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DERIVATION AND JORDAN OPERATORS
A .Seddik and J.Charles

For A € L{H) ( the algebra of all operators on the complex Hilbert space H), let 54
denote the operator on L(H) defined by : §4(X) = AX — X A.

We show here that for all Jordan operators A : R(64) N {A*} = {0}, where R(84) is
the range of §4 and {A*}’ is the commutant of the adjoint of A.

Introduction.

Let L(H) be the algebra of bounded linear operators on the infinite-dimensional
complex Hilbert space H. For A € L(H), we define the linear operator d4 on L(H) by :

VX € L(H) §4(X) = AX — X A;

we denote B(84), R{64)~ and {A} respectively the range, the norm closure of the range
and the kernel of §4.

We denote N = {A € L(H): R(64)” N{A*} = {0}}.
If H is finite-dimensional, N' = L(H). If H is infinite-dimensional, this equality does
not hold. So a reasonable purpose is to determine what elements are in AV.

When H is a separable Hilbert space, A contains the operators A for which p(4) is normal
for some quadratic polynomial p(z) [2 ],the subnormal operators with cyelic vectors [2 ]
and the isometries [3 ]. In this paper, we show that A/ contains also all the operators
unitarily equivalent to Jordan operators.

Notation : see [4].

For a complex Hilbert space H and an integer n strictly greater than 1, an operator
Aon H® = HO H ® ... ® H, with matrix [A;; ]1<ij<n, (i is the row index), is said to
; , <igs

n times

be a Jordan block of order n if we have, forall i e {1,...,n~ 1}, Aiiy1 = Ig (where Iy
is the identity operator on H), and 4;; = 0 in the other cases.

We denote by 0y, the null-operator defined on H, the Jordan block of order 1.

Let m be a strictly positive integer, Hi, ..., H,, m complex Hilbert spaces and ¢y, ...ct, m
strictly positive integers.

Set Hy, = H,g"’“) and Ji the Jordan block of order a, operating on Hy, for k=1,.,m.
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Every operator of the form J; & ... & J,, operating on Hi & ..®H, is called a Jordan
operator of order sup{ay : k=1,..,m}.

For two complex Hilbert spaces H and K, and 4 € L(H), B € L(K), we denote by é4.p
the linear operator defined on L{K, H) (the space of bounded linear operators defined
from K into H) by :

VX eL(K, H), é4p5(X)=AX—-XB.

Recall that for every operator A € L(H), similar to a Jordan operator, R(é4) is closed

[11l.

Lemma 1 . Let A, B € L(H) with B unitarily equivalent to A and A € N'. Then we have
BeN.

Proof . Let A, B € L(H) such that A € N and such that there exists a unitary operator
U € L(H) verifying B = U*AU.
If C* € R(6p)~ N {B*}, there exists (X, )nen+ C L{H) such that :

C* =lim,(BX, — X,B) and BC=CB.
So we have :
C* =lim,(U*AUX, — X, U*AU) and U*AUC = CU*AU.

Let us operate on the left with U and on the right with U* the two members of these last
equalities, we abtain :

UC*U* = limn(AUX,U*) — (UX,U*)A) and AUCU*) = (UCU*)A,

hence UC*U* € R(64)~ N {A*} ; and taking into account that A € N, we deduce that
C=0;s0BeN.

Lemma 2 . Let H, K be two complex Hilbert spaces and n, m two strictly positive integers.
For all A € L(H™), Jordan block of order n, and for all B € L(K(™), Jordan block of
order m , we have :

R((SAB) Nker(6a+ p+) = {0}.

Proof . We consider the two cases: m <n and n < m.

Casel:m<n.

We have: A= [Ai; licij<n, B= [Bap li<a,pgm

with A; ;41 =Ig,fori=1,..,n—1; Byar1 =Ig,fora=1,...,m—-1;
and A; ; = 0y, Ba,pg = Ok in the other cases.

Let C* € R(64 ) Nker(84+ ) ; there exists X € L(K™) H™) such that :

C*=AX—-XB and CA=BC.
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We denote by [X; . | and [Cy; ] the matrices of X and C respectively.

Then we have three possible cases :

i) n = m = 1.This case is trivial because A =0y and B = 0.

ii)n>2and m=1. We have B=0g, C* =AX and CA=0. Then CC* =0,50 C =0
and R(éa ) Nker(64~ p+) = {0}.

iliyn > 2and m >2. For all i € {1,...,n} and for all & € {1, ...,m} we can write :

f Cai = Yim1AiiXie — YpoyXipBpa
1 Z_’;Lzl Ca,jAj,'i = Eg“:l BO‘HBC,Bvi

Using the first line of (I), we write :

()

I

For1<i<n-1 and 2<a<m:Cy, Xitio — Xia-1

(1) Fori=n and 2<a<m: Corn = —Xnpa-1
For1<i<m—-1 e a=1: Ci; = Xipa
Fori=n and a=1: i, = 0

At last using the second line of (I), we have :

For2<i<n and 1<a<m~-1:Chic1 = Cati;
(IIT) For2<i<n and a=m: Crmi-1 = 0
Fori=1 et 1<a<m-1: Cotr11 = 0

The first line of (III) means that for all i € {1,...,n} and for all & € {1,..,m}, all the
terms of the diagonal of the matrix [Cp; | containing C, ; are equal. We now turn our
attention on the position of the first term of each diagonal.

If the first term is on the first column but not on the first row, itisa Ca 1,2 < a < m,
and using the third line of (III), we find that it is zero. So, if we call null-diagonal every
diagonal whose all the terms are null, all the diagonals under the diagonal containing Ci 3
are null-diagonals .

With the notations C; ; = C; for je& {l,..,n~— 1}, the matrix [Cp;]is

C; C -+ Cpoi Cn Cpyr -+ Cpy O \
0 Cl Cg Cm-l Cm Cn—-l s

0 - o0 C j
If the first term is on the first row, it is a C1;, ¢ € {1,..,n — 1}. So we have :

(Iv) [C1,i = Coit1 = ... = Caryj—1 = Cayjl,
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where C,,; denotes the last term of the diagonal containing Cj ;.

a)If j € {m,..,n — 1} we have @ = m, the last term of the diagonal is on the last row
but not on the last column ; so by using the first line of (III) we obtain C, ; = 0; then
the diagonal containing C ; is null.

b) If j = n, we have a € {2,...,m}, the last term of the diagonal is on the last column;
we use the adjoint in (IV) and use (II), so we obtain :

*
Cli=Xiy1n=Xipo2 — Xig11 = oo =Xpna-1—Xn-1,0-2 = X5 g-1-

Remark that the sum of all these equal terms is zero, so each term is zero.
From a) and b),we deduce that all the diagonals of [Cs ;] are null-diagonals.
This ends the proof. We have proved that C =0 and R(64 8) Nker(8a~ p-) = {0}.

Case 2:n<m.
Let C* € R(6a,B) Nker(6a~ B-)-
We have C € R(ép~ 4») Nker(dp, 4), and using the result of the case 1, we obtain C =0
and we are done. We have obtained R(84 ) N ker(d4+ p+) = {0}.
Theorem 3 . Let A be a Jordan operator (of any order). Then we have :
R(sa)n {4} = {0}.
Proof . With the notations precised at the beginning we write

A=018 & Jn.

Let B* € R(64) N{A*} and [B, g | the matrix associated to B.
There exists X = [X, g ] such that :

B*=AX-XA and AB = BA.

So we have for all a € {1,...,m} and for all 8 € {1,...,m},

Bj. = JoXap — Xopls
JpBpa = Bpgala

Then : BE)Q € R((stJB) M keT’((sJ;,JB),

and since the Jy, (y=1,...,m) are Jordan blocks, using lemma 2, we have
Bgo =0, forall &, 8 € {1,...,m}; then B =0, and R(64) N {4A*} = {0}.

Corollary 4 . The class N contains all the operators unitarily equivalent to Jordan
operators.

Proof . R(,4) is closed for each operator A similar to a Jordan operator, so this corollary
follows immediatly from theorem 3 and lemma, 1.
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This result induces the next guestion :

Question : Are all the operators similar to Jordan operators in the cluss N7 (or
equivalently, using the equivalence in [1] , are the nilpotent operators A such that R(64)
is closed in the class N'7)
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