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Abstract
In this survey, we shall present the characterizations of some distinguished classes
of bounded linear operators acting on a complex separable Hilbert space in terms of
operator inequalities related to the arithmetic–geometric mean inequality.
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1 Definitions and notations

Let B(H) be the C*-algebra of all bounded linear operators acting on a complex
separable Hilbert space H , and let N (H), S(H), and U(H) denote the class of all
normal operators, the class of all selfadjoint operators, and the class of unitary operators
inB(H), respectively.

(1)We denote by

• I(H), the group of all invertible elements inB(H),

• R(H), the set of all operators with closed ranges inB(H),

• S0(H) = S(H) ∩ I(H), the set of all invertible selfadjoint operators inB(H),

• Scr (H) = S(H)∩R(H), the set of all selfadjoint operators with closed ranges in
B(H),

• N0(H) = N (H) ∩ I(H), the set of all invertible normal operators inB(H),

• Ncr (H) = N (H) ∩R(H), the set of all normal operators with closed ranges in
B(H),
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• Ur (H) = S0(H) ∩ U(H), the set of all unitary reflection operators inB(H),

• u ⊗ v (where u, v ∈ H), the operator of rank less or equal to one on H defined
by (u ⊗ v) x = 〈x, v〉 u, for every x ∈ H ,

• F1(H) = {x ⊗ y : x, y ∈ H} , the set of all operators of rank less or equal to one
on H ,

• |S| , the positive square root of the positive operator S∗S (where S ∈ B(H)),

• {S}′ = {X ∈ B(H) : SX = XS} , the commutant of S (where S ∈ B(H)),

• (M)1 = {x ∈ M : ‖x‖ = 1} , for M be a subset of some normed space,
• K ◦ L = {∑n

i=1 αi βi : (α1 , . . . , αn ) ∈ K , (β1 , . . . , βn ) ∈ L
}
, for L, K ⊂ C

n,

n ≥ 1,
• |�| = supγ∈� |γ | , where � is a bounded subset of the field of scalars,
• �M = {λm : λ ∈ �, m ∈ M} , where M is a subspace of some vector space, and

� is a subset of the field of scalars.
• E ′, the topological dual space of a normed space E .

(2) If A is a (real or complex) unital normed algebra, and A ∈ A, then

• we denote by σ(A) and r(A), the spectrum and the spectral radius of A, respec-
tively,

• we denote by V (A) and w(A), the algebraic numerical range and the numerical
radius of A, respectively,

• A is called normaloid, if w(A) = ‖A‖ ,

• A is called convexoid if V (A) = coσ(A),

• if A = B(H), then V (A) = W (A) (where W (A) is the closure of the usual
numerical range of A).

(3) For S ∈ B(H), let R(S) and ker S denote the range and the kernel of S,

respectively.
(4) It is known that for S ∈ B(H), then S ∈ R(H) if and only if there exits an

operator S+ ∈ R(H) satisfying the four following equations:

SS+S = S, S+SS+ = S+, (SS+)∗ = SS+, (S+S)∗ = S+S.

Then the operator S+ if exists is unique, and it is called the Moore–Penrose inverse
of S, and it satisfies that SS+ and S+S are orthogonal projections onto R(S) and
R(S∗), respectively. It is clear that if S ∈ I(H), then S+ = S−1, and if S ∈ B(H) is
a surjective operator (resp. injectivewith closed range), then SS+ = I (rep. S+S = I ).

(5) For every S inR(H),

• we associate the 2 × 2 matrix representation S =
[
S1 S2
0 0

]
with respect to the

orthogonal direct sum H = R(S)⊕ ker S∗,
• the operator S is called an EP operator if R(S∗) = R(S), or equivalently S2 = 0

and S1 is invertible; in this case S
+ =

[
S−1
1

0
0 0

]
,

• if S is normal, then it is an EP operator.

(6) Let E be a (real or complex) normed space, and let B = B(E) denote the
normed algebra of all bounded linear operators acting on E .
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(i) Let A = (A1 , . . . , An ), B = (B1 , . . . , Bn ) be two n-tuples of elements in B:

(.) we define the elementary operator (induced by A, B) RA,B on B by:

∀X ∈ B, RA,B (X) =
n∑

i=1
Ai X Bi ,

(.) we denote byR(B), the vector space of all elementary operators on B,

(.) we define the map d(.) : R(B) −→ R by:

∀R ∈ R(B), d(R) = sup
‖X‖=1=rankX

‖R(X)‖ ,

(.) we consider the tensor product space

B⊗B =
{

n∑

i=1
Ai ⊗ Bi : n ≥ 1, Ai , Bi ∈ B, i = 1, . . . , n

}

,

(.) we denote by ‖.‖
λ
the injective norm on B⊗B given by:

∥∥∥∥∥

n∑

i=1
Ai ⊗ Bi

∥∥∥∥∥
λ

= sup
f ,g∈(B

,
)1

∣∣∣∣∣

n∑

i=1
f (Ai )g(Bi )

∣∣∣∣∣
.

(ii) For A, B ∈ B, we define the particular elementary operator UA,B (called the
Jordan algebra of symmetric operators) onB by:

∀X ∈ B, UA,B (X) = AXB + BX A.

(7) For two vectors x, y in a given (real or complex) inner product space, the
relation x//y (that means x, y are linearly dependent) holds if and only if ‖x + λy‖ =
‖x‖+‖y‖ , for some unit scalarλ.The two above conditionsmake sense in any normed
space and the first condition implies the second, but the converse is false in general. So,
we may introduce a new concept of the parallelism relation in the geometry of normed
space as follows: for x, y in a given normed space, we say that x is norm-parallel to
y (x ‖ y) , if ‖x + λy‖ = ‖x‖ + ‖y‖ , for some unit scalar λ (this new concept of
parallelism in the geometry of normed space was introduced in [16]). Note that this
last relation is reflexive and symmetric, but not transitive.

2 Introduction

My main purpose of this survey paper is to present our characterizations (presented
in several papers) of some distinguished classes of bounded linear operators acting on
H , namely, the selfadjoint operators, the normal operators, and the unitary operators,
in terms of operator inequalities.
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Our first motivation was the so-called Corach–Porta–Recht inequality.
In [6], Corach et al. proved that for every invertible selfadjoint operator S ∈ B(H),

the following operator inequality holds

∀X ∈ B(H),

∥∥∥SXS−1 + S−1XS
∥∥∥ ≥ 2 ‖X‖ . (2.1)

So, it is interesting to describe the largest class of all operators S ∈ I(H) satisfying
(2.1). It is clear that this class contains (C)1 S0(H), and in [14], we had shown that
it is exactly this class (C)1 S0(H) (the class all rotation of all selfadjoint operators
S ∈ I(H), or also the class of all operators S ∈ N0(H) whose spectrum lies in a
straight line through the origin).

Note that (2.1) is an immediate consequence of the known arithmetic–geometric
mean inequality given as follows:

∀A, B, X ∈ B(H),
∥∥A∗AX + XBB∗

∥∥ ≥ 2 ‖AXB‖ . (2.2)

We consider a second version of the arithmetic–geometric mean inequality which
follows immediately from (2.2) given as follows:

∀A, B, X ∈ B(H),
∥∥A∗AX

∥∥+ ∥∥XBB∗
∥∥ ≥ 2 ‖AXB‖ . (2.3)

It is easy to see that for S ∈ B(H), the three following properties are equivalent:

(i) S is normal,
(ii) ∀X ∈ B(H), ‖S∗X‖ = ‖SX‖ ,

(iii) ∀X ∈ B(H), ‖XS∗‖ = ‖XS‖ .

From this fact and using (2.3), we may deduce that for every invertible normal
operator S ∈ B(H) the following operator inequality holds:

∀X ∈ B(H),

∥∥∥SXS−1
∥∥∥+

∥∥∥S−1XS
∥∥∥ ≥ 2 ‖X‖ . (2.4)

Following the same problem of characterization cited above, so what is the largest
class of all of all operators S ∈ I(H) satisfying (2.4)? In [18], we had found that this
class is exactly the class N0(H) of all invertible normal operators inB(H).

In [7], Fujii et al. had proved that the inequality (2.1) is equivalent to (2.2), and in
[4], we found other operator inequalities that are also equivalent to (2.2), and here we
cite three of them given by:

∀X ∈ B(H),
∥∥SXS+ + S+XS

∥∥ ≥ 2
∥∥SS+XS+S

∥∥ , (2.5)

for every S ∈ Scr (H),

∀X ∈ B(H),

∥∥∥S2X + XS2
∥∥∥ ≥ 2 ‖SXS‖ , (2.6)
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for every S ∈ Scr (H),

∀X ∈ B(H),

∥∥∥S2X + XS2
∥∥∥ ≥ 2 ‖SXS‖ , (2.7)

for every S ∈ S(H).

Note that this family of operator inequalities is generated by a selfadjoint operator
(invertible, with closed range, and any).

In [4], we have showed that (2.3) is equivalent to (2.4) and to the three following
inequalities:

∀X ∈ B(H),
∥∥SXS+

∥∥+ ∥∥S+XS
∥∥ ≥ 2

∥∥SS+XS+S
∥∥ , (2.8)

for every S ∈ Ncr (H),

∀X ∈ B(H),

∥∥∥S2X
∥∥∥+

∥∥∥XS2
∥∥∥ ≥ 2 ‖SXS‖ , (2.9)

for every S ∈ Ncr (H),

∀X ∈ B(H),

∥∥∥S2X
∥∥∥+

∥∥∥XS2
∥∥∥ ≥ 2 ‖SXS‖ , (2.10)

for every S ∈ N (H).

This second family of operator inequalities (2.4), (2.8), (2.9), and (2.10) that are
equivalent to (2.3) is generated by a normal operator (invertible, with closed range,
and any).

As we have done for the two characterizations cited above for the invertible case,
it is interesting to describe (for the closed range case):

(i) the class of all operators S ∈ R(H) satisfying the operator inequality (2.5) or
(2.6),

(ii) the class of all operators S ∈ R(H) satisfying the operator inequality (2.8) or
(2.9).

In [21], using the two characterizations cited above for the invertible case, we had
shown that the class (i) is exactly the class (C)1 Scr (H), and the class (ii) is Ncr (H).

But, unfortunately, after the publication of the paper, we have found a mistake in
Lemma 1 of [21], and all results depend on it. So, in the corrigendum [22], we have
presented a corrected proof of this lemma. Note that in the proof of this corrected
lemma, we have used Theorem 6.3 of [14], where one of the conditions of this theo-
rem is an equality between the spectrum of two positive operators. This condition is
enough for the invertible case only, but does not suffice for non-invertible case and
our lemma is for non-invertible case. But, to have a complete proof of the lemma,
we need Theorem 6.3 with inclusion between spectrum instead of equality. We have
mentioned in the proof of the corrected lemma that Theorem 6.3 remains true with
inclusion between spectrum, but without argument. In this survey, we shall present
this argument.
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From the closed range case to the general situation of the two operator inequalities
(2.7) and (2.10), we have proved in [23] that the class of all operators S ∈ B(H)

satisfying (2.7) (resp. (2.10)) is the class (C)1 S(H) (resp. N (H)).
In this general situation, we have used a result of Halmos [9] that says the set

D(H) = {S ∈ B(H) : S is left invertible or right invertible} is dense inB(H) (where
D(H) ⊂ R(H)). In our proof, applying the characterizations cited above with the
domainR(H) and the density ofR(H) inB(H), we conclude our characterizations
in the general situation of the class (C)1 S(H) of all rotation of all selfadjoint operators
inB(H), and the class N (H) of all normal operators inB(H).

Our idea in the above characterizations is to make connection between a family
of operator inequalities related to the known arithmetic–geometric mean inequality
(resp. the second version of the known arithmetic–geometric mean inequality) and
some distinguished classes of operators.

In this survey, we adopt another and better strategy, we do not respect the chrono-
logical order of the publication of the original papers, but start with the invertible case,
then the general situation, and then we deduce the closed range case; we also present
the characterizations of the class of normal operators before the characterizations con-
cerning the selfadjoint operators case. This new strategy gets rid of a heavy proof of
one of the theorems concerning the closed range case.

For the third distinguished classes of operators, the class of all unitary operators
U(H), we had proved in [19] that it is exactly the class of all operators S ∈ (I(H))1
satisfying each of the following operator inequalities:

∀X ∈ B(H),

∥∥∥SXS−1 + S−1XS
∥∥∥ ≤ 2 ‖X‖ ,

∀X ∈ B(H),

∥∥∥SXS−1
∥∥∥+

∥∥∥S−1XS
∥∥∥ = 2 ‖X‖ ,

∀X ∈ B(H),

∥∥∥SXS−1
∥∥∥+

∥∥∥S−1XS
∥∥∥ ≤ 2 ‖X‖ .

In Sect. 3 of this survey, we shall

(i) show that d(.) is a norm onR (B(E)) ,

(ii) prove that the two normed spaces (R (B(E)) , d(.)) and
(
B(E)⊗B(E), ‖.‖

λ

)

are isometrically isomorphic,
(iii) introduce a new concept of the parallelism in the geometry of normed space (called

the norm-parallelism),
(iv) give the concept of normaloid element in an abstract (real or complex) unital

normed algebra, and in the C*-algebra B(H) in terms of the norm-parallelism,
precisely, we shall prove that for a (real or complex) unital normed algebra A
with unit element I , for A ∈ A, A is normaloid if and only if A is norm-parallel
to the unit element I ; and when A = B(H), A is normaloid if and only if A is
norm-parallel to its adjoint A∗.
In Sect. 4, we shall present

(i) some results concerning the injective norm of the two following elementary oper-
ators on B(H), X → SXS−1 + S−1XS, and X → S∗XS−1 + S−1XS∗ (where
S be an invertible operator in B(H)),
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(ii) some characterizations of the classU(H) of all unitary operators inB(H) in terms
of operator inequalities.

In Sect. 5, we shall present

(i) Section 5.1: a family of operator inequalities that are equivalent to (2.3),
(ii) Section 5.2: the characterizations cited above of the classesN0(H), Ncr (H), and

N (H) in terms of operator inequalities related to (2.3),
(iii) Section 5.3: other characterizations of the classN0(H), and we deduce some new

general characterizations of the class N (H).

In Sect. 6, we shall present

(i) Section 6.1: a family of operator inequalities that are equivalent to (2.2),
(ii) Section 6.2: the characterizations cited above of the classes (C)1 S0(H),

(C)1 Scr (H), and (C)1 S(H) in terms of operator inequalities related to (2.2).

3 Injective norm, norm-parallelism, and normaloid operator

In this section, we consider B = B(E) the normed algebra of all bounded linear
operators acting on a (real or complex) normed space E .

We shall show that d(.) is a norm on the vector spaceR (B) , and the two normed
spaces (R (B) , d(.)) ,

(
B⊗B, ‖.‖

λ

)
are isometrically isomorphic; and we shall

present the concept of normaloid element in any abstract (real or complex) unital
normed algebra, and in the C*-algebra B(H) in terms of the norm-parallelism.

We start with the following main theorem.

Proposition 3.1 [16] Let A = (A1 , . . . , An ), B = (B1 , . . . , Bn ) be two n-tuples of
elements inB. then the following equalities hold:

d
(
RA,B

) = sup
f ,g∈(B

,
)1

∣∣∣∣∣

n∑

i=1
f (Ai )g

(
Bi

)
∣∣∣∣∣

= sup
f ∈(B

,
)1

∥∥∥∥∥

n∑

i=1
f (Bi )Ai

∥∥∥∥∥

= sup
f ∈(B

,
)1

∥∥∥∥∥

n∑

i=1
f (Ai )Bi

∥∥∥∥∥
.

Proof We denote by k1, k2 and k3 the supremum cited in the theorem in the same

order. Let x, y ∈ (E)1 , h ∈
(
E
′)

1
, and let f , g ∈ (B

,
)1 . So, we have

d
(
RA,B

) ≥
∥∥∥∥∥

n∑

i=1
Ai (x ⊗ h) Bi y

∥∥∥∥∥

=
∥∥∥∥∥

(
n∑

i=1
h

(
Bi y

)
Ai

)

x

∥∥∥∥∥
.
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By taking the supremum over x ∈ (E)1 , we have d
(
RA,B

) ≥ ∥∥∑n
i=1 h

(
Bi y

)
Ai

∥∥ .

Thus,

d
(
RA,B

) ≥
∣∣∣∣∣

n∑

i=1
f
(
Ai

)
h

(
Bi y

)
∣∣∣∣∣

=
∣∣∣∣∣
h

(
n∑

i=1
f
(
Ai

)
Bi y

)∣∣∣∣∣
.

By taking the supremum over h ∈
(
E
′)

1
and over y ∈ (E)1 , we obtain

d
(
RA,B

) ≥
∥∥∥∥∥

n∑

i=1
f
(
Ai

)
Bi

∥∥∥∥∥
.

Then,

d
(
RA,B

) ≥
∣∣∣∣∣

n∑

i=1
f
(
Ai

)
g

(
Bi

)
∣∣∣∣∣
.

So, we have d
(
RA,B

) ≥ k1 . Since k1 ≥ ∣∣g
(∑n

i=1 f
(
Bi

)
Ai

)∣∣ , then k1 ≥∥∥∑n
i=1 f

(
Bi

)
Ai

∥∥ .This gives us that k1 ≥ k2 . It is clear that k2 ≥
∣∣g

(∑n
i=1 f

(
Ai

)
Bi

)∣∣ ,
then k2 ≥ k3. Since, k3 ≥

∣∣∑n
i=1 f (Ai )h

(
Bi y

)∣∣ = ∣∣ f
(∑n

i=1 h
(
Bi y

)
Ai

)∣∣ , so we
have

k3 ≥
∥∥∥∥∥

n∑

i=1
h

(
Bi y

)
Ai

∥∥∥∥∥

≥
∣∣∣∣∣

n∑

i=1
h

(
Bi y

)
Ai x

∣∣∣∣∣

=
∥∥∥∥∥

(
n∑

i=1
Ai (x ⊗ h) Bi

)

y

∥∥∥∥∥
.

Thus, k3 ≥
∥∥∑n

i=1 Ai (x ⊗ h) Bi

∥∥ . Therefore, k3 ≥ d
(
RA,B

)
. This completes the

proof. ��
Proposition 3.2 The map d(.) : R (B)→ R, R �→ d(R) is a norm on R (B) .

Proof It is clear that

d(R) ≥ 0, d(λR) = |λ| d(R), d(R + S) ≤ d(R)+ d(S),

for every scalar λ, and for every R, S ∈ R (B) . So, it remains to prove that if
d(R) = 0, then R = 0, for every R ∈ R (B) .
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Now, let A = (A1 , . . . , An ), B = (B1 , . . . , Bn ) be two n-tuples of elements in B
such that d

(
RA,B

) = 0.
Wemay assume that B1, . . . , Bm (where m ≤ n) form a maximal linearly indepen-

dent subset of B1 , . . . , Bn . There exist m operators C1, . . . ,Cm ∈ sp
{
A1 , . . . , An

}

such that RA,B = RC ,D , where C = (
C1 , . . . ,Cm

)
, D = (

B1, . . . , Bm

)
. So, using

the above proposition, we obtain
∑m

i=1 f (Ci )Bi = 0 , for every f ∈ B
,
. Since

B1, . . . , Bn are linearly independent, f (Ci ) = 0, for i = 1, . . . ,m, and for every
f ∈ B

,
. This proves that Ci = 0, for i = 1, . . . ,m. Hence, RA,B = RC ,D = 0. ��

Corollary 3.3 The two normed spaces (R (B) , d(.)) and
(
B⊗B, ‖.‖

λ

)
are isomet-

rically isomorphic.

Proof Let the map

� : (B⊗B, ‖.‖
λ

) → (R (B) , d(.))∑n
i=1 Ai ⊗ Bi �−→ RA,B ,

where A = (A1 , . . . , An ), B = (B1 , . . . , Bn ) ∈ Bn .

From Propositions 3.1 and 3.2, the map � is well defined and injective. It is clear
that � is linear and surjective. Using again Proposition 3.1, we deduce that � is an
isometry. ��
Notation 3.4 (1) According to the above identification, and for R ∈ R (B) , we use

the notation ‖R‖
λ
instead of d(R), and we say it is the injective norm of R.

(2) Let A = (A1 , . . . , An ), B = (B1, . . . , Bn ) be two n-tuples of elements in B; we
put D(RA,B ) =∑n

i=1
∥∥Ai

∥∥ ∥∥Bi

∥∥ .

Remark 3.5 For R ∈ R (B) , we have ‖R‖
λ
≤ ‖R‖ ≤ D(R).

In the next theorem, and for A = (A1, . . . , An ), B = (B1, . . . , Bn ) be two n-
tuples of elements in B, then we shall characterize when the injective norm of the
elementary operator RA,B gets its maximal value D(RA,B ), in terms of Ai , Bi . So,
we need the following lemma, where the proof follows immediately from the Hahn–
Banach Theorem.

Lemma 3.6 Let x1 , . . . , xn ∈ E . Then the two following conditions are equivalent:
(i)

∥∥∑n
i=1 xi

∥∥ =∑n
i=1

∥∥xi
∥∥ ,

(ii) ∃ f ∈
(
E
′)

1
, f (xi ) =

∥∥xi
∥∥ , i = 1, . . . , n.

Proposition 3.7 [16] Let A = (A1 , . . . , An ), B = (B1 , . . . , Bn ) be two n-tuples of
elements inB. The following properties are equivalent:
(i)

∥∥RA,B

∥∥
λ
= D(RA,B ),

(ii) there exist two unit functional f , g ∈ B
′
, and n unit scalars λ1, . . . , λn such that

f (Ai ) = λi

∥∥Ai

∥∥ , g(Bi ) = λi

∥∥Bi

∥∥ , for i = 1, . . . , n.

(iii)
∥∥∑n

i=1 λi Ai

∥∥ =∑n
i=1

∥∥Ai

∥∥ ,
∥∥∑n

i=1 λi Bi

∥∥ =∑n
i=1

∥∥Bi

∥∥ , for someunit scalars
λ1 , . . . , λn .
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Proof We may assume that all Ai , Bi are nonzero.
The equivalence (ii) ⇐⇒ (iii) follows from the above lemma.
(ii) �⇒ (i). Assume (ii) holds. Then from Proposition 3.1, D(RA,B ) ≥ ∥∥RA,B

∥∥
λ
≥

∣∣∑n
i=1 f (Ai )g

(
Bi

)∣∣ = D(RA,B ). This proves (i).
(i) �⇒ (ii).Assume (i) holds. Themap f �−→ ∥∥∑n

i=1 f (Ai )Bi

∥∥ is w*-continuous

on B
′
, and

(
B
′)

1
is w*-compact, so it follows that

∥∥RA,B

∥∥
λ
= ∥∥∑n

i=1 f (Ai )Bi

∥∥ ,

for some f ∈
(
B
′)

1
. On the other hand, the Hahn–Banach guarantees also the

existence of an element g in
(
B
′)

1
such that

∑n
i=1

∥∥Ai

∥∥ ∥∥Bi

∥∥ = ∥∥RA,B

∥∥
λ
=

∑n
i=1 f (Ai )g

(
Bi

)
. Since Ai , Bi are nonzero and

∣∣ f (Ai )
∣∣ ≤ ∥∥Ai

∥∥ ,
∣∣g

(
Bi

)∣∣ ≤∥∥Bi

∥∥ , for i = 1, . . . , n, then
∣∣ f (Ai )

∣∣ = ∥∥Ai

∥∥ ,
∣∣g

(
Bi

)∣∣ = ∥∥Bi

∥∥ , and f (Ai )g
(
Bi

) =∥∥Ai

∥∥ ∥∥Bi

∥∥ , for i = 1, . . . , n. Thus, f (Ai ) = λi

∥∥Ai

∥∥ , g
(
Bi

) = λi

∥∥Bi

∥∥ , for
i = 1, . . . , n, and for some unit scalars λ1, . . . , λn . ��
Corollary 3.8 [16] Let A, B ∈ B. Then, the two following properties are equivalent:
(i) The injective norm of UA,B gets its maximal value 2 ‖A‖ ‖B‖ ,

(ii) A ‖ B.

Proof (i) �⇒ (ii). Assume (i) holds. Since
∥∥UA,B

∥∥
λ
= 2 ‖A‖ ‖B‖ = D(UA,B ), and

from the above proposition with the condition (iii), there exist two unit scalars α, β

such that ‖αA + βB‖ = ‖A‖ + ‖B‖ . Put λ = αβ, then we have ‖A + λB‖ =
‖A‖ + ‖B‖ , and where λ is a unit scalar. This proves (ii).

(ii) �⇒ (i). This implication follows immediately from the above proposition. ��
In the end of this section, we shall present the concept of the normaloid element in

an abstract unital algebra and in the C*-algebraB(H) in terms of the norm-parallelism
in the geometry of normed space.

Proposition 3.9 LetA be a (real or complex) unital normed algebra with unit element
I , and let A ∈ A. The two following properties are equivalent:
(i) A is normaloid,
(ii) A ‖ I .

Proof (i) ⇒ (ii).Assume (i) holds. There exists a state f onA and a unit scalar λ such
that f (A) = λ ‖A‖ . So, we obtain that 1+ ‖A‖ ≥ ∥∥I + λA

∥∥ ≥ ∣∣ f (I )+ λ f (A)
∣∣ =

1+ ‖A‖ . Hence,
∥∥I + λA

∥∥ = 1+ ‖A‖ , and where
∣∣λ

∣∣ = 1. This proves (ii).
(ii) ⇒ (i). Assume (ii) holds. Then, there exists a unit scalar λ such that

‖I + λA‖ = 1 + ‖A‖ . Using Lemma 3.6, there exists f ∈
(
A′)

1
such that

f (I ) = 1, f (λA) = ‖A‖ . Hence, f is a state on A , f (A) = λ ‖A‖ , and
∣∣λ

∣∣ = 1.
Hence, A is normaloid. ��
Corollary 3.10 Let A ∈ B. Then, the two following properties are equivalent:
(i) The injective norm of the elementary operatorB −→ B, X �−→ AX + X A gets

its maximal value 2 ‖A‖ ,
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(ii) A is normaloid.

Proof This follows immediately from Corollary 3.8 and Proposition 3.9. ��
Proposition 3.11 [17] Let A ∈ B(H). The two following properties are equivalent:
(i) A is normaloid,
(ii) A ‖ A∗.

Proof (i) ⇒ (ii).Assume (i) holds. There exists a state f onB(H) and a unit scalar λ
such that f (A) = λ ‖A‖ .So,weobtain that 2 ‖A‖ = f (λA+λA∗) ≤ ∥∥λA + λA∗

∥∥ ≤
2 ‖A‖ . Hence,

∥∥A + λ2A∗
∥∥ = ∥∥λA + λA∗

∥∥ = 2 ‖A‖ , and where
∣∣λ2

∣∣ = 1. There-
fore, A ‖ A∗.

(ii) ⇒ (i). Assume (ii) holds. Then, there exists a unit scalar λ such that
‖A∗ + λA‖ = 2 ‖A‖ . Since A∗ + λA is normal, then there exists a state f on
B(H) such that ‖A∗ + λA‖ = | f (A∗ + λA)| . Hence, 2 ‖A‖ = | f (A∗ + λA)| =∣∣∣ f (A)+ λ f (A)

∣∣∣ ≤ 2 | f (A)| ≤ 2 ‖A‖ . Thus, | f (A)| = ‖A‖. This gives us that A is

normaloid. ��

4 On the injective norm of the two operators X �−→ SXS−1 + S−1XS
and X �−→ S∗XS−1 + S−1XS∗, unitary operators, and
characterizations

In this section, we consider an invertible operator S inB(H).

Notation 4.1 For A = (A1 , . . . , An ) being an n-tuple of commuting operators in
B(H), we denote by:
(1) �A , the set of all multiplicative functionals acting on the maximal commutative

Banach algebra that contains the operators A1 , . . . , An ,

(2) σ(A) = {(
ϕ(A1), . . . , ϕ(An )

) : ϕ ∈ �A

}
, the joint spectrum of A.

We define the two particular elementary operators ϕS , ψS on B(H) by

{
∀X ∈ B(H), ϕS (X) = SXS

−1 + S
−1
XS,

∀X ∈ B(H), ψS (X) = S
∗
XS

−1 + S
−1
XS

∗
.

In this section, we shall present some results concerning the injective norm of ϕS

and ψS , and we characterize the class of all invertible operators S for which
∥∥ϕS

∥∥
λ

(resp.
∥∥ψS

∥∥
λ
) is minimal, and the class of all unitary operators inB(H).

Lemma 4.2 [18] Let A = (A1 , . . . , An ), B = (B1 , . . . , Bn ) be two n-tuples of com-
muting operators in B(H). Then

∥∥RA,B

∥∥
λ
≥ |σ(A) ◦ σ(B)| ; and this inequality

becomes an equality, if all Ai and Bi are normal operators.
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Proof Let (ϕ, ψ) be an arbitrary pair in�A×�B .Using theHahn–Banach theorem, we
may extend ϕ andψ to unit functional f and g onB(H), respectively. So from Propo-
sition 3.1, it follows that

∥∥RA,B

∥∥
λ
≥ ∣∣∑n

i=1 f (Ai )g(Bi )
∣∣ = ∣∣∑n

i=1 ϕ(Ai )ψ(Bi )
∣∣ .

Therefore,
∥∥RA,B

∥∥
λ
≥ |σ(A) ◦ σ(B)| .

Now, suppose all Ai and Bi are normal operators. It suffices to prove
∥∥RA,B

∥∥
λ
≤

|σ(A) ◦ σ(B)| . Let f , g be two arbitrary unit functionals on B(H), and let (ϕ, ψ)

be an arbitrary pair in �A × �B . Since |σ(A) ◦ σ(B)| ≥ ∣∣ψ
(∑n

i=1 ϕ(Ai )Bi

)∣∣ ,
and

∑n
i=1 ϕ(Ai )Bi is normal (from Putnam–Fuglede), then |σ(A) ◦ σ(B)| ≥∥∥∑n

i=1 ϕ(Ai )Bi

∥∥ . So that

|σ(A) ◦ σ(B)| ≥
∥∥∥∥∥

n∑

i=1
ϕ(Ai )g

(
Bi

)
∥∥∥∥∥
=

∥∥∥∥∥
ϕ

(
n∑

i=1
g

(
Bi

)
Ai

)∥∥∥∥∥
.

Using the same argument as used with Bi , we deduce that |σ(A) ◦ σ(B)| ≥∥∥∑n
i=1 g

(
Bi

)
Ai

∥∥ . From Proposition 3.1, it follows that |σ(A) ◦ σ(B)| ≥ ∥∥RA,B

∥∥
λ
.

��
Lemma 4.3 We have

∥∥ψS

∥∥
λ
= ∥∥ϕP

∥∥
λ
, where P = |S| .

Proof Let S = U P be the polar decomposition S. From the fact that

{X ∈ B(H) : ‖X‖ = 1 = rankX} = {
U∗X : X ∈ B(H), ‖X‖ = 1 = rankX

}
,

it follows that

∥∥ψS

∥∥
λ
= sup
‖X‖=1=rankX

∥∥∥S
∗
XS−1 + S−1XS

∗∥∥∥

= sup
‖X‖=1=rankX

∥∥∥PU
∗
X P−1U ∗ + P−1U ∗

X PU
∗∥∥∥

= sup
‖X‖=1=rankX

∥∥∥P
(
U
∗
X

)
P−1 + P−1

(
U
∗
X

)
P

∥∥∥

= ∥∥ϕP

∥∥
λ
.

��
Proposition 4.4 [18] The following properties hold:
(i)

∥∥ϕS

∥∥
λ
≥ supλ,μ∈σ(S)

∣∣∣ λ
μ
+ μ

λ

∣∣∣ ,
(ii) if S is normal, the above inequality becomes an equality,
(iii) if S is normal, the following holds:

∥∥ψS

∥∥
λ
= sup

λ,μ∈σ(S)

(∣∣∣∣
λ

μ

∣∣∣∣+
∣∣∣
μ

λ

∣∣∣
)

.

Proof (i) and (ii) follow immediately from Lemma 4.2.
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(iii) Assume S is normal, and let U P be its polar decomposition.
Since S is invertible and normal, then σ(P) = {|λ| : λ ∈ σ(S)} . So from the above

lemma and (ii), we obtain
∥∥ψS

∥∥
λ
= ∥∥ϕP

∥∥
λ
= supλ,μ∈σ(S)

(∣∣∣ λ
μ

∣∣∣+ ∣∣μ
λ

∣∣
)

. ��

Corollary 4.5 (i) We have
∥∥ϕS

∥∥
λ
≥ 2.

(ii) If S is normal, then the injective norm of ϕS gets its minimal value 2, if and only
if the following spectral condition holds:

∀λ,μ ∈ σ(S),

∣∣∣∣
λ

μ
+ μ

λ

∣∣∣∣ ≤ 2.

(iii) If
∥∥ϕS

∥∥
λ
= 2, then the interior of σ(S) is empty.

Proof (i) and (ii) follow immediately from the above proposition.

(iii) Assume
∥∥ϕS

∥∥
λ
= 2. Thus,

∣∣∣ λ
μ
+ μ

λ

∣∣∣ ≤ 2, for every λ,μ ∈ σ(S). Hence, every

straight line passing through the origin intercept σ(S) in at most two points. This
proves that the interior of σ(S) is empty. ��
Proposition 4.6 [18] Let P be a positive and invertible operator in B(H). Then we
have

∥∥ϕP

∥∥
λ
= ‖P‖

∥∥∥P−1
∥∥∥+ 1

‖P‖ ∥∥P−1
∥∥ .

Proof Let the operator MP defined on B(H) by

∀X ∈ B(H), MP (X) = PX P−1.

Since σ(MP ) = σ(P)σ (P−1), σ (ϕP ) =
{
f (MP )+ 1

f (MP )
: f ∈ �

}
(where � is

the set of all multiplicative functionals on the maximal commutative Banach algebra
in B (B(H)) that contains MP ), and from the above proposition, it is easy to see

that
∥∥ϕP

∥∥
λ
= supλ,μ∈σ(P)

∣∣∣ λ
μ
+ μ

λ

∣∣∣ = supz∈σ(MP )

∣∣∣z + 1
z

∣∣∣ . So, using the fact that

min σ(P) = 1‖P−1‖ and max σ(P) = ‖P‖ , then min σ(MP ) = 1
‖P‖‖P−1‖ = p,

and max σ(MP ) = ‖P‖ ∥∥P−1
∥∥ = 1

p . On the other hand, since maxp≤t≤ 1
p

(
t + 1

t

) =
p + 1

p , this maximum is attainable at p and 1
p . Thus, the result follows immediately

from the fact that p ∈ σ(MP ). ��
Proposition 4.7 [18] The following properties hold:
(i)

∥∥ψS

∥∥
λ
= ‖S‖

∥∥∥S
−1∥∥∥+ 1

‖S‖
∥∥∥S−1

∥∥∥
,

(ii) if S is selfadjoint, then
∥∥ϕS

∥∥
λ
= ‖S‖

∥∥∥S
−1∥∥∥+ 1

‖S‖
∥∥∥S−1

∥∥∥
,

(iii) if S is normal, then
∥∥ϕS

∥∥
λ
≤ ‖S‖

∥∥∥S
−1∥∥∥+ 1

‖S‖
∥∥∥S−1

∥∥∥
.
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Proof Let S = U P be the polar decomposition of S.

(i) From Lemma 4.3 and Proposition 4.6, and since ‖S‖ = ‖P‖ ,

∥∥∥S
−1∥∥∥ =

∥∥∥P
−1∥∥∥ ,

it follows that

∥∥ψS

∥∥
λ
= ∥∥ϕP

∥∥
λ

= ‖P‖
∥∥∥P

−1∥∥∥+ 1

‖P‖ ∥∥P−1
∥∥

= ‖S‖
∥∥∥S

−1∥∥∥+ 1

‖S‖ ∥∥S−1
∥∥ .

(ii) This implication follows immediately from (i).
(iii) Assume S normal. Then, using Proposition 4.4, and (i), we obtain

∥∥ϕS

∥∥
λ
= sup

λ,μ∈σ(S)

∣∣∣∣
λ

μ
+ μ

λ

∣∣∣∣

≤ sup
λ,μ∈σ(S)

(∣∣∣∣
λ

μ

∣∣∣∣+
∣∣∣
μ

λ

∣∣∣
)

= ∥∥ψS

∥∥
λ

= ‖S‖
∥∥∥S

−1∥∥∥+ 1

‖S‖ ∥∥S−1
∥∥ .

��

From above, it is clear that
∥∥ψS

∥∥
λ
≥ 2. In the next corollary, we shall deduce three

necessary and sufficient conditions for which
∥∥ψS

∥∥
λ
gets its minimal value 2. Note

that the condition ‖S‖ ∥∥S−1
∥∥ = 1 is equivalent to 1

‖S‖ S is unitary.

Corollary 4.8 [18] The following properties are equivalent:

(i) ∀X ∈ B(H),

∥∥∥S
∗
XS−1

∥∥∥+
∥∥∥S−1XS

∗∥∥∥ = 2 ‖X‖ ,

(ii) ∀X ∈ B(H),

∥∥∥S
∗
XS−1 + S−1XS

∗∥∥∥ = 2 ‖X‖ ,

(iii) ∀X ∈ F1(H),

∥∥∥S
∗
XS−1 + S−1XS

∗∥∥∥ = 2 ‖X‖ ,

(iv)
∥∥ψS

∥∥
λ
= 2,

(v) 1
‖S‖ S is unitary.
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Proof (i) �⇒ (ii). Assume (i) holds and let S = U P be the polar decomposition of
S. Let X ∈ B(H). Then, we have

2 ‖X‖ ≥
∥∥∥S

∗
XS−1 + S−1XS

∗∥∥∥

=
∥∥∥PU∗X P−1U∗ + P−1U∗X PU∗

∥∥∥

=
∥∥∥P

(
U∗X

)
P−1 + P−1

(
U∗X

)
P

∥∥∥

≥ 2
∥∥U∗X

∥∥ , (using (2.1)),

= 2 ‖X‖ .

This proves (ii).
The two implications (ii) �⇒ (iii) and (iii) �⇒ (iv) are trivial.
If (iv) holds, using the above proposition, we find ‖S‖ ∥∥S−1

∥∥ = 1, and this proves
(v).

The implication (v) �⇒ (i) is trivial. ��
Remark 4.9 The inequality given in Proposition 4.7. (iii) may be strict. Indeed, in

dimension two, we choose the invertible normal operator S =
[
1 0
0 1+i

2

]
. By a simple

computation, we find that

2 = ∥∥ϕS

∥∥
λ

< ‖S‖
∥∥∥S

−1∥∥∥+ 1

‖S‖ ∥∥S−1
∥∥ =

3
√
2

2
.

Notation 4.10 We denote the following:

E(H) =
{

T ∈ N0(H) : ∥∥ϕT

∥∥
λ
= ‖T ‖

∥∥∥T
−1∥∥∥+ 1

‖T ‖ ∥∥T −1
∥∥

}

.

From above, E(H) contains every invertible selfadjoint (resp. every unitary) opera-
tor inB(H), but E(H) does not contain every invertible normal operator inB(H) (see
the example in the above remark). In the next proposition, we give a characterization
of this class E(H), where we use the following notations:

• σ1(S) = {
λ ∈ σ(S) : |λ| = minμ∈σ(S) |μ|

}
,

• σ2(S) = {λ ∈ σ(S) : |λ| = r(S)} ,
• Dθ (where θ ∈ [0, π)) is the straight line through the origin with slope tan θ.

Proposition 4.11 [18] The two following properties are equivalent:
(i) S ∈ E(H),

(ii) S is normal, and there exists θ ∈ [0, π [ such that

Dθ ∩ σ1(S) �= ∅, Dθ ∩ σ2(S) �= ∅.
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Proof (i) ⇒ (ii). Assume (i) holds. Using Proposition 4.4(ii) and from the compact-
ness of σ(S), we may choose λ,μ ∈ σ(S) such that

‖S‖
∥∥∥S

−1∥∥∥+ 1

‖S‖ ∥∥S−1
∥∥ =

∥∥ϕS

∥∥
λ
=

∣∣∣∣
λ

μ
+ μ

λ

∣∣∣∣ .

Hence,

‖S‖
∥∥∥S

−1∥∥∥+ 1

‖S‖ ∥∥S−1
∥∥ ≤

∣∣∣∣
λ

μ

∣∣∣∣+
∣∣∣
μ

λ

∣∣∣

≤ ∥∥ψS

∥∥
λ

= ‖S‖
∥∥∥S

−1∥∥∥+ 1

‖S‖ ∥∥S−1
∥∥ , (using Proposition 4.4(iii)).

Thus,
∣∣∣ λ
μ
+ μ

λ

∣∣∣ =
∣∣∣ λ
μ

∣∣∣ + ∣∣μ
λ

∣∣ = ‖S‖
∥∥∥S

−1∥∥∥ + 1

‖S‖
∥∥∥S−1

∥∥∥
. Put p = 1

‖S‖
∥∥∥S−1

∥∥∥
. Since

S is normal, then minλ,μ∈σ(S)

∣∣∣ λ
μ

∣∣∣ = p, and maxλ,μ∈σ(S)

∣∣∣ λ
μ

∣∣∣ = 1
p . The positive

function f (t) = t + 1
t , p ≤ t ≤ 1

p is bounded and attain its maximum p + 1
p =

‖S‖
∥∥∥S

−1∥∥∥+ 1

‖S‖
∥∥∥S−1

∥∥∥
only at t = p and in t = 1

p . So, we may choose λ in σ1(S) and

μ in σ2(S). Since
∣∣∣ λ
μ
+ μ

λ

∣∣∣ =
∣∣∣ λ
μ

∣∣∣+ ∣∣μ
λ

∣∣ , then, λ and μ must belong to a straight line

passing through the origin. This proves (ii).
(ii) ⇒ (i). Assume (ii) holds. Let α ∈ Dθ ∩ σ1(S) and β ∈ Dθ ∩ σ2(S). Since

S is normal, then α = eiθ∥∥∥S−1
∥∥∥
and β = ei(θ+kπ) ‖S‖ , for some k ∈ {0, 1} . Thus,

∥∥ϕS

∥∥
λ
≥

∣∣∣α
β
+ β

α

∣∣∣ = ‖S‖
∥∥∥S

−1∥∥∥ + 1

‖S‖
∥∥∥S−1

∥∥∥
. Then, using Proposition 4.7. (iii), (i)

holds. ��
In the next proposition, we shall give two necessary and sufficient conditions for

which
∥∥ϕS

∥∥
λ
gets its minimal value 2.

We need the two following lemmas:

Lemma 4.12 [24] If |〈Sx, x〉| ≤ 1 and
∣∣∣
〈
S
−1
x, x

〉∣∣∣ ≤ 1, for every unit vector x in H ,

then S is unitary.

Lemma 4.13 The operator S is normal if and only if S
∗
S
−1

is unitary.

Proof The proof is trivial. ��
Proposition 4.14 [19] The following properties are equivalent:
(i)

∥∥ϕS

∥∥
λ
= 2,

(ii) ∀X ∈ F1(H),

∥∥∥SXS
−1 + S

−1
XS

∥∥∥ ≤ 2 ‖X‖ ,
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(iii) S is normal and supλ,μ∈σ(S)

∣∣∣ λ
μ
+ μ

λ

∣∣∣ = 2.

Proof (i) ⇔ (ii). This equivalence follows immediately from Proposition 3.1 and
Corollary 4.5(i).

(i) ⇒ (iii).Assume (i) holds. FromProposition4.4,wededuce that supλ,μ∈σ(S)

∣∣∣ λ
μ
+ μ

λ

∣∣∣ =
2.

So, it remains to prove that S is normal. By using the same argument as used in
[15, Lemma 1], we deduce the following inequality:

∀x, y ∈ (H)1 ,
∥∥ϕS

∥∥
λ
≥ 2

∣∣∣〈Sx, y〉
〈
S
−1
x, y

〉∣∣∣ .

Hence, the inequality
∣∣∣〈Sx, y〉

〈
S
−1
x, y

〉∣∣∣ ≤ ‖x‖ ‖y‖ holds for every x, y in H .

So we obtain
∣∣∣
〈
S
∗
S
−1
x, x

〉∣∣∣ ≤ 1 and

∣∣∣∣

〈(
S
∗
S
−1)−1

x, x

〉∣∣∣∣ ≤ 1, for every x, y in

(H)1 . Then, using the two above lemmas, we deduce that S is normal. Thus, (iii)
holds.

(iii)⇒ (i). This follows immediately from Proposition 4.4. ��
Remark 4.15 The class of all operators S for which

∥∥ϕS

∥∥
λ
is minimal contains strictly

the class of all unitary operators, and contained strictly in the class of all invertible
normal operators. Indeed, it is easy to see that

∥∥ϕS

∥∥
λ
= 2, if S is unitary, and for an

operator I1 ⊕
( 1
2 i I2

)
with respect to some orthogonal direct H = H1 ⊕ H2 (where

Ii is the identity on Hi , for i = 1, 2) belongs to this class, but it is not unitary; the
second inclusion is trivial.

In the next proposition, we shall give some other characterizations of the class of
all unitary operators multiplied by nonzero scalars.

Proposition 4.16 [19] The following properties are equivalent:
(i) ∀X ∈ B(H),

∥∥∥SXS
−1∥∥∥+

∥∥∥S
−1
XS

∥∥∥ = 2 ‖X‖ ,

(ii) ∀X ∈ B(H),

∥∥∥SXS
−1∥∥∥+

∥∥∥S
−1
XS

∥∥∥ ≤ 2 ‖X‖ ,

(iii) ∀X ∈ B(H),

∥∥∥SXS
−1 + S

−1
XS

∥∥∥ ≤ 2 ‖X‖ ,

(iv) 1
‖S‖ S is unitary.

Proof The two implications (i) �⇒ (ii) and (ii) �⇒ (iii) are trivial.
(iii) �⇒ (iv). Assume (iii) holds. So, it follows that

∥∥ϕS

∥∥
λ
= 2. Using Proposi-

tion 4.14, then S is normal and supλ,μ∈σ(S)

∣∣∣ λ
μ
+ μ

λ

∣∣∣ = 2.

Using the spectral measure of S, there exists a sequence (Sn) of invertible normal
operators inB(H) with finite spectrum such that:

(a) Sn −→ S uniformly,
(b) for every λ ∈ σ(S), there exists a sequence (λn ) such that λn ∈ σ(Sn), for every

n, and λn −→ λ.
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Let λ, μ ∈ σ(S). Then from (b), there exist two sequences (λn ), (μn ) such that
λn , μn ∈ σ(Sn), for every n, and λn −→ λ, μn −→ μ.

Let ε > 0. Then, there exists an integer N ≥ 1 such that

∀n > N , ∀X ∈ B(H),

∥∥∥Sn X S−1
n
+ S−1

n
X Sn

∥∥∥ ≤ (2+ ε) ‖X‖ . (4.1)

Let n > N . Since Sn is normal with finite spectrum, there exist p orthogonal
projections E1, . . . , Ep inB(H) such that Ei E j = 0, if i �= j,

∑p
i=1 Ei = I , Sn =∑p

i= αi Ei , where σ(Sn) =
{
α1, . . . , αp

}
, α1 = λn , μn = α2.

Then, using (4.1) and putting A =
[
2 γn
γn 2

]
, where γn = λn

μn
+ μn

λn
, we obtain

∀X ∈ B(C2), ‖A ◦ X‖ ≤ (2+ ε) ‖X‖ .

Put X =
[
tImγn i

i tImγn

]
(where t > 0) in this last inequality, we obtain

(2tImγn)
2 + |γn|2 + 4t (Imγn)

2 ≤ (2tImγn)
2 + 4+

(
4ε + ε2

) (
(tImγn)

2 + 1
)

.

Put γ = lim γn = λ
μ
+ μ

λ
, and letting n −→ ∞ in this last inequality, it follows

that

|γ |2 + 4t (Imγ )2 ≤ 4+
(
4ε + ε2

) (
(tImγ )2 + 1

)
.

Now, letting ε −→ 0,wededuce that 4t (Imγ )2 ≤ 4−|γ |2 , for every t > 0.Hence,
Imγ = 0, and |γ | ≤ 2. Then, by a simple computation, we find that |λ| = |μ| . Then
σ(S) is included in the circle centered at the origin and of radius ‖S‖ . Since S is
normal, this proves (iv).

(iv) �⇒ (i). This implication is trivial. ��

Conclusion 4.17 (1) The class of all invertible operators S ∈ B(H) for which
∥∥ϕS

∥∥
λ

is minimal is characterized by each of the two following properties:

∀X ∈ F1(H),
∥∥T XT−1 + T−1XT

∥∥ ≤ 2 ‖X‖ , (T ∈ I(H)) ,

T ∈ N0(H) and sup
λ,μ∈σ(T )

∣∣∣ λ
μ
+ μ

λ

∣∣∣ = 2, (T ∈ I(H)) .
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(2) The class of all unitary operators U(H) is characterized by each of the following
properties:

∀X ∈ B(H),

∥∥∥T XT
−1 + T

−1
XT

∥∥∥ ≤ 2 ‖X‖ , T ∈ (I(H))1 ,

∀X ∈ B(H),

∥∥∥T XT
−1∥∥∥+

∥∥∥T
−1
XT

∥∥∥ ≤ 2 ‖X‖ , T ∈ (I(H))1 ,

∀X ∈ B(H),

∥∥∥T XT
−1∥∥∥+

∥∥∥T
−1
XT

∥∥∥ = 2 ‖X‖ , T ∈ (I(H))1 ,

∀X ∈ B(H),

∥∥∥T
∗
XT−1

∥∥∥+
∥∥∥T−1XT ∗

∥∥∥ = 2 ‖X‖ , T ∈ (I(H))1 ,

∀X ∈ B(H),

∥∥∥T
∗
XT−1 + T−1XT ∗

∥∥∥ = 2 ‖X‖ , T ∈ (I(H))1 ,

∀X ∈ F1(H),

∥∥∥T
∗
XT−1 + T−1XT ∗

∥∥∥ = 2 ‖X‖ , T ∈ (I(H))1 ,

‖ψT ‖λ
= 2, T ∈ (I(H))1 .

5 N-arithmetic–geometric mean inequality, normal operators, and
characterizations

In this section, we shall present some characterizations of the classN (H) of all normal
operators inB(H) in terms of operator inequalities, and also its two subclassesN0(H),

and Ncr (H). These operator inequalities are related to the N-arithmetic–geometric
mean inequality which will be introduced in the next subsection.

We start with the following remark which contains two trivial characterizations of
the class N (H).

Remark 5.1 Let S ∈ B(H). It is easy to see that the three following properties are
equivalent:

(i) S is normal,
(ii) ∀X ∈ B(H), ‖S∗X‖ = ‖SX‖ ,

(iii) ∀X ∈ B(H), ‖XS∗‖ = ‖XS‖ .

5.1 Operator inequality related to the N-arithmetic–geometric mean inequality

In this subsection, we consider the N-arithmetic–geometric mean inequality given by
(2.3)

This inequality follows immediately from the known arithmetic–geometric mean
inequality (2.2). In the next proposition, we present a family of operator inequalities
generated by normal operators that are equivalent to the inequality (2.3), and we shall
prove (2.3) independently in (2.2).

Proposition 5.2 [4] The following operator inequalities hold and are mutually
equivalent:
(i) ∀X ∈ B(H), ‖A∗AX‖ + ‖XBB∗‖ ≥ 2 ‖AXB‖ , for every A, B ∈ B(H),

(ii) ∀X ∈ B(H),
∥∥SX R+

∥∥ + ∥∥S+XR
∥∥ ≥ 2

∥∥SS+XR+R
∥∥ , for every S, R ∈

Ncr (H),
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(iii) ∀X ∈ B(H),
∥∥S2X

∥∥+ ∥∥XR2
∥∥ ≥ 2 ‖SX R‖, for every S, R ∈ Ncr (H),

(iv) ∀X ∈ B(H),
∥∥SX R−1

∥∥+ ∥∥S−1XR
∥∥ ≥ 2 ‖X‖ , for every S, R ∈ N0(H),

(v) ∀X ∈ B(H),
∥∥S2X

∥∥+ ∥∥XR2
∥∥ ≥ 2 ‖SX R‖ , for every S, R ∈ N (H),

(vi) ∀X ∈ B(H), ‖A∗AX‖ + ‖X AA∗‖ ≥ 2 ‖AX A‖ , for every A ∈ B(H),

(vii) ∀X ∈ B(H),
∥∥SXS+

∥∥+ ∥∥S+XS
∥∥ ≥ 2

∥∥SS+XS+S
∥∥ , for every S ∈ Ncr (H),

(viii) ∀X ∈ B(H),
∥∥S2X

∥∥+ ∥∥XS2
∥∥ ≥ 2 ‖SXS‖ , for every S ∈ Ncr (H),

(ix) ∀X ∈ B(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ ≥ 2 ‖X‖ , for every S ∈ N0(H),

(x) ∀X ∈ B(H),
∥∥S2X

∥∥+ ∥∥XS2
∥∥ ≥ 2 ‖SXS‖ , for every S ∈ N (H).

Proof (i) ⇒ (ii). Assume (i) holds. Let S, R ∈ Ncr (H), X ∈ B(H). Since S∗ =
S∗SS+ and R∗ = R+RR∗, then from (i) and Remark 5.1, it follows that

∥∥SX R+
∥∥+ ∥∥S+XR

∥∥ = ∥∥S∗S
(
S+XR+

)∥∥+ ∥∥(
S+XR+

)
RR∗

∥∥

≥ 2
∥∥SS+XR+R

∥∥ .

Hence, (ii) holds.
(ii) ⇒ (iii). Assume (ii) holds. Let S, R ∈ Ncr (H), X ∈ B(H). Then from (ii)

and since SS+S = S, RR+R = R, and S+S, RR+ are orthogonal projections, it
follows that

∥∥∥S2X
∥∥∥+

∥∥∥XR2
∥∥∥ ≥ ∥∥S (SX R) R+

∥∥+ ∥∥S+ (SX R) R
∥∥

≥ 2
∥∥SS+ (SX R) R+R

∥∥

= 2 ‖SX R‖ .

Thus, (iii) holds.
(iii)⇒ (iv). This implication is trivial.
(iv)⇒ (i). Assume (iv) holds. Then the following inequality holds:

∀S, R ∈ N0(H),∀X ∈ B(H),

∥∥∥S2X
∥∥∥+

∥∥∥XR2
∥∥∥ ≥ 2 ‖SX R‖ .

Let A, B, X ∈ B(H). Put P = |A| , Q = |B∗| . It is clear that the two operators
P + ε I and Q + ε I are normal and invertible, for every ε > 0. So, using the last
inequality, we obtain

∀ε > 0,
∥∥∥(P + ε I )2 X

∥∥∥+
∥∥∥X (Q + ε I )2

∥∥∥ ≥ 2 ‖(P + ε I ) X (Q + ε I )‖ .

By letting ε → 0, we deduce (i).
(i) ⇒ (v). This follows immediately by using Remark 5.1.
(v)⇒ (iii). This implication is trivial.
Therefore, the operator inequalities (i)–(v) are equivalent.
Froma pair of operators to a single operator, we deduce that the operator inequalities

(vi)–(x) are also equivalent.
(i) ⇒ (vi). This implication is trivial.
(vi)⇒ (i). Assume (vi) holds (here we use the Berberian technique).
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Let A, B, X ∈ B(H). Consider now the two bounded linear operators C, Y

defined on the Hilbert space H ⊕ H given by C =
[
A 0
0 B

]
, Y =

[
0 X
0 0

]
. By

a simple computation, we obtain C∗CY =
[
0 A∗AX
0 0

]
, YCC∗ =

[
0 XBB∗
0 0

]
,

and CYC =
[
0 AXB
0 0

]
. Applying (vi) for the Hilbert space H ⊕ H , we obtain

‖A∗AX‖+‖XBB∗‖ = ‖C∗CY‖+‖YCC∗‖ ≥ 2 ‖CYC‖ = 2 ‖AXB‖ . This proves
(i).

Therefore, the inequalities (i)–(v) and (vi)–(x) are mutually equivalent. It remains
to prove that one of them holds. It is clear that (i) is an immediate consequence of the
known arithmetic–geometric mean inequality (2.2). But here, we shall give a direct
proof of (i) independently of (2.2) by using the numerical arithmetic–geometric mean
inequality. Let A, B, X ∈ B(H). The following inequalities hold:

1

2

(∥∥A∗AX
∥∥+ ∥∥XBB∗

∥∥) ≥ √‖A∗AX‖ ‖XBB∗‖
≥ √‖BB∗X∗A∗AX‖
≥ √

r(BB∗X∗A∗AX)

= √
r (B∗X∗A∗AXB)

= ‖AXB‖ .

��
Corollary 5.3 The following operator inequalities hold:
(i) For every S, R ∈ I(H), the following holds:

∀X ∈ B(H),

∥∥∥S∗XR−1
∥∥∥+

∥∥∥S−1XR∗
∥∥∥ ≥ 2 ‖X‖ .

(ii) For every S, R ∈ R(H), the following holds:

∀X ∈ B(H),
∥∥S∗XR+

∥∥+ ∥∥S+XR∗
∥∥ ≥ 2

∥∥SS+XR+R
∥∥ .

(iii) For every S ∈ I(H), the following holds:

∀X ∈ B(H),

∥∥∥S∗XS−1
∥∥∥+

∥∥∥S−1XS∗
∥∥∥ ≥ 2 ‖X‖ .

(iv) For every S ∈ R(H), the following holds:

∀X ∈ B(H),
∥∥S∗XS+

∥∥+ ∥∥S+XS∗
∥∥ ≥ 2

∥∥SS+XS+S
∥∥ .

Proof It suffices to prove (ii) and the three others follow immediately from (ii).
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Let S, R ∈ R(H), and X ∈ B(H). Since SS+S = S and RR+R = R, then we
have

∥∥S∗XR+
∥∥+ ∥∥S+XR∗

∥∥ = ∥∥S∗S
(
S+XR+

)∥∥+ ∥∥(
S+XR+

)
RR∗

∥∥

≥ 2
∥∥SS+XR+R

∥∥ , (from (2.3)).

��

Note that the eight operator inequalities (ii)–(v) and (vii)–(x) given in Proposi-
tion 5.2 are generated by a pair of normal operators and a single normal operator,
respectively.

It will be of interest to describe the class of all operators S ∈ I(H) (resp. S ∈ R(H),

S ∈ B(H)) satisfying the operator inequality (ix) (resp. (vii), (x)).
We shall prove that the largest class of
(·) all operators S ∈ I(H) satisfying (ix) is the classN0(H) of all normal operators

S ∈ I(H),

(··) all operators S ∈ R(H) satisfying the operator inequality (vii) is the class
Ncr (H) of all normal operators S ∈ R(H),

(· · ·) all operators S ∈ B(H) satisfying the operator inequality (x) is the class
N (H) of all normal operators S ∈ B(H).

In the next subsection, we shall present all these characterizations and others.

5.2 Normal operators and characterizations

We need the following lemmas.

Lemma 5.4 [25] Let A ∈ B(H). If ‖A − λI‖ = r(A − λI ), for all complex λ, A is
convexoid.

Lemma 5.5 [14] Let P, Q be two invertible positive operators in B(H) satisfying
the following operator inequality:

∀X ∈ B(H), ‖X‖ +
∥∥∥PX P−1

∥∥∥ ≥ 2
∥∥∥QXQ−1

∥∥∥ .

Then, we have {P}, ⊂ {Q}, .

Proof (i) Let X be a selfadjoint operator inB(H) such that PX = X P, and let α be
an arbitrary complex number. Replace X by X −α I in the inequality given by the
lemma, and since X − α I is normal, we obtain

‖X − α I‖ ≥
∥∥∥Q(X − α I )Q−1

∥∥∥ ≥ r
(
Q(X − α I )Q−1

)
= ‖X − α I‖ .
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Hence,
∥∥QXQ−1 − α I

∥∥ = r
(
QXQ−1 − α I

)
, for all complex number α. Using

the above lemma, we obtain that

V
(
QXQ−1

)
= co

(
σ

(
QXQ−1

))

= coσ (X)

⊂ R.

This give us that QXQ−1 is selfadjoint. Hence, QX = XQ.

(ii) Now, let X be an arbitrary operator in B(H). Put X = X1 + i X2, where X1 =
Re(X), and X2 = ImX . Assume that PX = X P. Then, PX1 = X1P and
PX2 = X2P. From (i), we deduce that, QX1 = X1Q and QX2 = X2Q. Thus,
QX = XQ. Therefore, {P}, ⊂ {Q}, .

��
Lemma 5.6 [14] Let P, Q be two invertible positive operators in B(H) satisfying
the following operator inequality:

∀X ∈ B(H),

∥∥∥PX P−1
∥∥∥+

∥∥∥Q−1XQ
∥∥∥ ≥ 2 ‖X‖ .

Then, we have {P}, = {Q}, .
Proof From the inequality given in the lemma, we have

∀X ∈ B(H), ‖X‖ +
∥∥∥PQXQ−1P−1

∥∥∥ ≥ 2
∥∥∥QXQ−1

∥∥∥ . (5.1)

Put M = |PQ| . So, from this last inequality, we obtain

∀X ∈ B(H), ‖X‖ +
∥∥∥MXM−1

∥∥∥ ≥ 2
∥∥∥QXQ−1

∥∥∥ .

Hence, from the above lemma, we deduce that MQ = QM . Then, PQ = QP.

Now, let X be a selfadjoint operator in B(H) such that PX = X P , and let
α be an arbitrary complex number. Replace in (5.1), X by X − α I , so we have
‖X − α I‖ ≥ ∥∥Q(X − α I )Q−1

∥∥ , for every complex number α. Hence, QX = XQ,

and thus {P}, ⊂ {Q}, , this follows by using the same argument as used in the proof
of the above lemma.

Using again the inequality given in the lemma, we obtain also that {Q}, ={
Q−1

}, ⊂ {
P−1

}′ = {P}, . Therefore, {P}, = {Q}, . ��
Lemma 5.7 Let ε > 0, and let α1 , . . . , αn , β1 , . . . , βn (where n ≥ 1) be real numbers

such that 0 < α1 ≤ · · · ≤ αn ≤ 1,
{
α1 , . . . , αn

} ⊂ {
β1 , . . . , βn

}
, and

αi
α j
+ β j

βi
≥

2− ε, for every i, j . Then, we have
∣∣αi − βi

∣∣ ≤ ε, for i = 1, . . . , n.

Proof From the hypothesis, we deduce easily that βi − β j ≤ ε, if i < j .
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Let i ∈ {1, . . . , n} such that αi �= βi (in the case αi = βi , of course, we have∣∣αi − βi

∣∣ = 0 ≤ ε).
There are three cases: i = 1, i = n, and 1 < i < n.

Case 1. i = 1. There exists j ≥ 2 such that β j = α1 . So, we have |α1 − β1| =
β1 − β j ≤ ε, since j > 1.

Case 2. i = n.There exists j < n such thatβ j = αn . Hence, |αn − βn| = β j−βn ≤
ε, since j < n.

Case 3. 1 < i < n.

Ifαi < βi , then there exists j > i, such thatβ j ≤ αi .Hence,
∣∣αi − βi

∣∣ ≤ βi−β j ≤
ε, since i < j .

Ifαi > βi , then there exists j < i, such thatβ j ≥ αi .Hence,
∣∣αi − βi

∣∣ ≤ β j−βi ≤
ε, since i > j . ��
Remark 5.8 In the original paper [14], the above lemma isLemma3.5, but it is given in a
particular casewith equality instead of inclusion, andwhere the sequence

{
α1 , . . . , αn

}

is increasing instead of non-decreasing. In this particular case, the lemma is needed
only for invertible case.

Lemma 5.9 [14] Let P, Q be two invertible positive operators in B(H) such that
σ(Q) ⊂ σ(P) or σ(P) ⊂ σ(Q). Then, the two following properties are equivalent:
(i) ∀X ∈ B(H),

∥∥PX P−1
∥∥+ ∥∥Q−1XQ

∥∥ ≥ 2 ‖X‖ ,

(ii) P = Q.

Proof We may assume without loss of the generality that ‖P‖ = ‖Q‖ = 1.
(i) ⇒ (ii). Assume (i) holds. Decompose P and Q using their spectral measure:

P =
∫

λdEλ, Q =
∫

λdFλ,

and consider

Pn =
∫

hn (λ) dEλ = hn (P) , Qn =
∫

hn (λ) dFλ = hn (Q) .,

where hn (λ) is the function defined by

hn (λ) = k

n
, if

k

n
≤ λ <

k + 1

n
, for k = 1, 2, 3, . . .

Case 1. σ(Q) ⊂ σ(P). Using the spectral theorem with the function hn , we have

σ
(
Qn

) = σ
(
hn (Q)

) = hn (σ (Q)) ⊂ hn (σ (P)) = σ
(
hn (P)

) = σ
(
Pn

)
.

Then Pn , Qn are invertible positive operators in B(H) with finite spectrum such
that σ

(
Qn

) ⊂ σ
(
Pn

)
, Pn → P, Qn → Q uniformly, and Pn ∈ {P}′′ , Qn ∈ {Q}′′

(where {P}′′ = {Q}′′ , from the Lemma 5.6).
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Hence, Pn Qn = Qn Pn , for every n ≥ 1. Then, Qn =
∑p

i= αi Ei , Pn =
∑p

i= βi Ei ,

where σ
(
Qn

) = {
α1, . . . , αp

}
such that 0 < α1 ≤ · · · ≤ αp ≤ 1, σ

(
Pn

) ={
β1 , . . . , βp

}
, and E1 , . . . , Ep are orthogonal projections inB(H) such that Ei E j =

0, if i �= j,
∑p

i=1 Ei = I . Thus,
{
α1 , . . . , αp

} ⊂ {
β1 , . . . , βp

}
.

Let ε > 0. Then, there exists an integer N ≥ 1 such that

∀n > N , ∀X ∈ B(H),

∥∥∥Pn X P−1
n

∥∥∥+
∥∥∥Q−1

n
XQn

∥∥∥ ≥ (2− ε) ‖X‖ .

Let n > N , and replace X by Ei X E j (where X ∈ B(H)) in this last inequality,
then we deduce that

αi

α j
+ β j

βi
≥ 2− ε, for i, j = 1, . . . , p.

From these last inequalities, and since 0 < α1 ≤ · · · ≤ αp ≤ 1,
{
α1, . . . , αp

} ⊂{
β1 , . . . , βp

}
, and using the above lemma, we obtain

∣∣αi − βi
∣∣ ≤ ε, for i = 1, . . . , p.

Since Pn =
∑p

i= αi Ei , and Qn =
∑p

i= βi Ei , then

∥∥Pn − Qn

∥∥ = max
1≤i≤pn

∣∣αi − βi
∣∣

≤ ε.

Therefore, P = Q.

Case 2. σ(Q) ⊂ σ(P). Using the same argument as used before, we find also
P = Q.

The implication (ii)⇒ (i) follows immediately from (2.3). ��
Remark 5.10 The above lemma in the original paper [14] is the Theorem 3.6, but with
equality between spectrum of P and Q instead of the inclusion. The equality condition
is enough for the invertible case. But for the non-invertible case, the lemma presented
here with inclusion is needed.

In the next proposition, we shall present the first characterization of the class of all
invertible normal operators in B(H).

Proposition 5.11 [18] Let S be an invertible operator inB(H). Then, the two follow-
ing properties are equivalent:
(i) S is normal,
(ii) ∀X ∈ B(H),

∥∥SXS−1
∥∥+ ∥∥S−1XS

∥∥ ≥ 2 ‖X‖ .

Proof (i) ⇒ (ii). Assume (i) holds. Let X ∈ B(H), then we have

∥∥∥SXS−1
∥∥∥+

∥∥∥S−1XS
∥∥∥ =

∥∥∥S∗XS−1
∥∥∥+

∥∥∥S−1XS∗
∥∥∥ , (using Remark 5.1)

≥ 2 ‖X‖ (using Corollary 5.3(iii)).
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(ii)⇒ (i).Assume (ii) holds. Let S = U P, S∗ = U∗Q be the polar decompositions
of S and S∗. From (ii), it follows that

∀X ∈ B(H),

∥∥∥PX P−1
∥∥∥+

∥∥∥Q−1XQ
∥∥∥ ≥ 2 ‖X‖ .

Since σ(P2) = σ(S∗S) = σ(SS∗) = σ(Q2), so from the Spectral Theorem,
σ(P) = σ(Q). Using the last Lemma, we obtain P = Q. Therefore, S is normal. ��
Corollary 5.12 [18] Let S be an invertible operator in B(H). Then, the following
properties are equivalent:
(i) S is normal,
(ii) ∀X ∈ B(H),

∥∥SXS−1
∥∥+ ∥∥S−1XS

∥∥ = ∥∥S∗XS−1
∥∥+ ∥∥S−1XS∗

∥∥ ,

(iii) ∀X ∈ B(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ ≥ ∥∥S∗XS−1

∥∥+ ∥∥S−1XS∗
∥∥ .

Proof (i) ⇒ (ii). This follows immediately from Remark 5.1.
(ii)⇒ (iii). This implication is trivial.
(iii)⇒ (i). Assume (iii) holds. Using the Corollary 5.3(iii), we have

∀X ∈ B(H),

∥∥∥SXS−1
∥∥∥+

∥∥∥S−1XS
∥∥∥ ≥ 2 ‖X‖ .

From the last theorem, we obtain that S is normal. ��
Proposition 5.13 [20] Let S ∈ I(H). The following properties are equivalent:
(i) S ∈ N0(H),

(ii) ∀X ∈ B(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ ≤ ∥∥S∗XS−1

∥∥+ ∥∥S−1XS∗
∥∥ ,

(iii) ∀X ∈ F1(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ ≤ ∥∥S∗XS−1

∥∥+ ∥∥S−1XS∗
∥∥ .

Proof (i) ⇒ (ii). This implication follows immediately from Remark 5.1.
(ii)⇒ (iii). This implication is trivial.
(iii)⇒ (i). From (iii), it follows that the following inequality holds:

∀x, y ∈ (H)1 , ‖Sx‖
∥∥∥(S∗)−1y

∥∥∥+
∥∥∥S−1x

∥∥∥
∥∥S∗y

∥∥ ≤ ∥∥S∗x
∥∥

∥∥∥(S∗)−1y
∥∥∥+

∥∥∥S−1x
∥∥∥ ‖Sy‖ .

Hence,

∀x, y ∈ (H)1,
(‖Sx‖ − ∥∥S∗x

∥∥) ∥∥∥(S∗)−1y
∥∥∥ ≤ (‖Sy‖ − ∥∥S∗y

∥∥) ∥∥∥S−1x
∥∥∥ . (5.2)

Thus,

(∀x ∈ (H)1, ‖Sx‖ ≥
∥∥S∗x

∥∥) ∨ (∀x ∈ (H)1, ‖Sx‖ ≤
∥∥S∗x

∥∥)
.

Assume that the inequality ‖Sx‖ ≥ ‖S∗x‖ holds for every x ∈ (H)1 .
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Since the relation 1‖T−1‖ ≤ ‖T x‖ ≤ ‖T ‖ holds for every T ∈ I(H) and for every

x ∈ (H)1 , then from (5.2), it follows that

∀x, y ∈ (H)1, ‖Sx‖ −
∥∥S∗x

∥∥ ≤ k
(‖Sy‖ − ∥∥S∗y

∥∥)
,

where k = ‖S‖ ∥∥S−1
∥∥ . So we have

∀x, y ∈ (H)1 , ‖Sx‖ + k
∥∥S∗y

∥∥ ≤ ∥∥S∗x
∥∥+ k ‖.Sy‖ .

Hence,

∀x ∈ (H)1 , sup
‖y‖=1

(‖Sx‖ + k
∥∥S∗y

∥∥) ≤ sup
‖y‖=1

(∥∥S∗x
∥∥+ k ‖Sy‖) .

Thus,

∀x ∈ (H)1 , ‖Sx‖ + k ‖S‖ ≤ ∥∥S∗x
∥∥+ k ‖S‖ .

So, it follows that the inequality ‖Sx‖ ≤ ‖S∗x‖ holds for every vector x in (H)1 .

Hence, the equality ‖Sx‖ = ‖S∗x‖ holds for every vector x in (H)1 . Therefore,
S ∈ N0(H).

With the second assumption and by the same argument, we find also that S ∈
N0(H). ��

In the next proposition, we shall give a complete characterization of the class of all
normal operators inB(H) in terms of operator inequality. To prove this, we need the
following results of Halmos (see [9]) that says: the set

D(H) = {S ∈ B(H) : S is left invertible or right invertible}

is dense inB(H), and from the fact that for S ∈ B(H), we have:

(i) S is left invertible if and only if S is injective with closed range,
(ii) S is right invertible if and only if S is surjective.

Proposition 5.14 [23] Let S ∈ B(H). Then, the following properties are equivalent:
(i) S is normal,
(ii) ∀X ∈ B(H),

∥∥S2X
∥∥+ ∥∥XS2

∥∥ ≥ 2 ‖SXS‖ .

Proof We may assume that S �= 0.
(i) ⇒ (ii). Assume (i) holds. Let X ∈ B(H). Then we have

∥∥∥S2X
∥∥∥+

∥∥∥XS2
∥∥∥ = ∥∥S∗SX

∥∥+ ∥∥XSS∗
∥∥ , (from Remark 5.1),

≥ 2 ‖SXS‖ , (from (2.3)).

This proves (ii).
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(ii) ⇒ (i). Assume (ii) holds. Put P = |S|. We prove this implication with four
cases.

Case 1. Assume that S is injective with closed range.
Hence, S+S = I , ker P = ker S = {0} , and R(P) = R(S∗S) is closed (since

R(S∗) is also closed). Thus, ker P = {0} and R(P) = (ker P)⊥ = H . So, P is
invertible. From (i i), the two following inequalities hold:

∀X ∈ B(H),

∥∥∥S2S+XS+
∥∥∥+ ∥∥S+XS

∥∥ ≥ 2
∥∥SS+X

∥∥ . (5.3)

∀X ∈ B(H), ‖XS‖ +
∥∥∥S2XS+

∥∥∥ ≥ 2 ‖SX‖ . (5.4)

The proof is given in four steps.
Step 1. Prove that

(
S2

)+
S = S+.

It is known that S+ is the unique solution of the following four equations: SXS =
S, XSX = X , (XS)∗ = XS, (SX)∗ = SX . It is easy to see that

(
S2

)+
S satisfies

the first three equations.
Now, we prove that

(
S2

)+
S also satisfies the last equation. Since the operator

S
(
S2

)+
S is a projection, it suffices to prove that its norm is less than or equal to one.

By taking X = (
S2

)+
S in (5.4), we obtain

2 ≥
∥∥∥∥
(
S2

)+
S2

∥∥∥∥+
∥∥∥∥S

2
(
S2

)+
SS+

∥∥∥∥ ≥ 2

∥∥∥∥S
(
S2

)+
S

∥∥∥∥ .

Hence,
∥∥∥S

(
S2

)+
S
∥∥∥ ≤ 1. Therefore,

(
S2

)+
S = S+.

Step 2. Prove that
(
S2

)+ = (S+)2.

Since S2
(
S2

)+ = SS+S2
(
S2

)+
, then S2

(
S2

)+ = S2
(
S2

)+
SS+. So from step 2,

we obtain S2
(
S2

)+ = S2(S+)2. Since S2 is injective, we have
(
S2

)+ = (S+)2.

Step 3. Prove that ker S∗ = {0} .
All the 2×2matrices used in this step are givenwith respect to the orthogonal direct

sum H = R(S)⊕ ker S∗. Then, S =
[
S1 S2
0 0

]
. We put Q = |S∗| , P1 =

∣∣S1
∣∣ , P2 =

∣∣S2
∣∣ , Q1 =

(
S1 S

∗
1
+ S2 S

∗
2

) 1
2 . So we have S∗S = P2 =

[
P2
1

S∗
1
S2

S∗
2
S1 P2

2

]
, SS∗ =

Q2 =
[
Q2

1
0

0 0

]
. It is clear that Q =

[
Q1 0
0 0

]
, Q1 is invertible, and Q+ =

[
Q−1

1
0

0 0

]
.

Since S is injective, then ker S∗ = {0} if and only if S2 = 0. Assume that S2 �= 0.
Since

(
S2

)+ = (S+)2, then the two operators S∗S and SS+ commute (see [3, 11]).

Thus, P2 =
[
P2
1

0
0 P2

2

]
, so that P =

[
P1 0
0 P2

]
.

Since ker S∗ �= {0} , then σ(Q2) = σ(Q2
1) ∪ {0} . From the fact that σ(P2) =

σ(Q2) − {0} , we have σ(P2) = σ(Q2
1). Then, σ(P2

1
) ∪ σ(P2

2 ) = σ(Q2
1). Hence,

σ(P2
1
) ⊂ σ(Q2

1). Thus, σ(P1) ⊂ σ(Q1).
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Using the polar decomposition of S and S∗ in the inequality (5.3) , we obtain the
following inequality:

∀X ∈ B(H),

∥∥∥S2S+X P−1
∥∥∥+ ∥∥Q+XQ

∥∥ ≥ 2
∥∥SS+X

∥∥ .

By taking X =
[
X1 0
0 0

]
(resp. X =

[
0 X2
0 0

]
), where X1 ∈ B(R(S)) (resp.

X2 ∈ B(ker S∗, R(S))) in the last inequality and since S2S+ =
[
S1 0
0 0

]
, we deduce

the two following inequalities:

∀X1 ∈ B(R(S)),

∥∥∥P1X1 P
−1
1

∥∥∥+
∥∥∥Q−1

1
X1Q1

∥∥∥ ≥ 2 ‖X1‖ . (5.5)

∀X2 ∈ B(ker S∗, R(S)),

∥∥∥P1X2P
−1
2

∥∥∥ ≥ 2 ‖X2‖ . (5.6)

By taking X2 = x ⊗ y (where x ∈ (R(S))1, y ∈ ker S∗) in (5.6), we obtain

∀x ∈ (R(S))1,∀y ∈ ker S∗, ‖P1x‖
∥∥∥P−12 y

∥∥∥ ≥ 2 ‖y‖ .

So, we have

∀x ∈ (R(S))1,∀y ∈
(
ker S∗

)
1 , ‖P1x‖ ≥ 2 ‖P2y‖ .

Thus ‖P2y‖ ≤ k
2 , for every y ∈ (ker S∗)1 (where k = inf‖x‖=1 ‖P1x‖ > 0).

Then
〈
P2
2 y, y

〉 ≤ k2
4 , for every y ∈ (ker S∗)1 . So we obtain σ(P2

2 ) ⊂ (0, k2
4 ] and

σ(P2
1 ) ⊂ [k2,∞).

Since σ(P1) ⊂ σ(Q1), and P1 , Q1 satisfy the inequality (5.5), then using
Lemma 5.9, we obtain P1 = Q1 . Hence σ(Q2

1
) = σ(P2

1 ) = σ(P2
1
) ∪ σ(P2

2 ).

Then σ(P2
2 ) ⊂ σ(P2

1 ), that is impossible, since (0, k2
4 ] ∩ [k2,∞) = ∅. Therefore,

ker S∗ = {0} .
Step 4. Prove that S is normal.
Since ker S∗ = {0} , then R(S) = H , so that S is invertible and satisfies the

inequality (ii). Hence, S satisfies the following inequality:

∀X ∈ B(H),

∥∥∥SXS−1
∥∥∥+

∥∥∥S−1XS
∥∥∥ ≥ 2 ‖X‖ .

Therefore S is normal, by using Proposition 5.11.
Case 2. Assume S surjective.
Then, S∗ is injective with a closed range satisfying also the inequality (ii). So that

from case 1, S∗ is normal. Hence, S is normal.
Case 3. General situation.
We may assume without loss of generality that ‖S‖ = 1. Then

∥∥S2
∥∥ = ‖S‖2 = 1.

There exists a sequence (Sn)n≥1 of elements inD(H) such that Sn → S uniformly.
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Define the real function F on the complete metric space (B(H))1 by

∀X ∈ (B(H))1 , F(X) =
∥∥∥S2X

∥∥∥+
∥∥∥XS2

∥∥∥− 2 ‖SXS‖ ,

and for n ≥ 1, define the real function Fn on (B(H))1 by

∀X ∈ (B(H))1 , Fn(X) =
∥∥∥S2n X

∥∥∥+
∥∥∥XS2n

∥∥∥− 2 ‖Sn XSn‖ .

Put D = {X ∈ (B(H))1 : F(X) > 0} . Then there are two cases, D = ∅, D �= ∅.

(1) D = ∅. So, it follows that

∀X ∈ B(H),

∥∥∥S2X
∥∥∥+

∥∥∥XS2
∥∥∥ = 2 ‖SXS‖ . (5.7)

From this equality, we have

∀x, y ∈ H ,

∥∥∥S2x
∥∥∥ ‖y‖ + ‖x‖

∥∥∥S∗2y
∥∥∥ = 2 ‖Sx‖ ∥∥S∗y

∥∥ .

Since S2 �= 0, and from this last inequality, we deduce easily that S and S∗ are
injective, and then S is with dense range.

Prove now that S is with closed range. Let (xn ) be a sequence of vectors in H such
that (Sxn ) converges to a vector y ∈ H . We may choose a vector u ∈ (H)1 such that
S∗2u �= 0. From the above inequality, we obtain

∀n,m ≥ 1,
∥∥∥S2xn − S2xm

∥∥∥+ ∥∥xn − xm
∥∥

∥∥∥S∗2u
∥∥∥ = 2

∥∥Sxn − Sxm
∥∥ ∥∥S∗u

∥∥ .

Hence, (xn ) is a Cauchy sequence, and then it converges to some vector x ∈ H . So
that Sxn → y = Sx . This proves R(S) is closed. Then, S is invertible.

So, from (5.7), it follows that

∀X ∈ B(H),

∥∥∥SXS−1
∥∥∥+

∥∥∥S−1XS
∥∥∥ = 2 ‖X‖ .

From Proposition 5.11, (i) holds.
(2) D �= ∅. From the fact that F is a positive continuous map on (B(H))1 , it

follows that

D = F−1 ((0,∞)) = F−1 ([0,∞)) = {X ∈ (B(H))1 : F(X) ≥ 0} = (B(H))1 .

Let X ∈ D, and ε > 0. Since Sn → S uniformly, then there exists an integer
N ≥ 1 (depends only in ε) such that

∀n ≥ N , ∀Y ∈ (B(H))1 , |F(Y )− Fn(Y )| ≤ ε.
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If there exists n ≥ N such that Fn(X) < 0, then using this last inequality, we have
0 ≤ F(X) < ε, for every ε > 0; thus F(X) = 0, leading to a contradiction with
X ∈ D.

From this fact, it follows that

∀X ∈ D, ∀n ≥ N , Fn(X) ≥ 0.

Since each Fn is a continuous map on (B(H))1 and D is dense in (B(H))1 , then

∀X ∈ (B(H))1 , ∀n ≥ N , Fn(X) ≥ 0.

So, it follows that

∀X ∈ B(H), ∀n ≥ N ,

∥∥∥S2n X
∥∥∥+

∥∥∥XS2n

∥∥∥ ≥ 2 ‖Sn XSn‖ .

Since for each n ≥ 1, Sn ∈ D(H), then from the two above cases, we obtain that Sn
is a normal operator, for every n ≥ N . Since Sn → S uniformly and the class of all
normal operators in B(H) is closed, then S is a normal. ��

Remark 5.15 In the above proof, case 1 is the lemmapresented in the corrigendum [22].
Note that in the proof of this lemma in the corrigendum, we have used Theorem 3.6
of [14] with equality between the spectrum (that is not suffice) and we mentioned that
with the inclusion between spectrum the theorem remains true (without argument). In
this survey, we have present this argument in Lemma 5.9.

Corollary 5.16 Let S ∈ B(H). Then, the following properties are equivalent.

(i) S is normal,
(ii) ∀X ∈ B(H),

∥∥S2X
∥∥ ∥∥XS2

∥∥ ≥ ‖SXS‖2 .

Proof (i) ⇒ (ii). Assume (i) holds, and let X ∈ B(H). Then we have

∥∥∥S2X
∥∥∥

∥∥∥XS2
∥∥∥ = ∥∥S∗SX

∥∥ ∥∥XSS∗
∥∥ (using Remark 5.1)

≥ ‖SXS‖2 (see the proof of (2.3) in Proposition 5.2).

(ii)⇒ (i). Assume (ii) holds, and let X ∈ B(H). Then we have:

∥∥S2X
∥∥+ ∥∥XS2

∥∥

2
≥

√∥∥S2X
∥∥ ∥∥XS2

∥∥ (from the numerical AGMI)

≥ ‖SXS‖ (using (ii)).

From the last proposition, (i) holds. ��
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Corollary 5.17 [21] Let S ∈ R(H). Then the following properties are equivalent:
(i) S ∈ N (H),

(ii) ∀X ∈ B(H),
∥∥SXS+

∥∥+ ∥∥S+XS
∥∥ = ∥∥S∗XS+

∥∥+ ∥∥S+XS∗
∥∥ ,

(iii) ∀X ∈ B(H),
∥∥SXS+

∥∥+ ∥∥S+XS
∥∥ ≥ ∥∥S∗XS+

∥∥+ ∥∥S+XS∗
∥∥ ,

(iv) ∀X ∈ B(H),
∥∥SXS+

∥∥+ ∥∥S+XS
∥∥ ≥ 2

∥∥SS+XS+S
∥∥ .

Proof We may assume that S �= 0.
(i) ⇒ (ii). This follows immediately from Remark 5.1.
The implication (ii)⇒ (iii) is trivial.
(iii)⇒ (iv). This follows immediately from Corollary 5.3(iv).
(iv)⇒ (i). Assume (iv) holds. Then the following inequality holds:

∀X ∈ B(H),

∥∥∥S2XSS+
∥∥∥+

∥∥∥S+SXS2
∥∥∥ ≥ 2

∥∥SS+SXSS+S
∥∥ .

From this inequality and since
∥∥SS+

∥∥ = ∥∥S+S
∥∥ = 1, and SS+S = S, it follows

that

∀X ∈ B(H),

∥∥∥S2X
∥∥∥+

∥∥∥XS2
∥∥∥ ≥ 2 ‖SXS‖ .

Using Proposition 5.14, S is normal. ��
Remark 5.18 In the original paper [21], the above corollary is presented before the
characterization ofN (H) in its general situation, and for this reason its proof is very
strong. But, in this survey, we have adopted a new strategy, where this corollary follows
immediately from the general situation.

Conclusion 5.19 (1) The class of all invertible normal operators in B(H) is charac-
terized by each of the following properties:

∀X ∈ B(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ ≥ 2 ‖X‖ , (S ∈ I(H)).

∀X ∈ B(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ = ∥∥S∗XS−1

∥∥+ ∥∥S−1XS∗
∥∥ , (S ∈ I(H)).

∀X ∈ B(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ ≥ ∥∥S∗XS−1

∥∥+ ∥∥S−1XS∗
∥∥ , (S ∈ I(H)).

∀X ∈ B(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ ≤ ∥∥S∗XS−1

∥∥+ ∥∥S−1XS∗
∥∥ , (S ∈ I(H)).

∀X ∈ F1(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ ≤ ∥∥S∗XS−1

∥∥+ ∥∥S−1XS∗
∥∥ , (S ∈ I(H)).

(2) The class of all normal operators with closed ranges inB(H) is characterized by
each of the following properties:
∀X ∈ B(H),

∥∥SXS+
∥∥+ ∥∥S+XS

∥∥ ≥ 2
∥∥SS+XS+S

∥∥ , (S ∈ R(H))

∀X ∈ B(H),
∥∥SXS+

∥∥+ ∥∥S+XS
∥∥ = ∥∥S∗XS+

∥∥+ ∥∥S+XS∗
∥∥ , (S ∈ R(H))

∀X ∈ B(H),
∥∥SXS+

∥∥+ ∥∥S+XS
∥∥ ≥ ∥∥S∗XS+

∥∥+ ∥∥S+XS∗
∥∥ , (S ∈ R(H))

(3) The class of all normal operators inB(H) is characterized by:

∀X ∈ B(H),

∥∥∥S2X
∥∥∥+

∥∥∥XS2
∥∥∥ ≥ 2 ‖SXS‖ , (S ∈ B(H)).
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5.3 Characterizations related to Magajna–Petkovsek–Turnsek

For S, T ∈ B(H):

(i) we say that S and T are unitarily equivalent, if there exists a unitary operator
U ∈ B(H) such that S = U∗TU ,

(ii) it is easy to see that if S ∈ I(H), then |S| and |S∗| are unitarily equivalent,
(iii) if S and T are unitarily equivalent, then S and T have the same spectrum, but the

converse is false (in general),
(iv) S is paranormal if ‖x‖ ∥∥S2x

∥∥ ≥ ‖Sx‖2 , for every x ∈ H ,

(v) we say that S belongs to class A, if
∣∣S2

∣∣ ≥ |S|2 ,

(vi) if S ≥ 0, T ≥ 0, and S ≥ T , then Sα ≥ T α, for every α ∈ [0, 1] (Löwner–Heinz
inequality [10]),

(vii) if S belongs to class A, then it is paranormal (see [8]).

Using the Theorem 2.1 of Magajna–Petkovsek–Turnsek [12], we shall present in
this subsection other characterizations of the classN0(H), and then, we deduce some
general characterizations of the class N (H).

Lemma 5.20 Let P and Q be two invertible positive unitarily equivalent operators in
B(H). The two following properties are equivalent:
(i) ∀X ∈ F1(H),

∥∥PX P−1
∥∥+ ∥∥Q−1XQ

∥∥ ≥ 2 ‖X‖ ,

(ii) P = Q.

Proof The implication (i) �⇒ (ii) represents a particular case of [12, Theorem 2.1].
The implication (ii) �⇒ (i) follows immediately from Proposition 5.11. ��

Proposition 5.21 Let S ∈ I(H). The following properties are equivalent:
(i) S ∈ N0(H),

(ii) ∀X ∈ F1(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ = ∥∥S∗XS−1

∥∥+ ∥∥S−1XS∗
∥∥ ,

(iii) ∀X ∈ F1(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ ≥ ∥∥S∗XS−1

∥∥+ ∥∥S−1XS∗
∥∥ ,

(iv) ∀X ∈ F1(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ ≥ 2 ‖X‖ .

Proof The implication (i) �⇒ (ii) follows immediately from Remark 5.1, the impli-
cation (ii) �⇒ (iii) is trivial, and the implication (iii) �⇒ (iv) follows from
Corollary 5.3(iii).

(iv) �⇒ (i). Assume (iv) holds.
Put P = |S| and Q = |S∗| . Using (iv) and the polar decomposition of S and S∗,

we deduce the following inequality:

∀X ∈ F1(H),

∥∥∥PX P−1
∥∥∥+

∥∥∥Q−1XQ
∥∥∥ ≥ 2 ‖X‖ .

Since P and Q are unitarily equivalent, then using the above lemma, we find that
P = Q. This proves (i). ��

In [2], Ando proved that for S ∈ B(H), S is normal if and only if S and S∗ are
paranormal, and ker S = ker S∗. In the next proposition, we present some new general
characterizations of the class N (H), and we shall show that the Ando result remains
true without the kernel assumption.
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Proposition 5.22 Let S ∈ B(H). The following properties are equivalent.

(i) S is normal,
(ii)

∣∣S2
∣∣ = |S|2 ,

∣∣S∗2
∣∣ = |S∗|2 ,

(iii)
∣∣S2

∣∣2 ≥ |S|4 ,
∣∣S∗2

∣∣2 ≥ |S∗|4 ,

(iv) S and S∗ belong to class A,

(v) S and S∗ are paranormal.

Proof The implications (i)⇒ (ii), (ii)⇒ (iii) are trivial.
(iii)⇒ (iv). This follows from Löwner–Heinz inequality with α = 1

2 .

(iv)⇒ (v). This follows from [10].
(v)⇒ (i). Assume (v) holds. Then, we have

{∀x ∈ H , ‖x‖ ∥∥S2s
∥∥ ≥ ‖Sx‖2 , (5.8)

∀x ∈ H , ‖x‖
∥∥∥(S∗)2 x

∥∥∥ ≥ ‖S∗x‖2 . (5.9)

So, it follows that

∀X ∈ F1(H),

∥∥∥S2X
∥∥∥+

∥∥∥XS2
∥∥∥ ≥ 2 ‖SXS‖ . (5.10)

The proof is given in three cases.
Case 1. Assume that S surjective.
From (5.8), it follows that

∀x ∈ H ,
∥∥S+x

∥∥ ‖Sx‖ ≥ ‖x‖2 .

Then S is injective. Hence, S is invertible. So using (5.10), we obtain

∀X ∈ F1(H),

∥∥∥SXS−1
∥∥∥+

∥∥∥S−1XS
∥∥∥ ≥ 2 ‖X‖ .

So from the above proposition, S is normal.
Case 2. Assume that S is injective with closed range.
Then S∗ is surjective. So, from (5.9) and using the same argument as used in the

case 1, we find that S is invertible, so that S is normal.
Case 3. General situation.
From (5.10), and by using the same argument as used in the case 3 of the proof of

Proposition 5.14 (where F1(H) takes the place of B(H)), and using [12, Theorem
2.1], we obtain that S is normal. ��
Remark 5.23 (1) The equivalences between (i), (ii), and (iii) in the above corollary

were given in [23], and follow from Proposition 5.22. The equivalences between
(i), (iv), and (v) are new.

(2) TheLemma5.20must be used only for the invertible case, but Lemma5.9 is needed
for the general situation. The hypothesis of Lemma 5.9 is more general than the
hypothesis of Lemma 5.20, but the condition (i) of Lemma 5.9 is a particular case
of the condition (i) of Lemma 5.20.
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Conclusion 5.24 (1) The class of all invertible normal operators in B(H) is charac-
terized by each of the following properties:

∀X ∈ F1(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ ≥ 2 ‖X‖ , (S ∈ I(H)),

∀X ∈ F1(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ = ∥∥S∗XS−1

∥∥+ ∥∥S−1XS∗
∥∥ , (S ∈ I(H)),

∀X ∈ F1(H),
∥∥SXS−1

∥∥+ ∥∥S−1XS
∥∥ ≥ ∥∥S∗XS−1

∥∥+ ∥∥S−1XS∗
∥∥ , (S ∈ I(H)).

(2) The class of all normal operators inB(H) is characterized by each of the following
properties:

∣∣S2
∣∣ = |S|2 ,

∣∣S∗2
∣∣ = |S∗|2 , (S ∈ B(H),∣∣S2

∣∣2 ≥ |S|4 ,
∣∣S∗2

∣∣2 ≥ |S∗|4 , (S ∈ B(H),

S, S∗belong to class A, (S ∈ B(H),

S, S∗are paranormal, (S ∈ B(H).

6 Arithmetic–geometric mean inequality, selfadjoint operators, and
characterization

6.1 Operator inequality related to the S-arithmetic–geometric mean inequality

In [10], Heinz proved that for every two positive operators P and Q inB(H), and for
every α ∈ [0, 1], the following operator inequality holds:

∀X ∈ B(H), ‖PX + XQ‖ ≥
∥∥∥PαXQ1−α + P1−αXQα

∥∥∥ . (6.1)

As a particular case of this, for α = 1
2 , the well-known arithmetic–geometric mean

inequality is given by (2.2).
Note that the proof of (6.1) given by Heinz is somewhat complicated. For this

reason, McIntosh [13], with an elegant proof, proved that the operator inequality (2.2)
holds, and deduced from it from the Heinz inequality by the iteration method.

Independently of the work of Heinz and McIntosh, Corach et al. proved in [6], that
for every invertible selfadjoint operator S inB(H), the inequality (2.1) holds.

In [7], it was proved that the three above operator inequalities are equivalent, and
proving (2.1) with an easy proof, this gives us an easier proof of Heinz inequality.

In the following proposition, we shall give a family of operator inequalities that are
equivalent to the Heinz inequality and present the proof of (2.1) given in [7].

Proposition 6.1 [4, 7] The following operator inequalities hold and are mutually
equivalent:
(i) ∀X ∈ B(H), ‖A∗AX + XBB∗‖ ≥ 2 ‖AXB‖ , for every A, B ∈ B(H).

(ii) ∀X ∈ B(H),
∥∥SX R+ + S+XR

∥∥ ≥ 2
∥∥SS+XR+R

∥∥ , for every S, R ∈ Scr (H).

(iii) ∀X ∈ B(H),
∥∥S2X + XR2

∥∥ ≥ 2 ‖SX R‖ , for every S, R ∈ Scr (H).

(iv) ∀X ∈ B(H),
∥∥SX R−1 + S−1XR

∥∥ ≥ 2 ‖X‖ , for every S, R ∈ S0(H).

(v) ∀X ∈ B(H),
∥∥S2X + XR2

∥∥ ≥ 2 ‖SX R‖, for every S, R ∈ S(H).
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(vi) ∀X ∈ B(H), ‖A∗AX + X AA∗‖ ≥ 2 ‖AX A‖ , for every A ∈ B(H).

(vii) ∀X ∈ B(H),
∥∥SXS+ + S+XS

∥∥ ≥ 2
∥∥SS+XS+S

∥∥, for every S ∈ Scr (H).

(viii) ∀X ∈ B(H),
∥∥S2X + XS2

∥∥ ≥ 2 ‖SXS‖, for every S ∈ Scr (H).

(ix) ∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ ≥ 2 ‖X‖ , for every S ∈ S0(H).

(x) ∀X ∈ B(H),
∥∥S2X + XS2

∥∥ ≥ 2 ‖SXS‖ , for every S ∈ S(H).

Proof (i) ⇒ (ii). Assume (i) holds. Let S, R ∈ Scr (H), X ∈ B(H). Since S =
S∗SS+ and R = R+RR∗, then from (i) it follows that

∥∥SX R+ + S+XR
∥∥ = ∥∥S∗S

(
S+XR+

)+ (
S+XR+

)
RR∗

∥∥

≥ 2
∥∥SS+XR+R

∥∥ .

Hence, (ii) holds.
(ii)⇒ (iv). Trivial.
(iv)⇒ (v). Assume (iv) holds. Let S, R ∈ S(H), and put P = |S| , Q = |R| .
Let ε > 0. From (iv), the following inequality holds:

∀X ∈ B(H),

∥∥∥(P + ε I )2 X + X (Q + ε I )2
∥∥∥ ≥ 2 ‖(P + ε I ) X (Q + ε I )‖ .

Letting ε →∞, we obtain

∀X ∈ B(H),

∥∥∥S2X + XR2
∥∥∥ ≥ 2 ‖SX R‖ .

(v)⇒ (i). This follows immediately by using the polar decomposition of an oper-
ator.

(v)⇒ (iii). Trivial.
(iii)⇒ (iv). Trivial.
Hence, the equivalences (i)–(v) hold.
From a pair of operators to a single operator, the equivalences (vi)–(x) hold.
(i) ⇒ (vi). Trivial.
(vi)⇒ (i). This follows using Berberian technique as used in Proposition 5.2.
Hence, the ten properties are mutually equivalent.
Prove now that the operator inequality (iv) holds.
Step 1. Let S, X ∈ B(H) such that S and X are selfadjoint, and S invertible.
Then, there exists λ ∈ σ(X) such that |λ| = ‖X‖ . Since σ(X) = σ(SXS−1) ⊂

V (SXS−1), there exists a state f onB(H) such that λ = f
(
SXS−1

) = f
(
S−1XS

)
.

This gives us 2 ‖X‖ = ∣∣ f
(
SXS−1 + S−1XS

)∣∣ ≤ ∥∥SXS−1 + S−1XS
∥∥ .

Step 2. Let S, X ∈ B(H) such that S is selfadjoint invertible.

Let the two followingoperators on theHilbert space H⊕H begivenbyM =
[
S 0
0 S

]

and Y =
[

0 X
X∗ 0

]
, so that M and Y are selfadjoint operators inB(H⊕H) and where
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M is invertible. Applying step 1 for this pair of operators, we obtain

∥∥∥SXS−1 + S−1XS
∥∥∥ =

∥∥∥MXM−1 + M−1XM
∥∥∥

≥ 2 ‖Y‖
= 2 ‖X‖ .

��
Remark 6.2 In [1], we find generalized versions of the arithmetic–geometric mean
inequality.

Corollary 6.3 The following operator inequalities hold:
(i) For every S, R ∈ I(H), the following holds:

∀X ∈ B(H),

∥∥∥S∗XR−1 + S−1XR∗
∥∥∥ ≥ 2 ‖X‖ .

(ii) For every S, R ∈ R(H), the following holds:

∀X ∈ B(H),
∥∥S∗XR+ + S+XR∗

∥∥ ≥ 2
∥∥SS+XR+R

∥∥ .

(iii) For every S ∈ I(H), the following holds:

∀X ∈ B(H),

∥∥∥S∗XS−1 + S−1XS∗
∥∥∥ ≥ 2 ‖X‖ .

(iv) For every S ∈ R(H), the following holds:

∀X ∈ B(H),
∥∥S∗XS+ + S+XS∗

∥∥ ≥ 2
∥∥SS+XS+S

∥∥ .

Proof It suffices to prove (ii) and the three others follow immediately from (ii).
Let S, R ∈ R(H), and X ∈ B(H). Since SS+S = S and RR+R = R, then we

have

∥∥S∗XR+ + S+XR∗
∥∥ = ∥∥S∗S

(
S+XR+

)+ (
S+XR+

)
RR∗

∥∥

≥ 2
∥∥SS+XR+R

∥∥ , (from (2.2)).

��
Note that the eight operator inequalities (ii)–(v) and (vii)–(x) given in Proposi-

tion 6.1 are generated by a pair of selfadjoint operators and a single selfadjoint operator,
respectively.

It will be of interest to describe the class of all operators S ∈ I(H) (resp. S ∈ R(H),

S ∈ B(H)) satisfying the operator inequality (ix) (resp. (vii), (x)).
We shall prove that the largest class of
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(·) all operators S ∈ I(H) satisfying (ix) is the class (C)1 S0(H) (the class of all
rotation of all selfadjoint operators S ∈ I(H)),

(··) all operators S ∈ R(H) satisfying the operator inequality (vii) is the class
(C)1 Scr (H) (the class of all rotation of all selfadjoint operators S ∈ R(H)),

(· · ·) all operators S ∈ B(H) satisfying the operator inequality (x) is the class
(C)1 S(H) (the class of all rotation of all selfadjoint operators S ∈ B(H)).

In the next subsection, we shall present all these characterizations and others.

6.2 Selfadjoint operators and characterizations

In this section, we shall present some characterizations of the class of all invertible
selfadjoint operatorsmultiplied by nonzero scalars, the class of all selfadjoint operators
with closed ranges multiplied by scalars, and the class of all selfadjoint operators
multiplied by scalars.

We need the following lemma.

Lemma 6.4 [14] Let λ, μ ∈ C
∗ such that λ

μ
+ μ

λ
∈ R, and

∣∣∣ λ
μ
+ μ

λ

∣∣∣ ≥ 2. Then there

exists θ ∈ [0, π) such that λ, μ ∈ Dθ .

Proof Let λ = reiα, μ = leiβ be the polar decomposition of λ, μ. Then we have

λ

μ
+ μ

λ
=

(
r

l
+ l

r

)
cos (α − β)+ i

(
r

l
− l

r

)
sin (α − β) .

Thus, r = l or α− β ≡ 0 (mod.π). The case r = l also gives α− β ≡ 0 (mod.π).

Hence, the prof is completed. ��
Proposition 6.5 [14] Let S ∈ I(H). Then the two following properties are equivalent:
(i) S ∈ (C)1 S0(H),

(ii) ∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ ≥ 2 ‖X‖ .

Proof The implication (i) ⇒ (ii) follows immediately from Proposition 6.1.
(ii)⇒ (i). Assume (ii) holds. So, we have

∀X ∈ B(H),

∥∥∥SXS−1
∥∥∥+

∥∥∥S−1XS
∥∥∥ ≥ 2 ‖X‖ .

Using Proposition 5.11, then S is normal. Using the spectral measure of S, there
exists a sequence (Sn ) of invertible normal operators with finite spectrum such that:

(a) Sn → S uniformly,
(b) for all λ ∈ σ(S), there exists a sequence (λn ) such that λn ∈ σ(Sn ), for all n and

λn → λ.

Let λ, μ ∈ σ(S) and let ε > 0. Using (ii), (a), and (b), there exists an integer
N ≥ 1 such that

∀n > N , ∀X ∈ B(H),

∥∥∥Sn X S−1
n
+ S−1

n
X Sn

∥∥∥ ≥ (2− ε) ‖X‖ , (6.2)
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and there exist two sequences (λn ), (μn ) such that λn , μn ∈ σ(Sn ), for all n, and
λn → λ, μn → μ.

Let n > N and since Sn is normal, with finite spectrum, there exist p orthogonal
projections E1 , . . . , Ep inB(H) such that Ei E j = 0, if i �= j,

∑p
i=1 Ei = I , Sn =∑p

i= αi Ei , where σ(Sn ) =
{
α1 , . . . , αp

}
, α1 = λn , α2 = μn .

Then by (6.2), and if we put A =
[
2 γn

γn 2

]
, where γn = λn

μn
+ μn

λn
, we obtain

∀X ∈ B(C2), ‖A ◦ X‖ ≥ (2− ε) ‖X‖ . (6.3)

If we put δn = 1
γn

, and B =
[ 1

2 δn
δn

1
2

]
, then from the last inequality, we also have

∀X ∈ B(C2), ‖B ◦ X‖ ≤ ‖X‖
(2− ε)

. (6.4)

From (6.3), we deduce
∣∣∣ λn
μn
+ μn

λn

∣∣∣ ≥ 2 − ε. Hence,
∣∣∣ λ
μ
+ μ

λ

∣∣∣ ≥ 2. Put, βn =
Imγn , γ = lim γn , β = lim βn .

On the other hand, if in (6.4), we put X =
[
1 ia
ia 1

]
, for a > 0, we obtain

1

4
+ a2

∣∣γn

∣∣2 + a
∣∣βn

∣∣ ≤ 1+ a2

(2− ε)2
.

Hence,

1

4
+ a2 |γ |2 + a |β| ≤ 1+ a2

(2− ε)2
.

Thus, a |γ |2 + |β| ≤ a
4 , for every a > 0. This gives us Im

(
λ
μ
+ μ

λ

)
= β = 0.

So, from the above lemma, λ and μ belongs to a straight line through the origin. Then
there exists θ ∈ [0, π) such that σ(S) ⊂ Dθ . Therefore, M = e−iθ S is selfadjoint,
and S = eiθ M . ��
Remark 6.6 In [5], we find the class of all invertible operators S in B(H) satisfying
the following inequality (with k ∈ (−2, 2]):

∀X ∈ B(H), ‖SXS−1 + S−1XS + kX‖ ≥ (k + 2)‖X‖.

Note that this problem is still open, and for k = 0, we find the previous characteriza-
tions (Proposition 6.5).

Corollary 6.7 [18] Let S ∈ I(H). Then the following properties are equivalent:
(i) S ∈ (C)1 S0(H),
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(ii) ∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ = ∥∥S∗XS−1 + S−1XS∗
∥∥ ,

(iii) ∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ ≥ ∥∥S∗XS−1 + S−1XS∗
∥∥ .

Proof The two implications (i) �⇒ (ii) and (ii) �⇒ (iii) are trivial.
The implication (iii) �⇒ (i) follows fromCorollary 6.3(iii) and the last proposition.

��
Corollary 6.8 Let S ∈ I(H). Then the two following properties are equivalent:
(i) S ∈ C

∗Ur (H),

(ii) ∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ = 2 ‖X‖ .

Proof This corollary follows immediately from Propositions 4.16 and 6.5. ��
In the next proposition, and from the last proposition concerning the invertible case,

we conclude for the characterization of the class (C)1 S(H).

Proposition 6.9 [23] Let S ∈ B(H). The two following properties are equivalent:
(i) S ∈ (C)1 S(H),

(ii) ∀X ∈ B(H),
∥∥S2X + XS2

∥∥ ≥ 2 ‖SXS‖ .

Proof We may assume without loss of generality that ‖S‖ = 1.
(i) ⇒ (ii). This implication follows immediately from (2.2).
(ii)⇒ (i). Assume (ii) holds. Then, we have

∀X ∈ B(H),

∥∥∥S2X
∥∥∥+

∥∥∥XS2
∥∥∥ ≥ 2 ‖SXS‖ .

Hence, from Proposition 5.14, S is normal. So, we prove (i) in two cases.
Case 1. S ∈ D(H).

Then, S is invertible, so from (ii), we obtain

∀X ∈ B(H),

∥∥∥SXS−1 + S−1XS
∥∥∥ ≥ 2 ‖X‖ .

Using the last proposition, we deduce (i).
Case 2. General situation.
Applying triangular inequality in (ii), we deduce that

∥∥S2
∥∥ = ‖S‖2 = 1.

Define the real function F on the complete metric space (B(H))1 by

∀X ∈ (B(H))1 , F(X) =
∥∥∥S2X + XS2

∥∥∥− 2 ‖SXS‖ ,

and for n ≥ 1, define the real function Fn on (B(H))1 by

∀X ∈ B(H), Fn(X) =
∥∥∥S2n X + XS2n

∥∥∥− 2 ‖Sn XSn‖ .

Put D = {X ∈ (B(H))1 : F(X) > 0} . Then there are two cases, D = ∅, D �= ∅.



Operator inequalities related to the arithmetic–geometric… Page 41 of 43     8 

(1) D = ∅. So, it follows that

∀X ∈ B(H),

∥∥∥S2X + XS2
∥∥∥ = 2 ‖SXS‖ . (6.5)

From this equality, we have

∀x, y ∈ H ,

∥∥∥S2x ⊗ y + x ⊗ S∗2y
∥∥∥ = 2 ‖Sx‖ ∥∥S∗y

∥∥ .

Using this last equality and since S2 �= 0, we deduce that ker S∗ = {0} . Hence, S
is with dense range. Using again this last equality, we obtain the following inequality:

∀x, y ∈ (H)1 ,

∥∥∥S2x
∥∥∥+ 2 ‖Sx‖ ∥∥S∗y

∥∥ ≥
∥∥∥S∗2y

∥∥∥ .

By taking the supremum over y ∈ (H)1 , we obtain that ‖Sx‖ ≥ 1
3 ‖x‖ , for every

x ∈ H . Thus, S is bounded below with dense range. Hence, S is invertible. So, from
(6.5), it follows that

∀X ∈ B(H),

∥∥∥SXS−1 + S−1XS
∥∥∥ = 2 ‖X‖ .

Then from the last proposition, (i) holds.
(2) D �= ∅. From the fact that F is a positive continuous map on (B(H))1 , it

follows that

D = F−1 ((0,∞)) = F−1 ([0,∞)) = {X ∈ (B(H))1 : F(X) ≥ 0} = (B(H))1 .

Let X ∈ D, and ε > 0. Since Sn → S uniformly, then there exists an integer
N ≥ 1 (depends only in ε) such that

∀n ≥ N , ∀Y ∈ (B(H))1 , |F(Y )− Fn(Y )| ≤ ε.

Using the same argument as used in Proposition 5.14, it follows that

∀X ∈ D, ∀n ≥ N , Fn(X) ≥ 0.

Since each Fn is a continuous map on (B(H))1 and D is dense in (B(H))1 , then

∀X ∈ (B(H))1 , ∀n ≥ N , Fn(X) ≥ 0.

So, it follows that

∀X ∈ B(H), ∀n ≥ N ,

∥∥∥S2n X + XS2n

∥∥∥ ≥ 2 ‖Sn XSn‖ .

Since for each n ≥ 1, Sn ∈ D(H), using the case 1, we obtain that Sn ∈ (C)1 S(H),

for every n ≥ N . Since Sn → S uniformly, and (C)1 S(H) is closed in B(H), then
S ∈ (C)1 S(H). ��
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Corollary 6.10 [21] Let S ∈ R(H). Then the following properties are equivalent:
(i) S ∈ (C)1 Scr (H),

(ii) ∀X ∈ B(H),
∥∥SXS+ + S+XS

∥∥ = ∥∥S∗XS+ + S+XS∗
∥∥ ,

(iii) ∀X ∈ B(H),
∥∥SXS+ + S+XS

∥∥ ≥ ∥∥S∗XS+ + S+XS∗
∥∥ ,

(iv) ∀X ∈ B(H),
∥∥SXS+ + S+XS

∥∥ ≥ 2
∥∥SS+XS+S

∥∥ .,

Proof The implications (i)⇒ (ii) and (ii)⇒ (iii) are trivial.
The implication (iii)⇒ (iv) follows immediately from Corollary 6.3(iv).
(iv)⇒ (i).Assume (iv) holds. Applying the triangular inequality in (iv), we obtain

from Corollary 5.17 that S is normal (with a closed range), so that S is an EP operator

satisfying (iv). Then, S =
[
S1 0
0 0

] [
R(S)

ker S∗
]

, where S1 is invertible on R(S). Hence,

we obtain the following inequality:

∀X ∈ B(R(S)),

∥∥∥S1XS−11 + S−11 XS1
∥∥∥ ≥ 2 ‖X‖ .

Hence, S1 is a selfadjoint operator inB(R(S))multiplied by a nonzero scalar. Thus,
S ∈ (C)1 Scr (H). ��
Conclusion 6.11 (1) The class of all invertible selfadjoint operators in B(H) multi-

plied by nonzero scalar is characterized by each of the following properties:

∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ ≥ 2 ‖X‖ , (S ∈ I(H)),

∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ = ∥∥S∗XS−1 + S−1XS∗
∥∥ , (S ∈ I(H)),

∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ ≥ ∥∥S∗XS−1 + S−1XS∗
∥∥ , (S ∈ I(H)).

(2) The class of all selfadjoint operators with closed ranges in B(H) multiplied by
scalar is characterized by each of the following properties:

∀X ∈ B(H),
∥∥SXS+ + S+XS

∥∥ ≥ 2
∥∥SS+XS+S

∥∥ , (S ∈ R(H)),

∀X ∈ B(H),
∥∥SXS+ + S+XS

∥∥ = ∥∥S∗XS+ + S+XS∗
∥∥ , (S ∈ R(H)),

∀X ∈ B(H),
∥∥SXS+ + S+XS

∥∥ ≥ ∥∥S∗XS+ + S+XS∗
∥∥ , (S ∈ R(H)).

(3) The class of all selfadjoint operators in B(H) multiplied by nonzero scalar is
characterized by

∀X ∈ B(H),

∥∥∥S2X + XS2
∥∥∥ ≥ 2 ‖SXS‖ , (S ∈ B(H)).

(4) The class of all unitary reflection operators inB(H)multiplied by nonzero scalars
is characterized by

∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ = 2 ‖X‖ , (S ∈ I(H)) .
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