On the norm of elementary operators in standard operator algebras

Ameur Seddik

Communicated by L. Kérchy

Abstract. Let \mathcal{A} be a complex normed algebra. For $A, B \in \mathcal{A}$, define a basic elementary operator $M_{A,B}: \mathcal{A} \to \mathcal{A}$ by $M_{A,B}(X) = AXB$.

Given a standard operator algebra \mathcal{A} acting on a complex normed space and $A,B\in\mathcal{A}$ we have:

- (i) The lower estimate $||M_{A,B} + M_{B,A}|| \ge 2(\sqrt{2} 1)||A|| ||B||$ holds.
- (ii) The lower estimate $||M_{A,B} + M_{B,A}|| \ge ||A|| ||B||$ holds if

$$\inf_{\lambda \in C} \|A + \lambda B\| = \|A\| \text{ or } \inf_{\lambda \in C} \|B + \lambda A\| = \|B\|.$$

(iii) The equality $\|M_{A,B}+M_{B,A}\|=2\|A\|\|B\|$ holds if

$$||A + \lambda B|| = ||A|| + ||B||$$
 for some unit scalar λ .

These results extend analogous estimates established earlier for standard operator subalgebras of Hilbert space operators.

1. Introduction

Let \mathcal{A} and B(H) be a complex normed algebra and the C^* -algebra of all bounded linear operators on a complex Hilbert space H, respectively. For $A, B \in \mathcal{A}$, define a basic elementary operator $M_{A,B}: \mathcal{A} \to \mathcal{A}$ by $M_{A,B}(X) = AXB$. An

Received August 21, 2003, and in revised form November 11, 2003. AMS Subject Classification (2000): 46L35, 47L35, 47B47.

elementary operator is a finite sum $R_{A,B} = \sum_{i=1}^{n} M_{A_i,B_i}$, where $A = (A_1, \ldots, A_n)$ and $B = (B_1, \ldots, B_n)$ are two n-tuples of elements of A.

Many facts about the relation between the norm of $M_{A,B}+M_{B,A}$ and the norms of A, B are known (e.g. [2], [3], [5] etc.). In a prime C^* -algebra (a prime C^* -algebra is a C^* -algebra where $M_{A,B}=0$ implies A=0 or B=0), Mathieu [3] proved that $\|M_{A,B}\|=\|A\|\|B\|$ and $\|M_{A,B}+M_{B,A}\|\geq (2/3)\|A\|\|B\|$. The most obvious prime C^* -algebras are B(H) and $\mathcal{C}_{\infty}(H)$ (the C^* -algebra of all compact operators on H). In [5], Stachó and Zalar investigated in a standard operator subalgebra of B(H) (a standard operator subalgebra of B(H) is a subalgebra of B(H) containing all finite rank operators; it is not assumed that it is selfadjoint or closed with respect to any topology), where they proved that $\|M_{A,B}+M_{B,A}\|\geq 2(\sqrt{2}-1)\|A\|\|B\|$ and they conjectured the following:

Conjecture 1. Let A be a standard operator subalgebra of B(H). The estimate $||M_{A,B} + M_{B,A}|| \ge ||A|| ||B||$ holds for every $A, B \in A$.

Note that this conjecture was verified in the following cases [6, 2]:

- (i) in the Jordan algebra of symmetric operators of B(H),
- (ii) for $A, B \in B(H)$ such that $\inf_{\lambda \in \mathbb{C}} \|A + \lambda B\| = \|A\|$ or $\inf_{\lambda \in \mathbb{C}} \|B + \lambda A\| = \|B\|$.

Here, we are interested in the more general case where \mathcal{A} is a standard operator algebra acting on a complex normed space. We shall prove that $||R_{A,B}|| \geq \sup\{|\sum_{i=1}^n f(A_i)g(B_i)| : f,g \in (\mathcal{A}^*)_1\}$, for any two n-tuples $A = (A_1,\ldots,A_n)$, $B = (B_1,\ldots,B_n)$ of elements of \mathcal{A} (where $(\mathcal{A}^*)_1$ is the unit sphere of \mathcal{A}^*). As a consequence of this main result (in our general situation), we show that the Stachó–Zalar lower bound remains true, and the estimate $||M_{A,B} + M_{B,A}|| \geq ||A|| \, ||B||$ holds if one of the following conditions is satisfied:

- (1) $\inf_{\lambda \in \mathbb{C}} ||A + \lambda B|| = ||A||,$
- $(2) \inf_{\lambda \in \mathbb{C}} \|B + \lambda A\| = \|B\|,$
- (3) $\inf_{\lambda \in \mathbb{C}} ||A + \lambda B|| \le (1/2) ||A||$,
- (4) $\inf_{\lambda \in \mathbb{C}} ||B + \lambda A|| \le (1/2) ||B||$.

So the conjecture of Stachó–Zalar (in our general situation) remains unknown only in the case:

(5) $(1/2) \|A\| < \inf_{\lambda \in \mathbb{C}} \|A + \lambda B\| < \|A\|$ and $(1/2) \|B\| < \inf_{\lambda \in \mathbb{C}} \|B + \lambda A\| < \|B\|$.

On the other hand, we are interested in the following problem:

Problem 1. Let \mathcal{A} be a standard operator algebra acting on a complex normed space. For which n-tuples A, B of elements of \mathcal{A} does the equality $||R_{A,B}|| = \sum_{i=1}^{n} ||A_i|| ||B_i||$ hold? In particular, for which $A, B \in \mathcal{A}$ does the equality $||M_{A,B} + M_{B,A}|| = 2 ||A|| ||B||$ hold?

2. Preliminaries

If Ω is a complex Banach algebra with unit I, then the algebraic numerical range of an element A in Ω is by definition $W_0(A) = \{f(A) : f \in P(\Omega)\}$ (where $P(\Omega) = \{f \in \Omega^* : f(I) = 1 = ||f||\}$), the numerical radius of an element A in Ω is by definition $w(A) = \sup\{|\lambda| : \lambda \in W_0(A)\}$, and the joint algebraic numerical range of an n-tuple $A = (A_1, \ldots, A_n)$ of elements of Ω is by definition $W_0(A) = \{(f(A_1), \ldots, f(A_n)) : f \in P(\Omega)\}$.

The numerical range of an element A in B(H) is by definition $W(A) = \{\langle Ax, x \rangle : x \in H, ||x|| = 1\}$. It is known [7] that if $A \in B(H)$, then $W_0(A) = W(A)^-$ (where $W(A)^-$ denotes the closure of W(A)).

Definition 1. Let E be a complex normed space and let A denote a subalgebra of B(E). A is called a standard operator subalgebra of B(H) if it contains all finite rank operators.

Notation 1.

- (1) For $(x, f) \in E \times E^*$ and $A, B \in \mathcal{A}$, we denote by
 - (i) $x \otimes f$ the operator defined on E by $(x \otimes f)y = f(y)x$,
 - (ii) $U_{A,B}$ the operator defined on A by $U_{A,B}(X) = AXB + BXA$,
 - (iii) $V_{A,B}$ the operator defined on A by $V_{A,B}(X) = AXB BXA$.
- (2) We denote by $(E)_1$ the unit sphere of E.
- (3) Let K be a bounded subset of \mathbb{C} and let $M, N \subset \mathbb{C}^n$; we denote by
 - (i) |K| the non-negative number $\sup\{|\lambda|:\lambda\in K\}$,
 - (ii) by $M \circ N$ the subset $\{\sum_{i=1}^n \alpha_i \beta_i : (\alpha_1, \dots, \alpha_n) \in M, (\beta_1, \dots, \beta_n) \in N\}$ of \mathbb{C} .

The purpose of this paper is to extend the following theorems in more general forms.

Theorem 1. [5] Let A be a standard operator subalgebra of B(H). Then $||U_{A,B}|| \ge 2(\sqrt{2}-1) ||A|| ||B||$, for any $A, B \in A$.

Theorem 2. [2] Let $A, B \in B(H)$ such that $\inf_{\lambda \in \mathbb{C}} ||A + \lambda B|| = ||A||$ or $\inf_{\lambda \in \mathbb{C}} \|B + \lambda A\| = \|B\|$. Then $\|U_{A,B}\| \ge \|A\| \|B\|$.

Theorem 3. [4] Let A be a standard operator subalgebra of B(H) and $A, B \in A$ such that $w(A^*B) = ||A|| ||B||$. Then $||U_{A,B}|| = 2 ||A|| ||B||$.

Remark 1. It is known [1] that if $A, B \in B(H)$, then $||A + \lambda B|| = ||A|| + ||B||$ for some unit scalar λ if and only if $w(A^*B) = ||A|| \, ||B||$. So Theorem 3 may be reformulated as follows:

Let \mathcal{A} be a standard operator subalgebra of B(H) and $A, B \in \mathcal{A}$ such that $||A + \lambda B|| = ||A|| + ||B||$ for some unit scalar λ . Then $||U_{A,B}|| = 2 ||A|| ||B||$.

3. A lower bound of the norm of $R_{A,B}$

In this section, we consider a standard operator algebra \mathcal{A} acting on a complex normed space E.

Theorem 4. Let $A = (A_1, \ldots, A_n)$ and $B = (B_1, \ldots, B_n)$ be two n-tuples of elements of A. Then

$$||R_{A,B}|| \ge \sup \left\{ \left| \sum_{i=1}^n f(A_i)g(B_i) \right| : f, g \in (\mathcal{A}^*)_1 \right\}.$$

Proof. Let $x, y \in (E)_1$, $f, g \in (A^*)_1$ and $h \in (E^*)_1$. Then we have:

$$||R_{A,B}|| \ge \left\| \sum_{i=1}^n A_i(x \otimes h) B_i \right\|$$

$$\ge \left\| \sum_{i=1}^n A_i(x \otimes h) B_i y \right\| = \left\| \sum_{i=1}^n h(B_i y) A_i x \right\|.$$

Thus $||R_{A,B}|| \ge \sup_{||x||=1} ||\sum_{i=1}^n h(B_i y) A_i x|| = ||\sum_{i=1}^n h(B_i y) A_i||$. So that $||R_{A,B}|| \ge |\sum_{i=1}^n h(B_i y) f(A_i)| = |h(\sum_{i=1}^n f(A_i) B_i y)|$.

Then $||R_{A,B}|| \ge \sup_{||y||=1} ||h(\sum_{i=1}^n f(A_i) B_i y)| : h \in (E^*)_1\} = ||\sum_{i=1}^n f(A_i) B_i y||$. Hence $||R_{A,B}|| \ge \sup_{||y||=1} ||\sum_{i=1}^n f(A_i) B_i y|| = ||\sum_{i=1}^n f(A_i) B_i||$. Therefore $||R_{A,B}|| \ge |\sum_{i=1}^n f(A_i) g(B_i)|$.

Corollary 1. Let $A = (A_1, ..., A_n)$ and $B = (B_1, ..., B_n)$ be two n-tuples of elements of A such that $\|\sum_{i=1}^n A_i\| = \sum_{i=1}^n \|A_i\|$ and $\|\sum_{i=1}^n B_i\| = \sum_{i=1}^n \|B_i\|$. Then $\|R_{A,B}\| = \sum_{i=1}^n \|A_i\| \|B_i\|$.

Proof. From the hypothesis $\|\sum_{i=1}^n A_i\| = \sum_{i=1}^n \|A_i\|$ and $\|\sum_{i=1}^n B_i\| = \sum_{i=1}^n \|B_i\|$ and using the Hahn–Banach theorem, we may choose f_0, g_0 in $(\mathcal{A}^*)_1$ such that $f_0(A_i) = \|A_i\|$ and $g_0(B_i) = \|B_i\|$, for $i = 1, \ldots, n$.

So from Theorem 4, we obtain:

$$||R_{A,B}|| \ge \left| \sum_{i=1}^{n} f_0(A_i) g_0(B_i) \right| = \sum_{i=1}^{n} ||A_i|| ||B_i||.$$

Then the result follows immediately.

The next corollary is a particular case of the above result.

Corollary 2. Let $A, B \in \mathcal{A}$ such that $||A + \lambda B|| = ||A|| + ||B||$ for some unit scalar λ . Then $||U_{A,B}|| = 2 ||A|| ||B||$.

Remark 2. The above result gives a general form of Theorem 3.

Corollary 3. Assume E is a Banach space and A = B(E). Let $A = (A_1, ..., A_n)$ and $B = (B_1, ..., B_n)$ be two n-tuples of elements of A. Then

$$||R_{A,B}|| \ge |W_0(A) \circ W_0(B)|$$
.

Proof. The proof follows immediately from the above theorem and since $P(A) \subset (A^*)_1$.

Corollary 4. Let $A, B \in \mathcal{A}$. Then $||U_{A,B}|| \ge 2(\sqrt{2} - 1) ||A|| ||B||$.

Proof. We may assume without loss of the generality, that ||A|| = ||B|| = 1. For every $f, g \in (\mathcal{A}^*)_1$, we obtain from Theorem 4:

(1)
$$||U_{A,B}|| \ge |f(A)g(B) + f(B)g(A)|$$

Applying inequality (1) for g = f, we obtain:

(2)
$$||U_{A,B}|| \ge 2|f(A)f(B)|$$
.

By the Hahn-Banach theorem, we may choose f_0 and g_0 in $(A^*)_1$ such that $f_0(B) = g_0(A) = 1.$

Put $f_0(A) = \alpha$ and $g_0(B) = \beta$.

For $f = f_0$ and $g = g_0$ inequality (1) yields:

(3)
$$||U_{A,B}|| \ge |1 + \alpha\beta| \ge 1 - |\alpha\beta|$$
.

Applying inequality (2) twice for $f = f_0$ and for $f = g_0$, we obtain:

(4)
$$\begin{cases} ||U_{A,B}|| \ge 2 |\alpha| \\ ||U_{A,B}|| \ge 2 |\beta| \end{cases}.$$

From (3), (4) and (5), we obtain $||U_{A,B}||^2 + 4 ||U_{A,B}|| \ge 4 |\alpha\beta| + 4(1 - |\alpha\beta|) = 4$. Therefore $||U_{A,B}|| \geq 2(\sqrt{2}-1)$.

Remark 3. Note that the estimate given in the above corollary is obtained by Stachó-Zalar in the particular case of a standard operator algebra acting on a Hilbert space, see [5]; but here we have obtained it, using another way, in a more general situation.

Corollary 5. Let $A, B \in \mathcal{A}$ such that $\inf_{\lambda \in \mathbb{C}} ||A + \lambda B|| = ||A||$ or $\inf_{\lambda \in \mathbb{C}} ||B + \lambda A||$ = ||B||. Then:

- (i) $||U_{A,B}|| \ge ||A|| ||B||$,
- (ii) $||V_{A,B}|| \ge ||A|| ||B||$.

Proof. If $\inf_{\lambda \in \mathbb{C}} ||A + \lambda B|| = ||A||$, then by using the Hahn-Banach theorem, there exists f_0 in $(A^*)_1$ such that $f_0(B) = 0$ and $f_0(A) = ||A||$. So by Theorem 4, we obtain:

$$\begin{cases} ||U_{A,B}|| \ge \sup \{|f_0(A)g(B) + f_0(B)g(A)| : g \in (\mathcal{A}^*)_1\} \\ ||V_{A,B}|| \ge \sup \{|f_0(A)g(B) - f_0(B)g(A)| : g \in (\mathcal{A}^*)_1\} \end{cases}.$$

Thus

$$\begin{cases} ||U_{A,B}|| \ge ||A|| \sup \{|g(B)| : g \in (\mathcal{A}^*)_1\} = ||A|| ||B|| \\ ||V_{A,B}|| \ge ||A|| \sup \{|g(B)| : g \in (\mathcal{A}^*)_1\} = ||A|| ||B||. \end{cases}$$

Remark 4. Corollary 5 (i) gives a general form of Theorem 2 and it is obtained by a direct proof.

Theorem 5. Let $A, B \in \mathcal{A}$ such that $\inf_{\lambda \in \mathbb{C}} \|A + \lambda B\| \le (1/2) \|A\|$ or $\inf_{\lambda \in \mathbb{C}} \|B + \lambda A\| \le (1/2) \|B\|$. Then $\|U_{A,B}\| \ge \|A\| \|B\|$.

Proof. Suppose $\inf_{\lambda \in \mathbb{C}} ||A + \lambda B|| \le (1/2) ||A||$.

By a simple computation, we obtain that $V_{A,B} = V_{A+\lambda B,B}$, for all complex λ . Then $||V_{A,B}|| \leq 2\inf_{\lambda \in \mathcal{C}} ||A + \lambda B|| ||B||$.

Thus $||V_{A,B}|| \le ||A|| ||B||$. Since $||U_{A,B}|| + ||V_{A,B}|| \ge ||U_{A,B} + V_{A,B}|| = 2 ||A|| ||B||$, so $||U_{A,B}|| \ge ||A|| ||B||$.

By the same argument, we obtain the theorem with the second condition.

Remark 5. From Corollary 5 (i) and Theorem 5, we have obtained that the conjecture of Stachó–Zalar (in our general situation) is verified in the following cases:

- $(1) \inf_{\lambda \in \mathbb{C}} ||A + \lambda B|| = ||A||,$
- (2) $\inf_{\lambda \in \mathbb{C}} ||B + \lambda A|| = ||B||$,
- (3) $\inf_{\lambda \in \mathbb{C}} ||A + \lambda B|| \le (1/2)||A||,$
- (4) $\inf_{\lambda \in \mathbb{C}} ||B + \lambda A|| \le (1/2)||B||$.

So, it remains unknown only in the case where $(1/2)\|A\|<\inf_{\lambda\in\mathbb{C}}\|A+\lambda B\|<\|A\|$ and $(1/2)\|B\|<\inf_{\lambda\in\mathbb{C}}\|B+\lambda A\|<\|B\|.$

Theorem 6. Let $A, B \in \mathcal{A}$. Then $||U_{A,B}|| \ge (1/2)||V_{A,B}||$.

Proof. We may assume without loss of the generality, that ||B|| = 1.

By the Hahn–Banach theorem, there exists f_0 in $(\mathcal{A}^*)_1$ such that $f_0(B) = 1$. Put $f_0(A) = \alpha$.

It follows from Theorem 4 that

$$||U_{A,B}|| \ge \sup \{|f_0(A)g(B) + f_0(B)g(A)| : g \in (\mathcal{A}^*)_1\} = ||A + \alpha B||.$$

Since
$$||V_{A,B}|| = ||V_{A+\alpha B,B}|| \le 2 ||A + \alpha B||$$
, then $||U_{A,B}|| \ge (1/2) ||V_{A,B}||$.

References

- [1] M. Barraa and M. Boumazgour, Inner derivation and norm equality, *Proc. Amer. Math. Soc.*, **130** (2002), 471–476.
- [2] M. Barraa and M. Boumazgour, A lower bound for the norm of the operator $X \to AXB + BXA$, Extracta Mathematicae, 16 (2001), 223-227.
- [3] M. Mathieu, More properties of the product of two derivations of a C*-algebra, Bull. Austr. Math. Soc., 42 (1990), 115–120.

- [4] A. Seddik, On the numerical range and the norm of elementary operators, *Linear and Multilinear Algebra*, **52** (2004), 293-302.
- [5] L. L. Stachó and B. Zalar, On the norm of Jordan operator algebra in standard operator algebras, *Publ. Math. Debrecen*, **49** (1996), 127–134.
- [6] L. L. Stachó and B. Zalar, Uniform primeness of the Jordan algebra of symmetric operators, *Proc. Amer. Math. Soc.*, **126** (1998), 2241–2247.
- [7] J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, *Tohoku Math. Journ.*, **20** (1968), 417–424.

A. Seddik, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; e-mail: seddikameur@hotmail.com