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SOME RESULTS RELATED
TO THE CORACH-PORTA-RECHT INEQUALITY

AMEUR SEDDIK

(Communicated by Joseph A. Ball)

Abstract. Let L(H) be the algebra of all bounded operators on a complex
Hilbert space H and let S be an invertible self-adjoint (or skew-symmetric)
operator of L(H). Corach-Porta-Recht proved that

∀X ∈ L(H),
∥∥SXS−1 + S−1XS

∥∥ ≥ 2 ‖X‖ .(∗)
The problem considered here is that of finding (i) some consequences of the

Corach-Porta-Recht Inequality; (ii) a necessary condition (resp. necessary and
sufficient condition, when σ(P ) = σ(Q)) for the invertible positive operators
P,Q to satisfy the operator-norm inequality

∥∥PXP−1 +Q−1XQ
∥∥ ≥ 2 ‖X‖ ,

for all X in L(H); (iii) a necessary and sufficient condition for the invertible
operator S in L(H) to satisfy (∗) .

1. Introduction

All operators considered here are bounded operators on a complex Hilbert space
H . The collection of operators in H is denoted by L(H).

For T ∈ L(H), we denote by σ(T ), co(σ(T )), r(T ),W0(T ),{T }′ and {T }′′ the
spectrum, the convex hull of the spectrum, the spectral radius, the numerical range,
the commutant and the bicommutant of T , respectively.

If A = (aij) and B = (bij) are two complex n×n matrices, then define the Schur
(or Schur-Hadamard) product of A and B to be the matrix A ◦B = (aijbij).

In [1], Corach, Porta, and Recht have proved that for any invertible self-adjoint
or skew-symmetric operator S, the operator-norm inequality∥∥SXS−1 + S−1XS

∥∥ ≥ 2 ‖X‖
holds for all operators X.

It is also clear that, for any invertible operator S and for any two invertible
positive operators P,Q, we have
(a) 0< inf

‖X‖=1

∥∥PXP−1 +Q−1XQ
∥∥ ≤ 2,

(b) 0≤ inf
‖X‖=1

∥∥SXS−1 + S−1XS
∥∥ ≤ 2.

It may be seen by the Corach-Porta-Recht Inequality that the infimum in (a) is 2,
if P = Q; and the infimum in (b) is also 2, for S an invertible self-adjoint operator,

Received by the editors February 29, 2000.
2000 Mathematics Subject Classification. Primary 47A30, 47B15.
Key words and phrases. Operator-norm inequality, self-adjoint operator, positive operator.

c©2001 American Mathematical Society

3009



3010 AMEUR SEDDIK

or more generally, if S is of the form S =λM , where M is an invertible self-adjoint
operator and λ is a nonzero scalar.

The purpose of this paper is the following:
(1) In §2, we give the following consequences of the Corach-Porta-Recht Inequal-

ity. For all invertible positive commuting operators P,Q and for all operators X ,
we have

(i)
∥∥PXP−1 +Q−1XQ

∥∥ ≥ 2 ‖X‖, if ‖X‖ = r(X),
(ii) max

{∥∥PXP−1 +Q−1XQ
∥∥ , ∥∥PX∗P−1 +Q−1X∗Q

∥∥} ≥ 2 ‖X‖,
(iii)

∥∥nX + PXP−1 + P−1XP
∥∥ ≥ (n+ 2) ‖X‖ , for n = 0, 1, 2.

(2) In §3, we show that the infimum in (a) is 2 only if {P}
′

= {Q}
′
; on the other

hand, if σ(P ) = σ(Q), then the infimum in (a) is 2 if and only if P = Q.
(3) In §4, we show that the only operators S for which the infimum in (b) is 2

are those of the form S = λM , where M is an invertible self-adjoint operator and
λ is a nonzero scalar.

2. Some consequences of the Corach-Porta-Recht Inequality

Lemma 2.1 ([1]). For an invertible self-adjoint or skew-symmetric operator S, we
have ∀X ∈ L(H) :

∥∥SXS−1 + S−1XS
∥∥ ≥ 2 ‖X‖.

Theorem 2.2. For any pair (P,Q) of commuting invertible positive operators and
for any X ∈ L(H) such that ‖X‖ = r(A), we have∥∥PXP−1 +Q−1XQ

∥∥ ≥ 2 ‖X‖ .

Proof. Let X ∈ L(H) such that ‖X‖ = r(A) and put Y = P
1
2Q−

1
2XQ

1
2P−

1
2 . Then

since P
1
2Q

1
2 = Q

1
2P

1
2 is self-adjoint, we have by Lemma 2.1∥∥PXP−1 +Q−1XQ
∥∥ =

∥∥∥(P
1
2Q

1
2 )Y (P

1
2Q

1
2 )−1 + (P

1
2Q

1
2 )−1Y (P

1
2Q

1
2 )
∥∥∥

≥ 2 ‖Y ‖
≥ 2r(X)
≥ 2 ‖X‖ .

Theorem 2.3. For any pair (P,Q) satisfying the condition of Theorem 2.2 and
for any operator X, we have

max {
∥∥PXP−1 +Q−1XQ

∥∥ , ∥∥PX∗P−1 +Q−1X∗Q
∥∥ } ≥2 ‖X‖ .

Proof. For X ∈ L(H), let

A =
[
P 0
0 P

]
, B =

[
Q 0
0 Q

]
and Y =

[
0 X
X∗ 0

]
.

The pair (A,B) satisfies the condition of Theorem 2.2 and ‖Y ‖ = r(Y ) (since Y
is self-adjoint). Then we have∥∥AXA−1 +B−1XB

∥∥ =
∥∥∥∥ 0 PXP−1 +Q−1XQ
PX∗P−1 +Q−1X∗Q 0

∥∥∥∥
≥ 2 ‖Y ‖ = 2 ‖X‖ l,

i.e.

max
{∥∥PXP−1 +Q−1XQ

∥∥ , ∥∥PX∗P−1 +Q−1X∗Q
∥∥} ≥ 2 ‖X‖ .
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Theorem 2.4. For any invertible positive operator P, and for n = 0, 1, 2, we have

∀X ∈ L(H ) :
∥∥nX + PXP−1 + P−1XP

∥∥ ≥ (n+ 2) ‖X‖ .(1)

Proof. If n = 0, (1) follows from Lemma 2.1.
For all X , we have∥∥2X + PXP−1 + P−1XP

∥∥ =
∥∥∥P 1

2

(
P

1
2XP−

1
2 + P−

1
2XP

1
2

)
P−

1
2

+ P−
1
2

(
P

1
2XP−

1
2 + P−

1
2XP

1
2

)
P

1
2

∥∥∥
≥ 2

∥∥∥P 1
2XP−

1
2 + P−

1
2XP

1
2

∥∥∥
≥ 4 ‖X‖ ,

that is, (1) is true for n = 2.
It follows from the case n = 2, that for all X, we have∥∥X + PXP−1 + P−1XP

∥∥ ≥
∥∥2X + PXP−1 + P−1XP

∥∥− ‖X‖
≥ 3 ‖X‖ .

Remark 2.1. In the cases n = 1 and n = 2, the relation (1) is false in general if we
replace the condition “positive” by the condition “self-adjoint”; this may be seen
by the following example:

P =
[

1 0
0 −1

]
and X =

[
0 1
1 0

]
.

Then {∥∥X + PXP−1 + P−1XP
∥∥ = 1 < 3 = 3 ‖X‖ ,∥∥2X + PXP−1 + P−1XP
∥∥ = 0 < 4 = 4 ‖X‖ .

3. Operator-norm inequality and positive operators

Definition 3.1. An operator A in L(H) is called convexoid if W0(A) = coσ(A).

Lemma 3.1 ([2]). Let A ∈ L(H). If ‖A− α‖ = r(A − α), for all complex α, then
A is convexoid.

Lemma 3.2. Let P and Q be in L(H) such that P > 0 and Q > 0. If we have

∀X ∈ L(H) : ‖X‖+
∥∥PXP−1

∥∥ ≥ 2
∥∥QXQ−1

∥∥ ,(2)

then {P}
′
⊂ {Q}

′
.

Proof. (i) Let X be self-adjoint such that PX = XP, and let α be a complex
number. Then, by (2), ‖X − α‖ ≥

∥∥Q(X − α)Q−1
∥∥ , and since X − α is normal,

we also have
∥∥Q(X − α)Q−1

∥∥ ≥ ‖X − α‖ , so that
∥∥Q(X − α)Q−1

∥∥ = ‖X − α‖.
Then, by Lemma 3.1, we have W0(QXQ−1) = coσ(X), and since X is self-adjoint,
we obtain QXQ−1 = Q−1XQ , and also QX = XQ.

(ii) Now let X = X1 + iX2, where X1 = ReX and X2 = ImX , such that
PX = XP. Then, we have PX1 = X1P and PX2 = X2P ; from (i) it follows that
QX1 = X1Q and QX2 = X2Q, and also QX = XQ; we conclude that {P}

′
⊂

{Q}
′
.
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Theorem 3.3. Let P and Q be in L(H) such that P > 0 and Q > 0. If we have

∀X ∈ L(H) :
∥∥PXP−1

∥∥+
∥∥Q−1XQ

∥∥ ≥ 2 ‖X‖ ,(3)

then {P}
′

= {Q}
′
.

Proof. From (3), we have

∀X ∈ L(H) : ‖X‖+
∥∥PQXQ−1P−1

∥∥ ≥ 2
∥∥QXQ−1

∥∥ .(4)

Let UM be the polar decomposition of PQ (U is unitary and M = (QP 2Q)
1
2 ).

Then, from (4), we obtain

∀X ∈ L(H) : ‖X‖+
∥∥MXM−1

∥∥ ≥ 2
∥∥QXQ−1

∥∥
and, by Lemma 3.2, we have MQ = QM ; then PQ = QP.

Now let X be self-adjoint such that PX = XP and let α be a complex number.
Therefore, QXQ−1 ∈ {P}

′
and, from (3), we obtain

∀X ∈ L(H) :
∥∥Q(X − α)Q−1

∥∥ ≤ ‖X‖ .
It follows that QX = XQ , so that {P}

′
⊂ {Q}

′
.

The symmetric roles of P,Q in (3) also give {Q}
′
⊂ {P}

′
, and finally we have

{P}
′

= {Q}
′
.

Corollary 3.4. Let P and Q be in L(H) such that P > 0 and Q > 0. If we have

∀X ∈ L(H) :
∥∥PXP−1 +Q−1XQ

∥∥ ≥ 2 ‖X‖ ,

then {P}
′

= {Q}
′
.

Proof. Since we have
∥∥PXP−1

∥∥ +
∥∥Q−1XQ

∥∥ ≥ ∥∥PXP−1 +Q−1XQ
∥∥, for all op-

erators X, the result follows immediately by Theorem 3.3.

Lemma 3.5. Let ε > 0 and let α1, . . . , αn, β1, . . . , βn (for n ∈ N∗) such that 0 <
α1 < · · · < αn ≤ 1, {α1, . . . , αn} = {β1, . . . , βn} and αi

αj
+ βj

βi
≥ 2 − ε, for all i, j.

Then we have |αi − βi| < ε, for all i.

Proof. From the hypothesis, we obtain βi − βj < ε, if i < j.
Let i ∈ {1, ..., n} such that αi 6= βi (in the case αi = βi, of course we have

|αi − βi| = 0 < ε).
There are three cases i = 1, i = n and 1 < i < n.

Case 1. i = 1. There exists j ≥ 2, such that βj = α1, so we have |β1 − α1| =
β1 − βj < ε, since j > 1.

Case 2. i = n. There exists j < n, such that βj = αn, so we have |βn − αn| =
βj − βn < ε, since n > j.

Case 3. 1 < i < n. If βi > αi, then there exists j > i, such that βj ≤ αi, and we
have |βi − αi| = βi − βj < ε, since j > i. If βi < αi, then there exists j < i, such
that |βi − αi| = βj − βi < ε, since i > j.

Theorem 3.6. Let P and Q be in L(H) such that P > 0, Q > 0 and σ(P ) = σ(Q).
Then the following properties are equivalent:

(i) ∀X ∈ L(H),
∥∥PXP−1

∥∥+
∥∥Q−1XQ

∥∥ ≥ 2 ‖X‖.
(ii) P = Q.
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Proof. We may assume, without loss of the generality, that ‖P‖ = ‖Q‖ = 1.
(i) implies (ii). Decompose P and Q using the spectral measure

P =
∫
λdEλ, Q =

∫
λdFλ

and consider

Pn =
∫
hn (λ) dEλ = hn (P ) , Qn =

∫
hn (λ) dFλ = hn(Q)

where hn(λ) is a function of the form

hn(λ) =
k

n
, for

k

n
≤ λ < k + 1

n
, and k = 0, 1, 2, ... .

Then by the spectral theorem and by the form of hn(λ), we have σ(Pn) =
σ(Qn) = hn(σ(P )) is finite, Pn −→ P, Qn −→ Q (uniformly) and Pn ∈ {P}

′′
, Qn ∈

{Q}
′′

(where {P}
′′

= {Q}
′′
, by Theorem 3.3).

Put σ(Pn) = {α1, . . . , αp} such that 0 < α1 < · · · < αp ≤ 1. Then there
exist p orthogonal projections E1, ..., Ep such that EiEj = EjEi = 0 if i 6= j,

E1 ⊕ ...⊕ Ep = I and Pn =
p∑
i=1

αiEi.

Since σ(Pn) = σ(Qn), PnQn = QnPn and Qn is normal, there exist p scalar

β1, ..., βp such that Qn =
p∑
i=1

βiEi and {α1, ..., αp} = {β1, ..., βp} .
Let ε > 0. Then there exists an integer N such that

∀n > N, ∀X ∈ L(H),
∥∥PXP−1

∥∥+
∥∥Q−1XQ

∥∥ ≥ (2 − ε) ‖X‖ .(∗)

Let n > N and Xij = EiXEj , for X ∈ L(H). Then, by using (∗) , we have

αi
αj

+
βj
βi
≥ 2− ε.

By Lemma 3.5, this implies |αi − βi| < ε, for all i; therefore

‖Pn −Qn‖ = max
1≤i≤p

|αi − βi| < ε,

so we obtain P = Q.
(ii) implies (i) is immediate from Lemma 2.1.

Corollary 3.7. Let the pair (P,Q) of operators satisfy the condition of Theorem
3.6. Then the following properties are equivalent:

(i) ∀X ∈ L(H),
∥∥PXP−1 +Q−1XQ

∥∥ ≥ 2 ‖X‖.
(ii) P = Q.

4. Characterization of the Corach-Porta-Recht Inequality

Notation. For θ ∈ [0, π[, we denote by Dθ the straight line through the origin in
the complex plane.

Lemma 4.1. Let λ, µ ∈ C∗ such that λ
µ + µ

λ ∈ R and
∣∣∣λµ + µ

λ

∣∣∣ ≥ 2. Then there
exists a scalar θ ∈ [0, π[ such that λ, µ ∈ Dθ.
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Proof. Let λ = r1e
iθ1 and µ = r2e

iθ2 be the polar decompositions respectively of λ
and µ. Then we have

λ

µ
+
µ

λ
=
(
r1

r2
+
r2

r1

)
cos(θ1 − θ2) + i

(
r1

r2
− r2

r1

)
sin(θ1 − θ2),

so we obtain r1 = r2 or θ1 − θ2 ≡ 0 (mod.π).
The case r1 = r2 also gives θ1 − θ2 ≡ 0 (mod.π), therefore λ, µ ∈ Dθ, for some

θ ∈ [0, π[ .

Lemma 4.2. All invertible operators S satisfying the condition

∀X ∈ L(H),
∥∥SXS−1 + S−1XS

∥∥ ≥ 2 ‖X‖(5)

are normal.

Let S be an invertible operator satisfying (5) and let UP, V Q be the polar
decompositions respectively of S and S∗. Then, by (5), we obtain

∀X ∈ L(H),
∥∥PXP−1

∥∥+
∥∥Q−1XQ

∥∥ ≥ 2 ‖X‖ .

Since P 2 = S∗S and Q2 = SS∗, then σ(P 2) = σ(Q2), and by the spectral theorem,
we obtain σ(P ) = σ(Q); so we have, by Theorem 3.6, P = Q, and also S∗S = SS∗.
Therefore S is normal.

Lemma 4.3. Let S be an invertible normal operator. Then the following properties
are equivalent:

(i) ∀X ∈ L(H),
∥∥SXS−1 + S−1XS

∥∥ ≥ 2 ‖X‖.
(ii) σ(S) ⊂ Dθ, for some θ ∈ [0, π[ .

(iii) S = λM , for some nonzero scalar λ and for some invertible self-adjoint op-
erator M.

Proof. (i) implies (ii).
From (i) and Lemma 4.2, S is normal. Then, by the spectral measure of S, there

exists a sequence (Sn) of invertible normal operators with finite spectrum such that
(a) Sn −→ S uniformly,
(b) for all λ in σ(S), there exists a sequence (λn) such that λn ∈ σ(Sn), for all

n and λn −→ λ.
Let λ, µ ∈ σ(S) and let ε > 0. Then by (i), (a) and (b), there exists an integer

N such that

∀n > N, ∀X ∈ L(H)
∥∥SnXS−1

n + S−1
n XSn

∥∥ ≥ (2 − ε) ‖X‖(6)

and there exist two sequences (λn) and (µn) such that

∀n, λn, µn ∈ σ(Sn); λn −→ λ, µn −→ µ.

Let n > N and since Sn is normal with finite spectrum, there exist p orthogonal
projections E1, ..., Ep such that EkEj = EjEk = 0, if k 6= j, E1 ⊕ ...⊕ Ep = I and

Sn =
p∑

k=1

αkEk, where σ(Sn) = {α1, ..., αp}, α1 = λn, α2 = µn.

Then by (6) and if we put A =
[

2 γn
γn 2

]
, where γn = λn

µn
+ µn

λn
, we obtain

∀X ∈ L(C2), ‖A ◦X‖ ≥ (2− ε) ‖X‖ ,(7)
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and if we put δn = 1
γn

and B =
[

1
2 δn
δn

1
2

]
, then from (7), we also have

∀X ∈ L(C2), ‖B ◦X‖ ≤ ‖X‖
(2− ε) .(8)

From (7), we deduce
∣∣∣λnµn + µn

λn

∣∣∣ ≥ (2− ε), so we obtain
∣∣∣λµ + µ

λ

∣∣∣ ≥ 2.

On the other hand, if in (8) we put X = [ 1 ia
ia 1 ], where a > 0, we obtain 1

4 +
a2 |γn|2 + a |βn| ≤ 1+a2

(2−ε)2 , where βn = Imγn; so that 1
4 + a2 |α|2 + a |β| ≤ 1+a2

(2−ε)2 .

Therefore a |α|2 + |β| ≤ a
4 ; then β = 0 and λ

µ + µ
λ ∈ R. This implies condition (ii)

by Lemma 4.1.
(ii) implies (iii).
If we putM = e−iθS, thenM is an invertible normal operator with real spectrum,

so we have S = eiθM, where M is an invertible self-adjoint operator.
(iii) implies (i) is immediate by Lemma 2.1.

Theorem 4.4. The set of all invertible operators S, for which

∀X ∈ L(H),
∥∥SXS−1 + S−1XS

∥∥ ≥ 2 ‖X‖
is the set {λM : λ ∈ C∗, M an invertible self-adjoint operator} .

Proof. This follows immediately by Lemma 4.2 and Lemma 4.3.

Remark 4.1. The extremal class of invertible operators S satisfying the condition

inf
‖X‖=1

∥∥SXS−1 + S−1XS
∥∥ = 2

has been characterized. So it remains the characterization of the second extremal
class of all invertible operators S satisfies the condition

inf
‖X‖=1

∥∥SXS−1 + S−1XS
∥∥ = 0.
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