DERIVATION AND JORDAN OPERATORS

A.Seddik and J.Charles

For $A \in \mathcal{L}(H)$ (the algebra of all operators on the complex Hilbert space H), let δ_{A} denote the operator on $\mathcal{L}(H)$ defined by : $\delta_{A}(X)=A X-X A$.

We show here that for all Jordan operators $A: R\left(\delta_{A}\right) \cap\left\{A^{*}\right\}^{\prime}=\{0\}$, where $R\left(\delta_{A}\right)$ is the range of δ_{A} and $\left\{A^{*}\right\}^{\prime}$ is the commutant of the adjoint of A.

Introduction.

Let $\mathcal{L}(H)$ be the algebra of bounded linear operators on the infinite-dimensional complex Hilbert space H. For $A \in \mathcal{L}(H)$, we define the linear operator δ_{A} on $\mathcal{L}(H)$ by :

$$
\forall X \in \mathcal{L}(H) \quad \delta_{A}(X)=A X-X A
$$

we denote $R\left(\delta_{A}\right), R\left(\delta_{A}\right)^{-}$and $\{A\}^{\prime}$ respectively the range, the norm closure of the range and the kernel of δ_{A}.

We denote $\quad \mathcal{N}=\left\{A \in \mathcal{L}(H): R\left(\delta_{A}\right)^{-} \cap\left\{A^{*}\right\}^{\prime}=\{0\}\right\}$.
If H is finite-dimensional, $\mathcal{N}=\mathcal{L}(H)$. If H is infinite-dimensional, this equality does not hold. So a reasonable purpose is to determine what elements are in \mathcal{N}.
When H is a separable Hilbert space, \mathcal{N} contains the operators A for which $p(A)$ is normal for some quadratic polynomial $p(z)[2]$, the subnormal operators with cyclic vectors [2] and the isometries [3]. In this paper, we show that \mathcal{N} contains also all the operators unitarily equivalent to Jordan operators.

Notation : see [4].
For a complex Hilbert space H and an integer n strictly greater than 1 , an operator A on $H^{(n)}=\underbrace{H \oplus H \oplus \ldots \oplus H}_{n \text { times }}$, with matrix $\left[A_{i, j}\right]_{1 \leq i, j \leq n}$, (i is the row index), is said to be a Jordan block of order n if we have, for all $i \in\{1, \ldots, n-1\}, A_{i, i+1}=I_{H}$ (where I_{H} is the identity operator on H), and $A_{i, j}=0$ in the other cases.
We denote by 0_{H}, the null-operator defined on H, the Jordan block of order 1 .
Let m be a strictly positive integer, $H_{1}, \ldots, H_{m} m$ complex Hilbert spaces and $\alpha_{1}, \ldots \alpha_{m} m$ strictly positive integers.
Set $\widetilde{H}_{k}=H_{k}^{\left(\alpha_{k}\right)}$ and J_{k} the Jordan block of order α_{k} operating on \widetilde{H}_{k}, for $k=1, \ldots, m$.

Every operator of the form $J_{1} \oplus \ldots \oplus J_{m}$ operating on $\widetilde{H}_{1} \oplus \ldots \oplus \widetilde{H}_{m}$ is called a Jordan operator of order $\sup \left\{\alpha_{k}: k=1, . ., m\right\}$.
For two complex Hilbert spaces H and K, and $A \in \mathcal{L}(H), B \in \mathcal{L}(K)$, we denote by $\delta_{A, B}$ the linear operator defined on $\mathcal{L}(K, H)$ (the space of bounded linear operators defined from K into H) by :

$$
\forall X \in \mathcal{L}(K, H), \quad \delta_{A, B}(X)=A X-X B .
$$

Recall that for every operator $A \in \mathcal{L}(H)$, similar to a Jordan operator, $R\left(\delta_{A}\right)$ is closed [1].

Lemma 1. Let $A, B \in \mathcal{L}(H)$ with B unitarily equivalent to A and $A \in \mathcal{N}$. Then we have $B \in \mathcal{N}$.

Proof. Let $A, B \in \mathcal{L}(H)$ such that $A \in \mathcal{N}$ and such that there exists a unitary operator $U \in \mathcal{L}(H)$ verifying $B=U^{*} A U$.
If $C^{*} \in R\left(\delta_{B}\right)^{-} \cap\left\{B^{*}\right\}^{\prime}$, there exists $\left(X_{n}\right)_{n \in \mathbb{N}^{*}} \subset \mathcal{L}(H)$ such that :

$$
C^{*}=\lim _{n}\left(B X_{n}-X_{n} B\right) \quad \text { and } \quad B C=C B
$$

So we have :

$$
C^{*}=\lim _{n}\left(U^{*} A U X_{n}-X_{n} U^{*} A U\right) \quad \text { and } \quad U^{*} A U C=C U^{*} A U
$$

Let us operate on the left with U and on the right with U^{*} the two members of these last equalities, we obtain :

$$
U C^{*} U^{*}=\lim _{n}\left(A\left(U X_{n} U^{*}\right)-\left(U X_{n} U^{*}\right) A\right) \quad \text { and } \quad A\left(U C U^{*}\right)=\left(U C U^{*}\right) A
$$

hence $U C^{*} U^{*} \in R\left(\delta_{A}\right)^{-} \cap\left\{A^{*}\right\}^{\prime}$; and taking into account that $A \in \mathcal{N}$, we deduce that $C=0$; so $B \in \mathcal{N}$.

Lemma 2. Let H, K be two complex Hilbert spaces and n, m two strictly positive integers. For all $A \in \mathcal{L}\left(H^{(n)}\right)$, Jordan block of order n, and for all $B \in \mathcal{L}\left(K^{(m)}\right)$, Jordan block of order m, we have :

$$
R\left(\delta_{A, B}\right) \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)=\{0\} .
$$

Proof. We consider the two cases : $m \leq n$ and $n<m$.
Case 1: $m \leq n$.
We have: $A=\left[A_{i, j}\right]_{1 \leq i, j \leq n}, B=\left[B_{\alpha, \beta}\right]_{1 \leq \alpha, \beta \leq m}$ with $A_{i, i+1}=I_{H}$, for $i=1, \ldots, n-1 ; B_{\alpha, \alpha+1}=I_{K}$, for $\alpha=1, \ldots, m-1$;
and $A_{i, j}=0_{H}, B_{\alpha, \beta}=0_{K}$ in the other cases.
Let $C^{*} \in R\left(\delta_{A, B}\right) \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)$; there exists $X \in \mathcal{L}\left(K^{(m)}, H^{(n)}\right)$ such that:

$$
C^{*}=A X-X B \quad \text { and } \quad C A=B C
$$

We denote by $\left[X_{i, \alpha}\right]$ and $\left[C_{\alpha, j}\right]$ the matrices of X and C respectively. Then we have three possible cases :
i) $n=m=1$. This case is trivial because $A=0_{H}$ and $B=0_{K}$.
ii) $n \geq 2$ and $m=1$. We have $B=0_{K}, C^{*}=A X$ and $C A=0$. Then $C C^{*}=0$, so $C=0$ and $R\left(\delta_{A, B}\right) \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)=\{0\}$.
iii) $n \geq 2$ and $m \geq 2$. For all $i \in\{1, \ldots, n\}$ and for all $\alpha \in\{1, \ldots, m\}$ we can write :

$$
\left\{\begin{align*}
C_{\alpha, i}^{*} & =\sum_{j=1}^{n} A_{i, j} X_{j, \alpha}-\sum_{\beta=1}^{m} X_{i, \beta} B_{\beta, \alpha} \tag{I}\\
\sum_{j=1}^{n} C_{\alpha, j} A_{j, i} & =\sum_{\beta=1}^{m} B_{\alpha, \beta} C_{\beta, i}
\end{align*}\right.
$$

Using the first line of (I), we write :
$(I I)\left\{\begin{array}{llll}\text { For } 1 \leq i \leq n-1 \text { and } 2 \leq \alpha \leq m: C_{\alpha, i}^{*} & =X_{i+1, \alpha}-X_{i, \alpha-1} \\ \text { For } i=n \text { and } 2 \leq \alpha \leq m: & C_{\alpha, n}^{*} & =-X_{n, \alpha-1} \\ \text { For } 1 \leq i \leq n-1 \text { et } \alpha=1: & C_{1, i}^{*} & =X_{i+1,1} \\ \text { For } i=n \text { and } \alpha=1: & C_{1, n}^{*}= & 0\end{array}\right.$
At last using the second line of (I), we have :
(III) $\quad\left\{\begin{array}{llll}\text { For } 2 \leq i \leq n & \text { and } & 1 \leq \alpha \leq m-1: C_{\alpha, i-1} & =C_{\alpha+1, i} \\ \text { For } 2 \leq i \leq n & \text { and } & \alpha=m: & C_{m, i-1} \\ \text { For } i=1 & \text { et } & 1 \leq \alpha \leq m-1: & C_{\alpha+1,1}=0\end{array}\right]$.

The first line of (III) means that for all $i \in\{1, \ldots, n\}$ and for all $\alpha \in\{1, . ., m\}$, all the terms of the diagonal of the matrix $\left[C_{\beta, j}\right]$ containing $C_{\alpha, i}$ are equal. We now turn our attention on the position of the first term of each diagonal.

If the first term is on the first column but not on the first row, it is a $C_{\alpha, 1}, 2 \leq \alpha \leq m$, and using the third line of (III), we find that it is zero. So, if we call null-diagonal every diagonal whose all the terms are null, all the diagonals under the diagonal containing $C_{1,1}$ are null-diagonals .
With the notations $C_{1, j}=C_{j}$ for $j \in\{1, \ldots, n-1\}$, the matrix $\left[C_{\beta, j}\right]$ is

$$
\left[C_{\beta}, j\right]=\left(\begin{array}{ccccccccc}
C_{1} & C_{2} & \cdots & C_{m-1} & C_{m} & C_{m+1} & \cdots & C_{n-1} & 0 \\
0 & C_{1} & C_{2} & \cdots & C_{m-1} & C_{m} & \cdots & \cdots & C_{n-1} \\
\vdots & 0 & \ddots & \ddots & \cdots & \ddots & \ddots & \cdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \cdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & C_{1} & \cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

If the first term is on the first row, it is a $C_{1, i}, i \in\{1, \ldots, n-1\}$. So we have :

$$
\begin{equation*}
\left[C_{1, i}=C_{2, i+1}=\ldots=C_{\alpha-1, j-1}=C_{\alpha, j}\right] \tag{IV}
\end{equation*}
$$

where $\quad C_{\alpha, j}$ denotes the last term of the diagonal containing $C_{1, i}$.
a) If $j \in\{m, \ldots, n-1\}$ we have $\alpha=m$, the last term of the diagonal is on the last row but not on the last column ; so by using the first line of (III) we obtain $C_{m, j}=0$; then the diagonal containing $C_{1, i}$ is null.
b) If $j=n$, we have $\alpha \in\{2, \ldots, m\}$, the last term of the diagonal is on the last column ; we use the adjoint in (IV) and use (II), so we obtain :

$$
C_{1, i}^{*}=X_{i+1,1}=X_{i+2,2}-X_{i+1,1}=\ldots \ldots=X_{n, \alpha-1}-X_{n-1, \alpha-2}=-X_{n, \alpha-1}
$$

Remark that the sum of all these equal terms is zero, so each term is zero.
From a) and b), we deduce that all the diagonals of $\left[C_{\beta, j}\right]$ are null-diagonals.
This ends the proof. We have proved that $C=0$ and $R\left(\delta_{A, B}\right) \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)=\{0\}$.
Case 2: $n \leq m$.
Let $C^{*} \in R\left(\delta_{A, B}\right) \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)$.
We have $C \in R\left(\delta_{B^{*}, A^{*}}\right) \cap \operatorname{ker}\left(\delta_{B, A}\right)$, and using the result of the case 1 , we obtain $C=0$ and we are done. We have obtained $R\left(\delta_{A, B}\right) \cap \operatorname{ker}\left(\delta_{A^{*}, B^{*}}\right)=\{0\}$.

Theorem 3. Let A be a Jordan operator (of any order). Then we have:

$$
R\left(\delta_{A}\right) \cap\left\{A^{*}\right\}^{\prime}=\{0\}
$$

Proof. With the notations precised at the beginning we write

$$
A=J_{1} \oplus \cdots \oplus J_{m}
$$

Let $B^{*} \in R\left(\delta_{A}\right) \cap\left\{A^{*}\right\}^{\prime}$ and $\left[B_{\alpha, \beta}\right]$ the matrix associated to B.
There exists $X=\left[X_{\alpha, \beta}\right]$ such that :

$$
B^{*}=A X-X A \quad \text { and } \quad A B=B A
$$

So we have for all $\alpha \in\{1, \ldots, m\}$ and for all $\beta \in\{1, \ldots, m\}$,

$$
\left\{\begin{aligned}
B_{\beta, \alpha}^{*} & =J_{\alpha} X_{\alpha, \beta}-X_{\alpha, \beta} J_{\beta} \\
J_{\beta} B_{\beta, \alpha} & =B_{\beta, \alpha} J_{\alpha}
\end{aligned}\right.
$$

Then: $\quad B_{\beta, \alpha}^{*} \in R\left(\delta_{J_{\alpha}, J_{\beta}}\right) \cap \operatorname{ker}\left(\delta_{J_{\alpha}^{*}, J_{\beta}^{*}}\right)$,
and since the $J_{\gamma}(\gamma=1, \ldots, m)$ are Jordan blocks, using lemma 2, we have $B_{\beta, \alpha}=0$, for all $\alpha, \beta \in\{1, \ldots, m\}$; then $B=0$, and $R\left(\delta_{A}\right) \cap\left\{A^{*}\right\}^{\prime}=\{0\}$.

Corollary 4 . The class \mathcal{N} contains all the operators unitarily equivalent to Jordan operators.

Proof. $R\left(\delta_{A}\right)$ is closed for each operator A similar to a Jordan operator, so this corollary follows immediatly from theorem 3 and lemma 1.

This result induces the next question :
Question : Are all the operators similar to Jordan operators in the class \mathcal{N} ? (or equivalently, using the equivalence in [1] , are the nilpotent operators A such that $R\left(\delta_{A}\right)$ is closed in the class \mathcal{N} ?)

References

1-C.APOSTOL, Inner derivations with closed range, Rev. Roum. Math. Pures et Appl. Tome XXI, n ${ }^{0} 3$, p. 249-265, Bucharest, 1976.
2-Y.HO, Commutants and derivation ranges, Tôhoku Math. Journ. ,27(1975), 509-514.
3-J.P. WILLIAMS, On the range of a derivation II, Proc. Roy. Irish Acad. Sect. A74(1974), 299-310.
4-L.R. WILLIAMS, Similarity invariants for a class of nilpotent operators, Acta Sci. Math., 38(1976), 423-428.

Seddik Ameur,
Université de Batna,
Institut des sciences exactes,
Département de Mathématiques,
Rue Chahid Boukhlouf,
05000, Batna, Algérie
Charles Josette,
Département de Mathématiques, C.C.051,
Université Montpellier II,
Place Eugène Bataillon, 34095 Montpellier Cedex 05
AMS classification : 47B47

Submitted: June 23, 1996
Revised: October 14, 1996

