pop cx
A: mov al, cl
C: pop bp
D: pop cx
E: pop dx
F: pop ds
10: ret

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 13 Dr. Saadi Leila

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 14 Dr. Saadi Leila

F/ Constants:

A literal constant:

A literal constant is a constant whose value is implied from the characters that make it up.

123

3.14159

“Literal String Constant”

0FABCh

‘A’

<Text Constant>

• The representation of a literal constant corresponds to what we would normally expect for its "real

value".

• Literal constants are also called non-symbolic constants, because they use the real representation

of the value, rather than a symbolic name.

An integer constant:

• An integer constant is a numerical value that can be specified in binary, decimal or hexadecimal.

• All integer constants must begin with a decimal digit, including hexadecimal constants.

• To represent the value "FDED", specify 0FDEDh.

• The first decimal digit is required by the assembler to differentiate between symbols and numeric

constants.

Examples
 jmp target

• Valid symbols
L1 Bletch RightHere
Right_Here Item1 __Special
$1234 @Home $_@1
Dollar$ WhereAmI? @1234

• Invalid symbols
1TooMany – starts with a number.
Hello.There – contains a point in the middle.
$ - we can't have $ or ? alone.
LABEL – reserved symbol.
Right Here – the space.
Hi,There - , prohibited

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 15 Dr. Saadi Leila

A string constant:

• A string constant is a sequence of characters enclosed in apostrophes or quotation marks.

"is a string"

'like this’

A real constant:

• The decimal form is just a sequence of digits containing a decimal point at a certain position of the

number.

625.25 -6.02e-10

A text constant:

• A text constant consists of a sequence of characters surrounded by "<" and ">" symbols.

• For example, the text constant 5[bx] is normally written as <5[bx]>.

Declaration of a constant using equations:

symbol equ expression

symbol = expression

"=" for integers :

• The purpose of the "=" directive is to define symbols that have an integer (or a single character).

• This directive does not allow real, string or text values.

The directive “equ”:

• The equ directive provides almost a superset of the capabilities of the "=" and textqu directives.

• It authorizes operands that are numeric, textual or literal string constants.

NumElements = 16

Array byte NumElements dup (?)

mov cx, NumElements

mov bx, 0

ClrLoop: mov Array[bx], 0

inc bx

loop ClrLoop

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 16 Dr. Saadi Leila

G/ Variables:

The directives used to declare variables are : DB, DW, DD, DF, DP, DQ, DT

DB (Define Byte) :

This directive defines an 8-bit variable: in other words, it reserves a memory space of one byte: so the

values that can be stored for this directive range from 0 to 255 (for unsigned numbers) and from -128

to 127 for signed numbers.

Name DB expression

DW (Define Word) :

This directive defines a 16-bit variable: in other words, it reserves a memory space of one word: so

the values that can be stored for this directive range from 0 to 65535 (for unsigned numbers) and

from -32768 to 32767 for signed numbers.

Name DW expression

One equ 1

Minus1 equ -1

Essaye equ 'Y'

StringEqu equ “Hello student”

TxtEqu equ <4[si]>

HTString byte StringEqu ;same HTString equ“Hello student”

mov ax, TxtEqu ;same mov ax, 4[si]

mov bl, One ;same mov bl, 1

cmp al, try ;same cmp al, ‘Y’

Vil DB 12H; Defines a variable (one byte) with value Initial 12.

Tab DB 18H, 15H, 13H ; defines a 3 table cells

 ;(3 octet) Starts from TAB address.

Mess DB 'ISET'; also defines an array, but the values of each cell

 ; simply the ascii code of each letter.

Name DB ? ; defines an 8-bit variable with any initial value.

TT1 DW 500H ; reserves two memory cells (one word) from address TT1.

TAB1 DW 10H,11H,14H ; reserve a table of 6 squares each value will be put on two cells

YY DW ? ; reserves a word in memory of any initial value.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 17 Dr. Saadi Leila

DD (Define Double)

This directive reserves a 32-bit space (4 memory cells or 4 bytes).

Name DD expression

Example : ff DD 15500000F

Dup directive:

To declare an array of n cells, all initialized to the same value, use the dup directive:

The Word PTR et Byte PTR directives :

are directives used to remove size ambiguity in the Assembler

H/ Segments:

The SEGMENT directive controls the relationship between object code generation and the management

of the logical segments generated.

The SEGMENT instruction is used to:

• control the placement of object code in specific segments.

• associate symbols representing addresses with a segment, considering their value as a

displacement relative to the beginning of the segment.

• specify directives for the linker (segment name, operand fields of the SEGMENT instruction

determining segment processing by the linker); this information is passed as is:

SEGMENT : Name SEGMENT operand

Name ends

The 'Name' label field is used to:

• indicate the name of the segment.

• establish an obvious relationship between pairs of SEGMENT and ENDS instructions.

tab DB 100 dup (15) ; 100 octets as 15

y DW 10 dup (?) ; 10 mots de 16 bits not initialized

MOV byte ptr [BX], val ; concerns 1 octet

MOV word ptr [BX], val ; concerns 1 word of 2 octets

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 18 Dr. Saadi Leila

Alternating segments :

A program can alternate between different segments to generate code:

The SEGMENT instruction is used to re-open an existing segment (i.e. SEGMENT either creates a new

segment, or opens a segment to add additional code).

The operands of the SEGMENT statement determine how the linker will handle the segment:

COMMON :

All segments with the label (class) will be placed at the same base address (in a contiguous block);

zones of type (COMMON) with different names ((class)) will be placed one behind the other.

Links editor result Module X object code

Module Y object code

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 19 Dr. Saadi Leila

PUBLIC :

All segments with this qualifier will be grouped together in a single resulting segment, one behind the

other.

STACK :

Only one segment with this qualifier is accepted, intended for stack management.

MEMORY:

The first segment with this qualifier will be placed at a memory position above any other segment; if

there are more segments of this kind, they will be treated as segments of type (COMMON).

AT :

Tags defined in such a segment are defined as being relative to the value ((adr)) 16) * 16.

Managing basic registers :

At the start of execution, the program must initialize the base registers: their contents must

correspond to the location of the physical segments, containing the code of the corresponding logical

segments:

The assembler creates a symbol designating the logic segment; this symbol can be used as an external

variable (a symbol defined in another module);

➔ the linker defines the value of the symbol as the segment origin (= the value of the base address /

16).

Note: The contents of the CS and SS segment registers (as well as the IP and SP registers) are defined

by the operating system before program execution begins (segment containing the code, small stack

provided by the system).

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 20 Dr. Saadi Leila

However, it is preferable to redefine the stack (SS and SP) to ensure that a sufficient memory area is

available during program execution.

Association of logic segments and base registers (= physical segments)

The ASSUME pseudo-operation tells the assembler which segment register to use to access the

operands:

• as a result, the assembler associates the base register(s) (CS, ES, SS, DS) with the logical segment

name "namek" ;

• thereafter, the assembler will automatically add segment prefixes where necessary.

Note: The assembler will only add a prefix to instructions where the default choice of base register

(see "Registers") does not provide the correct result.

1 seg1 SEGMENT

2 nom1 DW

3 seg1 ENDS

4 seg2 SEGMENT STACK

5 nom2 DW

6 seg2 ENDS

7 seg3 SEGMENT

8 ASSUME ES:seg1,SS:seg2,CS:seg3...

9 MOV AX,seg1

10 MOV ES,AX

11 MOV AX,seg2

12 MOV SS,AX

13 MOV AX,nom1

14 MOV BX,nom2

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 21 Dr. Saadi Leila

Relationship between location counter and segment :

• It defines the relative addresses at segment level.

• There is one counter per segment

• The current counter value indicates the position where the next byte in the object code will be

placed.

• To initialize the position counter value, use the following syntax

ORG value

EVEN must be even

• $ this function returns the current value of the position counter.

1 INCLUDE MACRO.LIB ; add the instructions contained in the MACRO.LIB

2 pile SEGMENT STACK ; stack reservation

3 DW 100 DUP (?) ; words without initialization

4 haut LABEL WORD ; word address according to stack

5 pile ENDS

6 data SEGMENT PUBLIC ; where the program data will be placed

7 data ENDS

8 code SEGMENT PUBLIC

9 ASSUME CS:code,SS:pile,DS:data ;

10 start LABEL FAR

11 MOV AX,data ; linking DS to the data segment

12 MOV DS,AX ; (No MOV imm. DS !)

13 MOV AX,pile

14 MOV SS,AX

15 MOV SP,haut ; top of the stack (empty!)

16 EXIT

17 code ENDS

18 END start ; end of source code, address of first instruction

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 22 Dr. Saadi Leila

The 8086 Assembler instruction set

The 8086 processor instructions can be divided into 7 groups:

- Data transfer instructions

- Arithmetic instructions

- Bit instructions (logic)

- Program jump instructions

- String instructions

- Process control instructions

- Interrupt instructions

I/ Data transfer instructions:

A/ Instructions for general use:

1/ MOV Instruction:

MOV operand1, operand2

It copies the contents of the second operand to the first.

Operand1 = Destination can be register or memory address

Operand2 = Source can be immediate value, register or memory address

- MOV register, memory

- MOV memory, register

- MOV register, register

- MOV memory, immediate

- MOV register, immediate

Register = AX, BX, CX, DX, AH, AL, BH, BL; CH, CL, DH, DL, DI, SI, BP, SP

Memory = [BX], [BX + SI + 7], variable

Immediate = 5, -24, 3FH, 100111B,

Not allowed = MOV memory, memory / MOV CS or IP

Address calculation (View in Chapter III) :

@physical = 16*segment + offset

Example : DS = 100 (segment data)

BX = 30 and SI = 70

[BX + SI] + 25 = (100 * 16 + 30) + 70 + 25 = 1725

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 23 Dr. Saadi Leila

• Based addressing = base register content + offset (registers SS, CS, DS, ES)

• Indexed addressing = index register content + register content (BP, SI, SP, DI registers)

• Indexed base addressing = index register content + base register content + offset

• Relative addressing = IP register content + operand (used in jumps and branches)

2/ PUSH Instruction:

The stack is the memory area containing the execution context of functions in programs. Each time the

program starts executing a function, it sets up a stack frame, which is a dynamic data structure. The

stack contains local variables and parameters passed to the function.

Two registers work with the stack: SP (Stack Pointer) and BP (Base Pointer). SP contains the address of

the last occupied cell, called the stack vertex, and the BP register contains the stack base address.

The stack is managed according to the LIFO (Last In First Out) principle, so that when a new item of data

is stacked on top, it is unstacked from the top when it is deleted.

PUSH stacks CPU registers on top of the stack

PUSH source

Source can be register, memory, immediate

3/ POP Instruction:

It is used to unstack CPU registers from the top of the stack.

POP destination

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 24 Dr. Saadi Leila

Destination can be register, memory

4/ PUSHA Instruction:

This instruction stacks all the microprocessor's internal registers on the stack.

5/ POPA Instruction:

This instruction unloads all the microprocessor's internal registers onto the stack.

6/ XCHG Instruction:

It switches the source to the destination as follows:

ORG 100h

MOV AX, 1234h
PUSH AX ; saves the value of AX in stack.
MOV AX, 5678h ; changes the value AX .
POP AX ; restore the original Value of AX.
RET
END

XCHG AX, BX ; It swaps between AX and BX
Example: AX=0123 and BX=5678
after executing the instruction, we'll have
AX=5678 and BX=0123

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 25 Dr. Saadi Leila

7/ XLAT Instruction:

This instruction is used to convert data from one code to another, in fact it places in the AL accumulator

the contents of the memory cell addressed in base address (8 bits), the base being the BX register and

the offset being AL itself in the DS segment.

(AL)<--------[(BX) + (AL)]

XLAT tab_source

Example: converting 4-bit binary code into ASCII-coded hexadecimal digits

B/ Address transfer instructions:

1/ LEA Instruction (Load Effective Adress) :

It transfers the offset address of a memory operand to a 16-bit register (pointer or index). This

command has the same function as the MOV instruction with offset, but is more powerful, as it can

be used with any addressing technique.

LEA register, operand

16-bit register and 16-bit hard operand

2/ LDS/LES Instruction:

This instruction loads the segment and offset of an address.

LDS load pointer with DS

LES load pointer with ES

Instead of: MOV BX, offset tab_val
 MOV AX, seg tab_val
 MOV DS, AX
We write LDS BX, tab_val

Tab db ‘0123456789ABCDEF’

MOV AL, 1110B ; loading the value to be converted (07) MOV BX, OFFSET TAB pointed
 ; on the table
XLAT ; Al is charged by the code ASCII of ‘E’

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 26 Dr. Saadi Leila

C/ Indicator instructions:

1/ LAHF/SAHF Instruction:

LAHF (Load AH from Flags): places the low byte of the status register (FLAGS) in the AH register as

follows:

LAHF

SAHF (Store AH into Flags): Places the contents of AH in the low byte of the status register (FLAGS).

SAHF

2/ PUSHF/POPF Instruction:

PUSHF: Stacks the entire status register (FLAGS).

POPF: Unstacks the status register (FLAGS).

D/ Input/output instructions:

IN/OUT Instruction:

It is used to retrieve data from a port (i.e. from the periphery) or to restore data to a port. In both cases,

if a byte is to be sent or received, the AL accumulator is used, and if a word is to be sent or received,

the AX accumulator is used.

IN Accumulateur, DX

OUT DX, Accumulateur

DX: contains the port address.

ACCUMULATOR: contains the data (to be received or stored).

II/ Arithmetic instructions:

Arithmetic instructions can handle four types of numbers:

• unsigned binary numbers

MOV AH, 9

INT 21H ; string display

OUT DX, AL ; sets the byte in AL to the port specified by DX

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 27 Dr. Saadi Leila

• Signed binary numbers.

• unsigned binary coded decimal (DCB) numbers.

• DCB numbers, unsigned.

A/ Addition:

1/ ADD Instruction:

ADD destination, source

Destination = destination + source

Example:

ADD AX, BX ; AX = AX + BX (16-bit addition) ADD AL,BH

 AL = AL + BH (8-bit addition)

ADD AL, [SI]; AL = AL + the contents of the memory cell pointed to by SI

ADD [DI], AL ; the contents of the memory cell pointed to by DI is added with AL, the result is put into

the memory cell pointed to by DI

Interdiction : ADD [DI], [SI]

ADD tab2, tab2

ADD tab, AX

2/ ADC Instruction (addition with carry):

ADC destination, source

CF holdback and result put into destination = destination + source + carry

Example:

ADC AX,BX ; AX = AX + BX + CF(16-bit addition)

ADC AL,BH ; AL = AL + BH + CF(8-bit addition)

ADC AL,[SI] ; AL = AL + the contents of the memory cell pointed to by SI + CF

ADC [DI],AL ; the content of the memory cell pointed to by DI is added with AL + CF ; the result is

placed in the memory cell pointed to by DI

Note: CF represents the carryover from a previous addition

3/ INC Instruction (Incrementation):

INC destination

Increment destination content destination = destination + 1

Example:

INC AX INC AL INC [SI]
An immediate value cannot be incremented

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 28 Dr. Saadi Leila

4/ AAA/DAA Instruction (ASCII/Decimal Addition Ajustement):

The addition of two BCD numbers sometimes generates a result that is not a BCD number, so

corrections must be made to these numbers to obtain a consistent result. This instruction examines the

lower fourth of AL and checks whether it is consistent or not:

• If yes (sets AF and CF to zero for information) deletes AL's top quarter.

• else :

- Adds 6 to AL

- Adds 1 to AH

- Clears AL's top quarter

- Sets AF and CF to 1 (for information)

Example: we want to add 73 + 88 in BCD

Note that neither 1111 nor 1011 is a BCD number, so we're going to add 6 to the first fourth, so the

operation becomes :

Highest byte :

 resulting in 161

B/ Subtraction:

1/ SUB Instruction:

SUB destination, source

Destination = destination – source

Example :

SUB AX, BX (16 bits)
SUB AL, BH
SUB AL, [SI]
SUB [DI],AL

163

(63)

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 29 Dr. Saadi Leila

Note : same interdiction as ADD

2/ SBB Instruction (Subtraction with carry):

SBB destination, source

Destination = destination – source – carry

Example :
SBB AX, BX AX = AX – BX - CF

3/ DEC Instruction (decrementation):

DEC destination

Destination = destination - 1

4/ NEG Instruction (Negatif):

NEG destination

Destination = 0 - destination have the second complement of an operand destination =(-destination)

CF=1.

Indicators affected by this operation are AF, CF, OF, PF, SF, ZF.

5/ CMP Instruction (Comparison):

CMP destination, source

Destination - source and the result is not saved in the destination, we will have a comparison and the

affected indicators are AF, CF, OF, PF, SF, ZF

Example :

CMP AL, BL CMP AX, 200H CMP AX, BX CMP [DI], CH

6/ AAS/DAS Instruction :

Same as AAA, DAA

C/ Multiplication:

1/ MUL Instruction (multiplication for not signed numbers):

MUL source

Not Signed operand Signed operand

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 30 Dr. Saadi Leila

MUL performs an unsigned multiplication of the source operand with the accumulator

- If the source is a byte, it will be multiplied by the AL accumulator, and the 16-bit result will be

stored in the AX register.

- If the source is a word then it will be multiplied with the AX accumulator, the 32-bit result will

be stored in the AX and DX register pair.

(AX) <------------- (AL) X Source (byte)
(AX)(DX) <------------ (AX) X Source (words)

Multiplication Operand 1 Operand 2 Result

Byte * Byte AL Register or memory AX

Word * Word AX Register or memory DX AX

Word * Byte AL = Byte, AH=0 Register or memory DX AX

2/ IMUL Instruction (multiplication for signed numbers):

IMUL source

It has the same principle except that the numbers are signed.

3/ AAM Instruction (ASCII Adjust for Multiplication):

Like AAA and AAS, this instruction will enable us to correct the result of a multiplication of two BCD

numbers. To correct the result of the AAM instruction, divide AL by 10.

Example :
MOV AL , 6
MOV DL , 8
MUL DL
AAM

D/ Division:

1/ DIV Instruction (division for not signed numbers):

DIV source

It performs an unsigned division of the accumulator by the source operand:

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 31 Dr. Saadi Leila

Examples:

- If the operand is a byte: then the quotient is recovered in register AL and the remainder in

register AH.

- If the operand is a word: then the quotient is recovered in the AX register and the remainder in

the DX register.

2/ IDIV Instruction (division for signed numbers):

IDIV source

It performs a signed division of the accumulator by the source operand:

- If the operand is a byte: then the quotient is recovered in register AL and the remainder in

register AH.

- If the operand is a word: then the quotient is recovered in the AX register and the remainder in

the DX register.

3/ AAD Instruction (ASCII Adjust for Division):

To correct the result, it multiplies the content of AH by 10 and adds it to that of AL.

Note: For this instruction, the adjustment must be performed before the division instruction.

4/ CBW Instruction (Convert byte to word):

This instruction doubles the size of the signed operand one byte becomes one word.

5/ CWD Instruction (Convert word to double):

This instruction doubles the size of the signed operand a word becomes doubled.

III/ Logical (bit) instructions:

Divided into three subgroups: logic, shift and rotation

A/ Logical instructions:

1/ NOT Instruction (negation):

NOT destination

Example :
MOV AX, 500 ; AX = 0000 0101 0000 0000
NOT AX ; AX = 1111 1010 1111 1111

2/ AND Instruction (logical and):

AND destination, source

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 32 Dr. Saadi Leila

It is used to perform a logical AND between the destination and the source (byte or word); the result is

put into the destination.

Destination = destination . source

Example :

MOV AX , 503H ; AX = 0000 0101 0000 0011
AND AX , 0201H ; 0000 0101 0000 0011 AND 0000 0010 0000 0001= 0000 0000 0000 0001
AND AX,BX ; AX = AX . BX (And logic between AX and BX)

AND AL,BH ; AL = AL . BH (logical AND on 8 bits)

AND AL,[SI] ; AL = AL AND the contents of the memory cell pointed to by SI
AND [DI],AL ; logical AND between the memory cell pointed to by DI and AL , the result is set in
the memory cell pointed to by DI.

2/ OR Instruction (logical or):

OR destination, source

It is used to perform a logical OR between the destination and the source (byte or word). The result is put into
the destination.

Destination = destination + source

Example :

MOV AX , 503H ; AX = 0000 0101 0000 0011
OR AX , 0201H ;0000 0101 0000 0011 OR 0000 0010 0000 0001 = 0000 0111 0000 0011
OR AX,BX ; AX = AX + BX (Logical OR between AX and BX)
OR AL,BH ; AL = AL + BH (8-bit logical OR)
OR AL,[SI ; AL = AL OR the contents of the memory cell pointed to by SI
OR [DI],AL ; logical OR between the memory locations DI and AL, the result is stored in the
memory location DI

3/ XOR Instruction (exclusive or):

XOR destination, source

It is used to perform a logical exclusive OR between the destination and the source (byte or word).
The result is put into the destination.

Examples :

MOV AX , 503H ; AX = 0000 0101 0000 0011
XOR AX , 0201H ; 0000 0101 0000 0011 XOR 0000 0010 0000 0001 = 0000 0011 0000 0010
XOR AX,BX ; AX = AX + BX (Exclusive OR between AX and BX)
XOR AL,BH ; AL = AL + BH (8-bit exclusive OR)
XOR AL,[SI] ; AL = AL OR exclusive the contents of the Memory box pointed to by SI
XOR [DI],AL ; Logical XOR between the memory cell pointed to by DI and AL, the result is set in the
memory cell pointed to by DI.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 33 Dr. Saadi Leila

4/ Test Instruction:

TEST destination, source

It is used to perform a logical AND between the destination and the source (byte or word), but the

destination is not affected, as this instruction only affects flags.

Examples :

MOV AX, 503H ; AX = 0000 0101 0000 0011
TEST AX, 0201H ; 0000 0101 0000 0011

B/ Shifting instructions:

We have SHL (logical left shift), SHR (logical right shift), SAL (arithmetic left shift) and SAR (arithmetic

right shift).

SHL destination, 1

SHL destination, CL

SHL destination, number of bits

C/ Rotation instructions:

We have ROL (rotation to the left), RCL (rotation through the retainer to the left), ROR (rotation to the

right) and RCR (rotation through the retainer to the right).

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 34 Dr. Saadi Leila

ROR destination, compteur

IV/ Program jumping instructions :

Usage Name Function

Unconditional jumps CALL
RET
JMP

Call a sub-program or function
Return of a sub-program or function
Jump

Conditional jumps (not
signed arithmetic)

JA/ JNBE
JAE/ JNB
JB/ JNAE
JBE/ JNA

if greater/ if not less than or equal to
if greater than or equal/ if not less than
if less/ if not greatre than or equal to
if less than or equal/ if not greater than

Conditional jumps
(signed arithmetic)

JG/ JNLE
JGE/ JNL
JL/ JNGE
JLE/ JNG

if greater/ if not less than or equal to
if greater than or equal/ if not less than
if less/ if not greatre than or equal to
if less than or equal/ if not greater than

Conditional jumps
(flags)

JC
JE/ JZ
JNC
JNE/ JNZ
JNO
JNP/ JPO
JNS
JO
JP/ JPE
JS

If carry
If equal/ if zero
If no carry
If not equal/ if not zero
If no overflow
if no parity/ if odd parity
If not signed
If overflow
If parity/ if even parity
If sgned (negatif)

Loops LOOP
LOOPE/ LOOPZ
LOOPNE/ LOOPNZ
JCXZ

Loop
Loop if equal/ if zero
Loop if different/ if different to zero
 jump if CX=0

Interruptions INT
INTO
IRET

Interruption
Interruption if overflow
Return of interruption

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 35 Dr. Saadi Leila

A/ Unconditional jumping instructions:

1/ CALL instruction:

CALL procedure label

Jump to a procedure to execute it

 to see in chapter 6

2/ RET instruction:

This instruction is used to return the value of the IP register to resume the instruction after a

procedure has been executed.

3/ JMP instruction:

JMP destination

• If the JMP is of type NEAR, then IP = IP + Displacement

• If JMP is FAR, then CS and IP are replaced by the new values obtained from the instruction.

JMP unconditionally transfers the command to the destination location. The Target operand can be

obtained from the instruction itself (direct JMP), from memory or from a register indicated by the

instruction.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 36 Dr. Saadi Leila

B/ Conditional jumping instructions:

J?? destination

C/ Loop instructions:

1/ LOOP instruction:

LOOP label

It decrements the content of CX by 1.

If CX is non-zero, then IP = IP + displacement

If CX = 0, the next instruction is executed.

2/ LOOPE/LOOPZ instruction:

The CX register is automatically decremented by 1.

If CX is non-zero and ZF=1 then IP = IP + displacement

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 37 Dr. Saadi Leila

3/ LOOPNE/LOOPNZ instruction:

The CX register is automatically decremented by 1.

If CX is non-zero and ZF=0 then IP = IP + displacement

4/ Loop while:

WH: condition

 JCC EndWH

 Action

 …

 JMP WH

EndWH:

5/ Loop repeat:

Repeat:

 actions

 …

 Condition

 JCC repeat

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 38 Dr. Saadi Leila

V/ String instructions :

They can work on byte or word blocks of up to 64 Kbytes.

A/ Repeat prefixes:

1/ REP instruction:

These instructions are used with string instructions to ensure repetition of the instruction if it is to be

applied to a set of information.

• REP automatically decrements CX to test whether it is equal to zero or not. If CX = 0 REP stops.

• REPE/REPZ: REPE/REPZ is the same as REP, i.e. it automatically decrements the CX register, but

can exit the loop if ZF<>0.

• REPNE/REPNZ

2/ MOVE-string instruction:

MOVSB copies the byte (respectively the word for the MOVSW instruction) pointed to by SI to the byte

(respectively the word) pointed to by ES:DI. The destination segment is necessarily ES. However, the

source segment, which is DS by default, can be redefined.

Once copied, SI and DI are automatically modified. If the direction indicator is set to 0, 1 (respectively

2) is added to SI and DI. If the direction indicator is set to 1, 1 (respectively 2) is removed from SI and

DI.

Example:

MOV AX, 8000H ;Assign source segment address to AX
MOV DS, AX ;Load source segment address into DS
MOV AX, 9000H ;Assign destination segment address to AX
MOV CX, 0E0H ;Move the length of the string to the counter register CX
MOV SI, 4000H ;Assign source index address to SI
MOV DI, 5000H ;Assign destination index address to DI
CLD ;Ensure auto-increment mode is set by clearing the direction flag
REP MOVSB ;Repeat the move byte from source to destination instruction CX times

B/ COMPARE-string instruction:

String comparison: subtracts the destination byte or word (pointed to by DI) from the source byte or

word (pointed to by SI). CMPS affects the flags but does not change the operands.

If CMPS is used with the REPE/REPZ repeat prefix, it is interpreted as "compare as long as the string is

not finished (CX <>0) and the elements to be compared are not equal (ZF=1).

If CMPS is used with the REPNE/REPNZ repeat prefix, it is interpreted as "compare as long as the string

is not finished (CX <>0) and the elements to be compared are not equal (ZF=0)".

Note: You can't use the REP prefix with the CMPS instruction, as this would mean comparing only the

last two elements of the two strings.

CMPSB destination, source
CMPSW destination, source

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 39 Dr. Saadi Leila

C/ SCAN-string instruction:

SCAS string
SCASB
SCASW

SCAS subtracts the destination string element (byte or word) addressed by DI in the extra segment

from the contents of AL (a byte) or AX (a word) and acts on the flags. Neither the destination string

nor the accumulator changes value.

D/ LOAD-string and STORE-string instructions:

1/ LOAD string instruction:

LODS source_string
LODSB
LODSW

LODS transfers the string element (byte or word) addressed by SI to the AL or AX register and updates

SI to point to the next element in the string.

2/ STORE string instruction:

STOS destination_string
STOSB
STOSW

STOS transfers a byte or word from the AL or AX register to the string element addressed by DI, and

modifies DI to point to the next location in the string.

Operation destination Source

MOVSW; MOVSB

CMPSW; CMPSB

SCAW

SCAB

LODW

LODB

STOW

STOB

[ES:DI]

[ES:DI]

[ES:DI]

[ES:DI]

AX

AL

[ES:DI]

[ES:DI]

[DS:SI]

[DS:SI]

AX

AL

[DS:SI]

[DS:SI]

AX

AL

VI/ Processor commands instructions :

• STC: Used to set carry flag CF to 1
• CLC: Used to clear/reset carry flag CF to 0
• CMC: Used to put complement at the state of carry flag CF.
• STD: Used to set the direction flag DF to 1
• CLD: Used to clear/reset the direction flag DF to 0
• STI: Used to set the interrupt enable flag to 1, i.e., enable INTR input.
• CLI: Used to clear the interrupt enable flag to 0, i.e., disable INTR input.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 40 Dr. Saadi Leila

• HLT: Stop the CPU before the execution of the next instruction
• Wait: Suspend the CPU
• Lock: Bus lock instruction prefix

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 41 Dr. Saadi Leila

Procedure and interruptions in 8086 assembler language

I/ Assembly language subprograms:

In assembler, subroutines play the role of procedures and functions in high-level languages. They

structure programs by giving a name to a process and reducing the size of programs that use the same

sequence of code several times.

Calling a sub-program consists in breaking a sequence, continuing program execution and then

resuming execution where the sequence was previously broken. This is exactly the same notion as in

high-level languages, where calling a procedure suspends execution of the current sequence of

instructions, executes the body of the procedure and then resumes execution of the previously

suspended sequence. Note that a procedure can be called again within a procedure, or that a procedure

can call itself.

In a high-level language, you don't have to worry about it working properly, as the whole mechanism

is taken care of by the compiler, which generates the sequence of instructions in assembler so that

everything works as expected. In assembler, you need to understand the mechanism in order to get the

most out of it, and you also need to be able to pass parameters to the sub-programs.

Basically, two instructions are required:

• A subroutine call instruction, which breaks the sequence of instructions being executed and gives

control to the subroutine to be called;

• A subroutine return instruction which, placed at the end of the subroutine, tells the processor to

resume execution of the interrupted program where it left off, i.e. to execute the instructions

following the subroutine call instruction.

A/ Actions to be taken when calling a sub-program:

We can briefly summarize the actions to be performed when calling and returning from a sub-

program. Suppose we have a return stack. Calling a sub-program is done simply by stacking the current

value of IP and storing the sub-program's call address in IP. Subroutine return is achieved simply by

unstacking the top of the stack and placing this unstacked value in the IP register.

1/ The subroutine call stack:

The stack itself is a memory area (a kind of table) where the processor stores the data to be saved.

The only problem to be solved is where to find the top of the stack. It's hard to say that you can see

the top of a computer stack. So we need an indicator that will show us this vertex. Since the elements

of the stack are located in a memory area, and the elements are placed one after the other, all we need

is a register that indicates the address of the top of the stack. The element below the top of the stack

is then located in the neighboring memory location, ... This register is called the stack top pointer. This

is the SP register (SP stands for stack pointer).

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 42 Dr. Saadi Leila

When data is stacked, this stack pointer must be updated to indicate the new stack top (as the stack

rises). When data is unstacked, this pointer must also be updated (as the stack goes down). Given the

importance of these operations, subroutine call and return instructions automatically modify the stack

pointer so that subroutine calls and returns function correctly.

Classically, stacks are implemented with their base above their top, i.e. the stack top address is lower

than the base address. So when data is stacked, the stack top pointer is decremented, while when data

is unstacked, the stack top pointer is incremented.

2/ Back to subroutine call and return instructions:

Having described the implementation of the return stack, we can now fully describe the operation

of subroutine call and return instructions.

Subroutine call instruction

When a sub-program is called, the following operations are automatically performed:

- SP is decremented

- (SP)  return address (the contents of the IP register)

- IP  operand of the subroutine call instruction

Sub-program return instruction

- IP  (SP)

- SP is incremented

B/ Calling a subprogram without passing parameters:

Calls and subroutine returns:

In the calling program we have :

CALL procedure_name

Subroutine calls cause the contents of the IP register only to be saved on the stack. The value of the

IP register is updated with the value of the operand supplied to the CALL instruction, so that program

execution continues at the start of the sub-program. The value of the SP stack pointer register is, of

course, updated after stacking the value of IP. The contents of the CS register remain unchanged.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 43 Dr. Saadi Leila

And the procedure has the structure:

Name_procedure proc

…..

…..

Ret

Name_procedure endp

- The sub-program is declared by the proc pseudo-instruction, with its name indicated in the

label field.

- This is followed by the subroutine instructions

- The RET instruction indicates the return to the caller.

- The pseudo-instruction endp indicates the end of the sub-program. The name of the sub-

program is indicated in the label field

Context backup and restore:

- The context of the calling program is saved on the stack using push/pushf instructions (as seen

in the previous chapter).

- Context restoration after the return of the sub-program is performed from the stack via

pop/popf instructions (already seen).

C/ Passing parameters and local variables:

Passing parameters via register :

Example:

Caller

...
mov ax, 8
call facto

Sub-program

facto proc
push cx
mov cx, ax
mov ax, 1

loop1:
mul ax, cx
loop loop1
pop cx
ret

facto endp

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 44 Dr. Saadi Leila

Passing parameters via stack :

For the called party, the BP register must be used to access parameter values. BP must therefore be

initialized at the start of the called party's execution. Its value must also be saved. This must be done

by the called party.

Suppose we pass three parameters, the values of registers AX, BX and CX

- In the caller, parameter values are stacked before the subroutine is called.

- In the sub-program (i.e., the value of the ordinal counter IP has been stacked 2 bytes), the value

of the BP register is stacked.

- The value of the BP register is initialized with the value of the top of the stack contained in SP

- Parameter values can now be accessed via the BP register. For example:

• [bp+4] accesses the last stacked parameter (i.e. the value of register CX)

• [bp+6] accesses the parameter stacked before CX (i.e. the value in register BX)

• [bp+8] accesses the parameter stacked before BX (i.e. the AX register value)

- At the end of the called sub-program, the value of the BP register must be restored so that the

caller has no problems. This is the role of the POP instruction.

- After execution of the POP, the top of the stack contains the return address, so a RET can be safely

executed.

- Back in the caller, the memory area used to store parameters must be freed. To do this, we simply

modify the value of the stack top pointer register SP by adding the value 6, which is the number of

bytes occupied on the stack by the stacked values (2 for AX, 2 for BX and 2 for CX). We could also

have freed the stack with POP instructions. However, it is customary to write programs as described

here. Moreover, using POP instructions modifies the value of registers, which can have undesirable

effects.

Caller

...
push ax
push bx
push cx
call sbr
add sp, 6
...

Sub-program

sbr proc
push bp
mov bp, sp
...
... ...[bp+4]...
... ...[bp+6]...
... ...[bp+8]...
...
...
pop bp
ret
sbr endp

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 45 Dr. Saadi Leila

Example: calculating the PGCD of two numbers x and y

Local variables :

Caller
...
mov ax, 564
push ax ; empile x
mov ax, 55
push ax ; empile y
call pgcd
add sp, 4
...

Sub-program
pgcd proc
 push bp
 mov bp, sp
 push ax ; saving
 push bx ; ax and bx (contexte)
 mov ax, [bp+4] ; load y in ax
 mov bx, [bp+6] ; load x in bx
 tq1: cmp ax, bx
 jg sup ; jump if y>x
 je ftq1 ; end if x=y
 sub ax, bx
 jmp tq1
 sup: sub bx, ax
 jmp tq1
 ftq1: call affiche_nombre
 pop bx
 pop ax
 pop bp
ret

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 46 Dr. Saadi Leila

- Save the BP register (as before)

- initialize the BP register so that it points to the top of the stack

- Save the value of registers DI and SI. Note that BP points to the value of the saved DI register.

- Reservation of 10 bytes on the stack (using the sub sp, 10 instruction), which can be freely

manipulated in the subprogram and whose role is to contain the value of local variables.

- Access to local variables will then be via addressing such as [bp-6] ... [bp-15], depending on the size

of the data. Importantly, the programmer must define the use of these 10 bytes.

- At the end of the call, the stack area used to store the value of local variables is freed (ADD

instruction).

- We then restore the input value of the SI, DI and BP registers.

II/ DOS interruptions:

A/ Input/output management:

1/ Definition:

Input/Output refers to any information transfer operation between the processor, memory and

external devices.

- From outside  Input (Read)

- External  Output (Write)

Caller

...
push ax
push bx
call sbr
add sp, 6
...

Sub-program

sbr proc
push bp
mov bp, sp
push di ; DI and SI are local variables
push si
sub sp, 10
...
... ...[bp+4]...
... ...[bp+6]...
...
... ...[bp-6]...
...
add sp, 10
pop si
pop di
pop bp
ret
sbr endp

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 47 Dr. Saadi Leila

2/ I/O types:

• Physical I/O: managed by the lowest level of the system (hardware).

• Logical I/O: an instruction within a program that calls an I/O procedure (e.g. Scanf, Printf).

• Virtual I/O: between processor, main memory and virtual memory.

• Spool I/O: linked to a slow peripheral, access is via a disk file called "Spool".

3/ Driver (manager):

The driver is a specific program which initiates a physical transfer, controls the operation and handles

errors.

Example: the printer driver allows you to :

- Ensure that the printer is plugged in.

- Ensure that it is not busy.

- Make sure there's paper.

- Insert the first sheet.

- Fill the pad with the characters to be printed.

- Start printing and move on to the next set of characters.

4/ I/O interfaces:

The interface is a device that connects peripherals to the computer, i.e. it adapts the characteristics of

each of the two parts, motherboard and peripheral, these characteristics are :

- Type of connection: serial or parallel.

- Transmission mode: synchronous or asynchronous.

- Transmission speed: fast or slow.

5/ Peripheral controllers:

Used to drive peripherals, each peripheral is linked to a bus by a controller. The role of the controller is

to adapt the diversity of peripherals to a common interface. It's an electronic card inserted into the

motherboard.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 48 Dr. Saadi Leila

6/ Physical input/output control mode:

Processor control of a peripheral unit requires synchronization between processor actions and the

unit being controlled. Several I/O control techniques are used:

a/ Direct physical I/O:

This is to control the flow of physical I/O by the processor itself, where we have :

• Synchronous mode:

The processor controls the peripheral from I/O start to finish. To start an I/O, the processor first

initializes the appropriate controller registers with the necessary information, then issues a command

to the controller to initiate the I/O operation. The controller, in turn, examines the contents of these

registers to determine the action to be taken and initiates the transfer.

During the physical transfer of the character, the processor remains mobilized to monitor the I/O

operation by consulting a device-specific flag designating its state, when it detects the end of the

transfer. (Also known as active waiting).

The major drawback is the loss of CPU time.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 49 Dr. Saadi Leila

• Interval scan mode:

In this mode, the processor initiates the I/O operation and then returns to the execution of user

processes. At regular short intervals, the processor is interrupted to check whether this operation has

been completed.

Same disadvantage of time loss due to handling frequent clock interruptions.

• Asynchronous mode:

The processor is freed from transfer completion control, where the controller is provided with an

interrupt line that will be used to inform the processor. Once the transfer has been completed, the

controller generates an interrupt that informs the processor of the end of the transfer.

The disadvantage of this mode is the time lost in executing these interrupt routines. The interrupts

already seen in Chapter III

b/ Indirect physical I/O:

This technique is designed to improve processor performance by freeing the processor from tracking

I/O until it has finished. An independent device known as a channel is used.

• Channel mode :

A channel is a programmable processor that can execute a sequence of I/O operations. It executes

a channel program resident in MC.

The processor initiates an I/O operation by sending a special instruction to the channel, telling it

where to find the channel program that starts the I/O. The channel then executes all the commands of

this program independently of the processor. At the end of execution, the channel sends an interrupt

to the processor to warn it of the end of I/O.

• Direct memory access (DMA):

DMA is a simplified channel used in small computers, which can be connected between the

controller and the memory bus, enabling peripheral devices to access memory without passing through

the CPU. If the DMA and CPU simultaneously request memory access, the DMA takes priority.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 50 Dr. Saadi Leila

B/ DOS interruptions:

1/ On-screen character display:

Display a character :

Display a message :

This pseudo-code displays the message hello world on the screen. The character string must end with

a display the message hello world on the screen. The string must end with a char-return.

2/ Enter a keystroke:

With echo:

mov dl, ’a’
mov ah, 2
int 21h
displays character 'a' on screen.

.data
msg db ’hello world’, 13, 10, ’$’
.code
mov ax, @data
mov ds, ax
mov ah, 9
lea dx, msg
int 21h
mov ah, 4ch
int 21h
end

mov ah, 1
int 21h
returns the code of the character read from the keyboard to the al register.

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 51 Dr. Saadi Leila

Without echo:

3/ File access:

In assembler, files are processed in a similar way to an advanced language such as Pascal. To access

data in a file, either for reading or writing, it must first be opened. On opening, the program retrieves

a handle. All operations on this file are then performed by specifying this handle. At any given moment,

several files may have been opened by a program. Each one has a different handle, enabling the

program to distinguish between them.

File creation:

.data
msg db 80 dup (?)
.code
mov ax, @data
mov ds, ax
mov bx, 0
mov cx, 80
lea dx, msg
mov ah, 3fh
int 21h
this pseudo-code captures a keyboard string of up to cx characters and stores it in the variable
msg, which is declared as an array of 80 bytes (i.e. 80 characters). The number of characters
read is placed in the ax register. Note that the char-return is stored in the form of two
successive characters: the first in code 13, the second in code 10.

mov ah, 8
int 21h
reads a character from the keyboard and returns it to register al. This character is not

displayed on the screen.

Before the call
- cx contains the value 0 ;
- ds:dx point to the file name. This
is a string terminated by an
ASCII character code 0.

After the call
The C bit of the flags register is set to 1 if an
error has occurred.

The call has the following format:
mov ah, 3ch
int 21h

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 52 Dr. Saadi Leila

File opening:

File closing:

File reading:

Before the call
- al contains the access mode:
0 for read, 1 for write,
2 for both;
- ds:dx point to the filename.
file name. This is a string of
terminated by an
ASCII character code 0.

After the call
The C bit of the flags register is set to 1 if an
error has occurred. Otherwise, the ax
register contains the handle on the open file.

The call has the following format:
mov ah, 3dh
int 21h

Before the call
- bx contains the handle of the file to be closed

After the call
The C bit of the flags register is set to 1 if an
error has occurred. Otherwise, the file is
closed. It can no longer be accessed via its
handle. If you wish to access it again
it must first be re-opened. The call has the following format :

mov ah, 3eh
int 21h

Before the call
- bx contains the file handle ;
- cx contains the number of characters to be read ;
- ds:dx contains the address of the buffer to store
the characters read.

After the call
The C bit of the flags register is set to 1 if an
error has occurred. Otherwise, the ax
register contains the number of characters read. In
principle, this is the number of characters
that should have been read, unless the end of the
is reached.

The call has the following format :
mov ah, 3fh
int 21h

Batna 2 university Mathematics and computer science faculty

Common core in mathematics and computer department Computer Engineer 1st year 2024-2025

Computer Architecture

Chapter IV: Case study Intel 8086 processor 53 Dr. Saadi Leila

Read the current time :

Read the current date :

mov ah, 2ch
int 21h
When the call returns, the registers contain the following information:
ch hours
cl minutes
dh seconds
dl hundredths of a second

mov ah, 2ah
int 21h
When the call returns, the registers contain the following information:
al coded day of the week (0: Sunday, 1: Monday, ...)
cx year
dh month
dl date

