PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 10, Pages 3009-3015 S 0002-9939(01)06041-5 Article electronically published on March 15, 2001

SOME RESULTS RELATED TO THE CORACH-PORTA-RECHT INEQUALITY

AMEUR SEDDIK

(Communicated by Joseph A. Ball)

ABSTRACT. Let L(H) be the algebra of all bounded operators on a complex Hilbert space H and let S be an invertible self-adjoint (or skew-symmetric) operator of L(H). Corach-Porta-Recht proved that

(*) $\forall X \in L(H), \|SXS^{-1} + S^{-1}XS\| \ge 2\|X\|.$

The problem considered here is that of finding (i) some consequences of the Corach-Porta-Recht Inequality; (ii) a necessary condition (resp. necessary and sufficient condition, when $\sigma(P) = \sigma(Q)$) for the invertible positive operators P, Q to satisfy the operator-norm inequality $||PXP^{-1} + Q^{-1}XQ|| \ge 2 ||X||$, for all X in L(H); (iii) a necessary and sufficient condition for the invertible operator S in L(H) to satisfy (*).

1. INTRODUCTION

All operators considered here are bounded operators on a complex Hilbert space H. The collection of operators in H is denoted by L(H).

For $T \in L(H)$, we denote by $\sigma(T), co(\sigma(T)), r(T), W_0(T), \{T\}'$ and $\{T\}''$ the spectrum, the convex hull of the spectrum, the spectral radius, the numerical range, the commutant and the bicommutant of T, respectively.

If $A = (a_{ij})$ and $B = (b_{ij})$ are two complex $n \times n$ matrices, then define the Schur (or Schur-Hadamard) product of A and B to be the matrix $A \circ B = (a_{ij}b_{ij})$.

In [1], Corach, Porta, and Recht have proved that for any invertible self-adjoint or skew-symmetric operator S, the operator-norm inequality

$$\|SXS^{-1} + S^{-1}XS\| \ge 2 \|X\|$$

holds for all operators X.

It is also clear that, for any invertible operator S and for any two invertible positive operators P, Q, we have

(a) $0 < \inf_{\|X\|=1} \|PXP^{-1} + Q^{-1}XQ\| \le 2,$ (b) $0 \le \inf_{\|X\|=1} \|SXS^{-1} + S^{-1}XS\| \le 2.$

It may be seen by the Corach-Porta-Recht Inequality that the infimum in (a) is 2, if P = Q; and the infimum in (b) is also 2, for S an invertible self-adjoint operator,

©2001 American Mathematical Society

Received by the editors February 29, 2000.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A30, 47B15.

Key words and phrases. Operator-norm inequality, self-adjoint operator, positive operator.

or more generally, if S is of the form $S = \lambda M$, where M is an invertible self-adjoint operator and λ is a nonzero scalar.

The purpose of this paper is the following:

(1) In $\S2$, we give the following consequences of the Corach-Porta-Recht Inequality. For all invertible positive commuting operators P, Q and for all operators X, we have

(i) $||PXP^{-1} + Q^{-1}XQ|| \ge 2 ||X||$, if ||X|| = r(X), (ii) $\max\{||PXP^{-1} + Q^{-1}XQ||, ||PX^*P^{-1} + Q^{-1}X^*Q||\} \ge 2 ||X||$, (iii) $||nX + PXP^{-1} + P^{-1}XP|| \ge (n+2) ||X||$, for n = 0, 1, 2.

(2) In §3, we show that the infimum in (a) is 2 only if $\{P\}' = \{Q\}'$; on the other hand, if $\sigma(P) = \sigma(Q)$, then the infimum in (a) is 2 if and only if P = Q.

(3) In $\S4$, we show that the only operators S for which the infimum in (b) is 2 are those of the form $S = \lambda M$, where M is an invertible self-adjoint operator and λ is a nonzero scalar.

2. Some consequences of the Corach-Porta-Recht Inequality

Lemma 2.1 ([1]). For an invertible self-adjoint or skew-symmetric operator S, we have $\forall X \in L(H) : ||SXS^{-1} + S^{-1}XS|| \ge 2 ||X||.$

Theorem 2.2. For any pair (P,Q) of commuting invertible positive operators and for any $X \in L(H)$ such that ||X|| = r(A), we have

$$||PXP^{-1} + Q^{-1}XQ|| \ge 2 ||X||.$$

Proof. Let $X \in L(H)$ such that ||X|| = r(A) and put $Y = P^{\frac{1}{2}}Q^{-\frac{1}{2}}XQ^{\frac{1}{2}}P^{-\frac{1}{2}}$. Then since $P^{\frac{1}{2}}Q^{\frac{1}{2}} = Q^{\frac{1}{2}}P^{\frac{1}{2}}$ is self-adjoint, we have by Lemma 2.1

$$\begin{aligned} \left\| PXP^{-1} + Q^{-1}XQ \right\| &= \left\| (P^{\frac{1}{2}}Q^{\frac{1}{2}})Y(P^{\frac{1}{2}}Q^{\frac{1}{2}})^{-1} + (P^{\frac{1}{2}}Q^{\frac{1}{2}})^{-1}Y(P^{\frac{1}{2}}Q^{\frac{1}{2}}) \right\| \\ &\geq 2 \left\| Y \right\| \\ &\geq 2r(X) \\ &\geq 2 \left\| X \right\|. \end{aligned}$$

Theorem 2.3. For any pair (P,Q) satisfying the condition of Theorem 2.2 and for any operator X, we have

$$\max \left\{ \left\| PXP^{-1} + Q^{-1}XQ \right\|, \left\| PX^*P^{-1} + Q^{-1}X^*Q \right\| \right\} \ge 2 \|X\|.$$

Proof. For $X \in L(H)$, let

$$A = \begin{bmatrix} P & 0 \\ 0 & P \end{bmatrix}, B = \begin{bmatrix} Q & 0 \\ 0 & Q \end{bmatrix} \text{ and } Y = \begin{bmatrix} 0 & X \\ X^* & 0 \end{bmatrix}.$$

The pair (A, B) satisfies the condition of Theorem 2.2 and ||Y|| = r(Y) (since Y is self-adjoint). Then we have

$$\|AXA^{-1} + B^{-1}XB\| = \left\| \begin{array}{cc} 0 & PXP^{-1} + Q^{-1}XQ \\ PX^*P^{-1} + Q^{-1}X^*Q & 0 \end{array} \right|$$

$$\geq 2 \|Y\| = 2 \|X\| l,$$

i.e.

$$\max\left\{\left\|PXP^{-1} + Q^{-1}XQ\right\|, \left\|PX^*P^{-1} + Q^{-1}X^*Q\right\|\right\} \ge 2 \|X\|.$$

Theorem 2.4. For any invertible positive operator P, and for n = 0, 1, 2, we have (1) $\forall X \in L(H) : ||nX + PXP^{-1} + P^{-1}XP|| \ge (n+2) ||X||$.

Proof. If n = 0, (1) follows from Lemma 2.1.

For all X, we have

$$\begin{aligned} \|2X + PXP^{-1} + P^{-1}XP\| &= \|P^{\frac{1}{2}} \left(P^{\frac{1}{2}}XP^{-\frac{1}{2}} + P^{-\frac{1}{2}}XP^{\frac{1}{2}}\right)P^{-\frac{1}{2}} \\ &+ P^{-\frac{1}{2}} \left(P^{\frac{1}{2}}XP^{-\frac{1}{2}} + P^{-\frac{1}{2}}XP^{\frac{1}{2}}\right)P^{\frac{1}{2}}\| \\ &\geq 2 \|P^{\frac{1}{2}}XP^{-\frac{1}{2}} + P^{-\frac{1}{2}}XP^{\frac{1}{2}}\| \\ &\geq 4 \|X\|, \end{aligned}$$

that is, (1) is true for n = 2.

It follows from the case n = 2, that for all X, we have

$$\|X + PXP^{-1} + P^{-1}XP\| \ge \|2X + PXP^{-1} + P^{-1}XP\| - \|X\| \\ \ge 3\|X\|.$$

Remark 2.1. In the cases n = 1 and n = 2, the relation (1) is false in general if we replace the condition "positive" by the condition "self-adjoint"; this may be seen by the following example:

$$P = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \text{ and } X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Then

$$\begin{cases} \|X + PXP^{-1} + P^{-1}XP\| = 1 < 3 = 3 \|X\|, \\ \|2X + PXP^{-1} + P^{-1}XP\| = 0 < 4 = 4 \|X\|. \end{cases}$$

Definition 3.1. An operator A in L(H) is called convexoid if $W_0(A) = co\sigma(A)$.

Lemma 3.1 ([2]). Let $A \in L(H)$. If $||A - \alpha|| = r(A - \alpha)$, for all complex α , then A is convexoid.

Lemma 3.2. Let P and Q be in L(H) such that P > 0 and Q > 0. If we have

(2)
$$\forall X \in L(H) : ||X|| + ||PXP^{-1}|| \ge 2 ||QXQ^{-1}||$$

then $\{P\}^{'} \subset \{Q\}^{'}$.

Proof. (i) Let X be self-adjoint such that PX = XP, and let α be a complex number. Then, by (2), $||X - \alpha|| \geq ||Q(X - \alpha)Q^{-1}||$, and since $X - \alpha$ is normal, we also have $||Q(X - \alpha)Q^{-1}|| \geq ||X - \alpha||$, so that $||Q(X - \alpha)Q^{-1}|| = ||X - \alpha||$. Then, by Lemma 3.1, we have $W_0(QXQ^{-1}) = co\sigma(X)$, and since X is self-adjoint, we obtain $QXQ^{-1} = Q^{-1}XQ$, and also QX = XQ.

(ii) Now let $X = X_1 + iX_2$, where $X_1 = ReX$ and $X_2 = ImX$, such that PX = XP. Then, we have $PX_1 = X_1P$ and $PX_2 = X_2P$; from (i) it follows that $QX_1 = X_1Q$ and $QX_2 = X_2Q$, and also QX = XQ; we conclude that $\{P\}' \subset \{Q\}'$.

Theorem 3.3. Let P and Q be in L(H) such that P > 0 and Q > 0. If we have

(3)
$$\forall X \in L(H) : ||PXP^{-1}|| + ||Q^{-1}XQ|| \ge 2 ||X||$$

then $\{P\}' = \{Q\}'$.

Proof. From (3), we have

(4)
$$\forall X \in L(H): ||X|| + ||PQXQ^{-1}P^{-1}|| \ge 2 ||QXQ^{-1}||.$$

Let UM be the polar decomposition of PQ (U is unitary and $M = (QP^2Q)^{\frac{1}{2}}$). Then, from (4), we obtain

$$\forall X \in L(H): ||X|| + ||MXM^{-1}|| \ge 2 ||QXQ^{-1}||$$

and, by Lemma 3.2, we have MQ = QM; then PQ = QP.

Now let X be self-adjoint such that PX = XP and let α be a complex number. Therefore, $QXQ^{-1} \in \{P\}'$ and, from (3), we obtain

$$\forall X \in L(H) : ||Q(X - \alpha)Q^{-1}|| \le ||X||$$

It follows that QX = XQ, so that $\{P\}' \subset \{Q\}'$.

The symmetric roles of P, Q in (3) also give $\{Q\}' \subset \{P\}'$, and finally we have $\{P\}' = \{Q\}'$.

Corollary 3.4. Let P and Q be in $\mathcal{L}(H)$ such that P > 0 and Q > 0. If we have $\forall X \in \mathcal{L}(H) : ||PXP^{-1} + Q^{-1}XQ|| \ge 2 ||X||,$

then $\{P\}' = \{Q\}'$.

Proof. Since we have $||PXP^{-1}|| + ||Q^{-1}XQ|| \ge ||PXP^{-1} + Q^{-1}XQ||$, for all operators X, the result follows immediately by Theorem 3.3.

Lemma 3.5. Let $\varepsilon > 0$ and let $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n$ (for $n \in \mathbb{N}^*$) such that $0 < \alpha_1 < \cdots < \alpha_n \leq 1$, $\{\alpha_1, \ldots, \alpha_n\} = \{\beta_1, \ldots, \beta_n\}$ and $\frac{\alpha_i}{\alpha_j} + \frac{\beta_j}{\beta_i} \geq 2 - \varepsilon$, for all i, j. Then we have $|\alpha_i - \beta_i| < \varepsilon$, for all i.

Proof. From the hypothesis, we obtain $\beta_i - \beta_j < \varepsilon$, if i < j.

Let $i \in \{1, ..., n\}$ such that $\alpha_i \neq \beta_i$ (in the case $\alpha_i = \beta_i$, of course we have $|\alpha_i - \beta_i| = 0 < \varepsilon$).

There are three cases i = 1, i = n and 1 < i < n.

Case 1. i = 1. There exists $j \ge 2$, such that $\beta_j = \alpha_1$, so we have $|\beta_1 - \alpha_1| = \beta_1 - \beta_j < \varepsilon$, since j > 1.

Case 2. i = n. There exists j < n, such that $\beta_j = \alpha_n$, so we have $|\beta_n - \alpha_n| = \beta_j - \beta_n < \varepsilon$, since n > j.

Case 3. 1 < i < n. If $\beta_i > \alpha_i$, then there exists j > i, such that $\beta_j \le \alpha_i$, and we have $|\beta_i - \alpha_i| = \beta_i - \beta_j < \varepsilon$, since j > i. If $\beta_i < \alpha_i$, then there exists j < i, such that $|\beta_i - \alpha_i| = \beta_j - \beta_i < \varepsilon$, since i > j.

Theorem 3.6. Let P and Q be in L(H) such that P > 0, Q > 0 and $\sigma(P) = \sigma(Q)$. Then the following properties are equivalent:

(i) $\forall X \in L(H), ||PXP^{-1}|| + ||Q^{-1}XQ|| \ge 2 ||X||.$ (ii) P = Q.

Proof. We may assume, without loss of the generality, that ||P|| = ||Q|| = 1. (i) implies (ii). Decompose P and Q using the spectral measure

$$P = \int \lambda dE_{\lambda}, \ Q = \int \lambda dF_{\lambda}$$

and consider

$$P_{n} = \int h_{n}(\lambda) dE_{\lambda} = h_{n}(P), \quad Q_{n} = \int h_{n}(\lambda) dF_{\lambda} = h_{n}(Q)$$

where $h_n(\lambda)$ is a function of the form

$$h_n(\lambda) = \frac{k}{n}$$
, for $\frac{k}{n} \le \lambda < \frac{k+1}{n}$, and $k = 0, 1, 2, \dots$.

Then by the spectral theorem and by the form of $h_n(\lambda)$, we have $\sigma(P_n) =$ $\sigma(Q_n) = h_n(\sigma(P)) \text{ is finite, } P_n \longrightarrow P, \ Q_n \longrightarrow Q \text{ (uniformly) and } P_n \in \{P\}^{''}, Q_n \in \{Q\}^{''} \text{ (where } \{P\}^{''} = \{Q\}^{''} \text{, by Theorem 3.3).}$

Put $\sigma(P_n) = \{\alpha_1, \ldots, \alpha_p\}$ such that $0 < \alpha_1 < \cdots < \alpha_p \leq 1$. Then there exist p orthogonal projections $E_1, ..., E_p$ such that $E_i E_j = E_j E_i = 0$ if $i \neq j$, $E_1 \oplus \ldots \oplus E_p = I$ and $P_n = \sum_{i=1}^p \alpha_i E_i$. Since $\sigma(P_n) = \sigma(Q_n)$, $P_n Q_n = Q_n P_n$ and Q_n is normal, there exist p scalar

 $\beta_1, ..., \beta_p$ such that $Q_n = \sum_{i=1}^p \beta_i E_i$ and $\{\alpha_1, ..., \alpha_p\} = \{\beta_1, ..., \beta_p\}$.

Let $\varepsilon > 0$. Then there exists an integer N such that

(*)
$$\forall n > N, \ \forall X \in L(H), \ \|PXP^{-1}\| + \|Q^{-1}XQ\| \ge (2-\varepsilon) \|X\|.$$

Let n > N and $X_{ij} = E_i X E_j$, for $X \in L(H)$. Then, by using (*), we have

$$\frac{\alpha_i}{\alpha_j} + \frac{\beta_j}{\beta_i} \ge 2 - \varepsilon.$$

By Lemma 3.5, this implies $|\alpha_i - \beta_i| < \varepsilon$, for all *i*; therefore

$$||P_n - Q_n|| = \max_{1 \le i \le p} |\alpha_i - \beta_i| < \varepsilon_i$$

so we obtain P = Q.

(ii) implies (i) is immediate from Lemma 2.1.

Corollary 3.7. Let the pair (P,Q) of operators satisfy the condition of Theorem 3.6. Then the following properties are equivalent:

(i) $\forall X \in L(H), \|PXP^{-1} + Q^{-1}XQ\| \ge 2 \|X\|.$ (ii) P = Q.

4. CHARACTERIZATION OF THE CORACH-PORTA-RECHT INEQUALITY

Notation. For $\theta \in [0, \pi]$, we denote by D_{θ} the straight line through the origin in the complex plane.

Lemma 4.1. Let $\lambda, \mu \in \mathbb{C}^*$ such that $\frac{\lambda}{\mu} + \frac{\mu}{\lambda} \in \mathbb{R}$ and $\left|\frac{\lambda}{\mu} + \frac{\mu}{\lambda}\right| \geq 2$. Then there exists a scalar $\theta \in [0, \pi[$ such that $\lambda, \mu \in D_{\theta}$.

Proof. Let $\lambda = r_1 e^{i\theta_1}$ and $\mu = r_2 e^{i\theta_2}$ be the polar decompositions respectively of λ and μ . Then we have

$$\frac{\lambda}{\mu} + \frac{\mu}{\lambda} = \left(\frac{r_1}{r_2} + \frac{r_2}{r_1}\right)\cos(\theta_1 - \theta_2) + i\left(\frac{r_1}{r_2} - \frac{r_2}{r_1}\right)\sin(\theta_1 - \theta_2),$$

so we obtain $r_1 = r_2$ or $\theta_1 - \theta_2 \equiv 0 \pmod{\pi}$.

The case $r_1 = r_2$ also gives $\theta_1 - \theta_2 \equiv 0 \pmod{\pi}$, therefore $\lambda, \mu \in D_{\theta}$, for some $\theta \in [0, \pi[$.

Lemma 4.2. All invertible operators S satisfying the condition

(5) $\forall X \in L(H), \ \left\| SXS^{-1} + S^{-1}XS \right\| \ge 2 \|X\|$

are normal.

Let S be an invertible operator satisfying (5) and let UP, VQ be the polar decompositions respectively of S and S^{*}. Then, by (5), we obtain

$$\forall X \in L(H), \|PXP^{-1}\| + \|Q^{-1}XQ\| \ge 2 \|X\|.$$

Since $P^2 = S^*S$ and $Q^2 = SS^*$, then $\sigma(P^2) = \sigma(Q^2)$, and by the spectral theorem, we obtain $\sigma(P) = \sigma(Q)$; so we have, by Theorem 3.6, P = Q, and also $S^*S = SS^*$. Therefore S is normal.

Lemma 4.3. Let S be an invertible normal operator. Then the following properties are equivalent:

(i) $\forall X \in L(H), \|SXS^{-1} + S^{-1}XS\| \ge 2 \|X\|.$

(ii) $\sigma(S) \subset D_{\theta}$, for some $\theta \in [0, \pi[$.

(iii) $S = \lambda M$, for some nonzero scalar λ and for some invertible self-adjoint operator M.

Proof. (i) implies (ii).

From (i) and Lemma 4.2, S is normal. Then, by the spectral measure of S, there exists a sequence (S_n) of invertible normal operators with finite spectrum such that

(a) $S_n \longrightarrow S$ uniformly,

(b) for all λ in $\sigma(S)$, there exists a sequence (λ_n) such that $\lambda_n \in \sigma(S_n)$, for all n and $\lambda_n \longrightarrow \lambda$.

Let $\lambda, \mu \in \sigma(S)$ and let $\varepsilon > 0$. Then by (i), (a) and (b), there exists an integer N such that

(6)
$$\forall n > N, \forall X \in L(H) \quad \left\| S_n X S_n^{-1} + S_n^{-1} X S_n \right\| \ge (2 - \varepsilon) \left\| X \right\|$$

and there exist two sequences (λ_n) and (μ_n) such that

$$\forall n, \ \lambda_n, \mu_n \in \sigma(S_n); \ \lambda_n \longrightarrow \lambda, \ \mu_n \longrightarrow \mu.$$

Let n > N and since S_n is normal with finite spectrum, there exist p orthogonal projections $E_1, ..., E_p$ such that $E_k E_j = E_j E_k = 0$, if $k \neq j$, $E_1 \oplus ... \oplus E_p = I$ and $S_n = \sum_{k=1}^p \alpha_k E_k$, where $\sigma(S_n) = \{\alpha_1, ..., \alpha_p\}$, $\alpha_1 = \lambda_n, \alpha_2 = \mu_n$.

Then by (6) and if we put $A = \begin{bmatrix} 2 & \gamma_n \\ \gamma_n & 2 \end{bmatrix}$, where $\gamma_n = \frac{\lambda_n}{\mu_n} + \frac{\mu_n}{\lambda_n}$, we obtain (7) $\forall X \in L(\mathbb{C}^2), \ \|A \circ X\| \ge (2 - \varepsilon) \|X\|$,

and if we put $\delta_n = \frac{1}{\gamma_n}$ and $B = \begin{bmatrix} \frac{1}{2} & \delta_n \\ \delta_n & \frac{1}{2} \end{bmatrix}$, then from (7), we also have $\forall X \in L(\mathbb{C}^2), \ \|B \circ X\| \le \frac{\|X\|}{(2-\varepsilon)}.$ (8)

From (7), we deduce $\left|\frac{\lambda_n}{\mu_n} + \frac{\mu_n}{\lambda_n}\right| \ge (2 - \varepsilon)$, so we obtain $\left|\frac{\lambda}{\mu} + \frac{\mu}{\lambda}\right| \ge 2$. On the other hand, if in (8) we put $X = \begin{bmatrix} 1 & ia \\ ia & 1 \end{bmatrix}$, where a > 0, we obtain $\frac{1}{4} + a^2 |\gamma_n|^2 + a |\beta_n| \le \frac{1+a^2}{(2-\varepsilon)^2}$, where $\beta_n = Im \gamma_n$; so that $\frac{1}{4} + a^2 |\alpha|^2 + a |\beta| \le \frac{1+a^2}{(2-\varepsilon)^2}$. Therefore $a |\alpha|^2 + |\beta| \le \frac{a}{4}$; then $\beta = 0$ and $\frac{\lambda}{\mu} + \frac{\mu}{\lambda} \in \mathbb{R}$. This implies condition (ii) by Lemma 4.1.

(ii) implies (iii).

If we put $M = e^{-i\theta}S$, then M is an invertible normal operator with real spectrum, so we have $S = e^{i\theta}M$, where M is an invertible self-adjoint operator.

(iii) implies (i) is immediate by Lemma 2.1.

Theorem 4.4. The set of all invertible operators S, for which

$$\forall X \in L(H), \|SXS^{-1} + S^{-1}XS\| \ge 2 \|X\|$$

is the set $\{\lambda M : \lambda \in \mathbb{C}^*, M \text{ an invertible self-adjoint operator}\}$.

Proof. This follows immediately by Lemma 4.2 and Lemma 4.3.

Remark 4.1. The extremal class of invertible operators S satisfying the condition

$$\inf_{\|X\|=1} \left\| SXS^{-1} + S^{-1}XS \right\| = 2$$

has been characterized. So it remains the characterization of the second extremal class of all invertible operators S satisfies the condition

$$\inf_{\|X\|=1} \left\| SXS^{-1} + S^{-1}XS \right\| = 0.$$

References

- [1] G. Corach, H. Porta, and L. Recht, An operator inequality. Linear Algebra Appl. 142 (1990), 153-158. MR 91m:47020
- [2] J. P. Williams, Finite operators. Proc. Amer. Math. Soc. 26 (1970), 129-136. MR 41:9039

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF BATNA, 05000 BATNA, Algeria

E-mail address: seddikameur@hotmail.com

Current address: Department of Mathematics, Faculty of Science, University of Sana'a, P.O. Box 14026, Sana'a, Yemen

3015