On the Numerical Range and Norm of Elementary Operators

AMEUR SEDDIK*
Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

(Received 8 April 2002; In final form 10 April 2003)

Let $\mathcal{B}(E)$ be the complex Banach algebra of all bounded linear operators on a complex Banach space E. For n-tuples $A=\left(A_{1}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, \ldots, B_{n}\right)$ of operators on E, let $R_{A, B}$ denote the operator on $\mathcal{B}(E)$ defined by $R_{A, B}(X)=\sum_{i=1}^{n} A_{i} X B_{i}$.

For $A, B \in \mathcal{B}(E)$, we put $U_{A, B}=R_{(A, B),(B, A)}$.
In this note, we prove that

$$
\operatorname{co}\left\{\sum_{i=1}^{n} \alpha_{i} \beta_{i}:\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in V(A),\left(\beta_{1}, \ldots, \beta_{n}\right) \in V(B)\right\}^{-} \subset W_{0}\left(R_{A, B} \mid J\right)
$$

where $V(\cdot)$ is the joint spatial numerical range, $W_{0}(\cdot)$ is the algebraic numerical range and J is a norm ideal of $\mathcal{B}(E)$. We shall show that this inclusion becomes an equality when $R_{A, B}$ is taken to be a derivation. Also, we deduce that $w\left(U_{A, B} \mid J\right) \geq 2(\sqrt{2}-1) w(A) w(B)$, for $A, B \in \mathcal{B}(E)$ and J is a norm ideal of $\mathcal{B}(E)$, where $w(\cdot)$ is the numerical radius.

On the other hand, in the particular case when E is a Hilbert space, we shall prove that the lower estimate bound $\left\|U_{A, B} \mid J\right\| \geq 2(\sqrt{2}-1)\|A\|\|B\|$ holds, if one of the following two conditions is satisfied:
(i) J is a standard operator algebra of $\mathcal{B}(E)$ and $A, B \in J$.
(ii) J is a norm ideal of $\mathcal{B}(E)$ and $A, B \in \mathcal{B}(E)$.

Keywords: Numerical range; Numerical radius; Norm ideal; Standard operator algebra
1991 Mathematics Subject Classifications: 46L35; 47A12; 47B47

1. INTRODUCTION

All operators considered here are linear bounded operators on a complex Banach space E. The collection of operators on E is denoted by $\mathcal{B}(E)$.

Notation 1

(i) If $M \subset \mathbb{C}$, we denote by M^{-}, $\operatorname{co} M$ and \bar{M}, respectively the closure of M, the convex hull of M, and the set $\{\bar{\lambda}: \lambda \in M\}$.

[^0](ii) For $(x, f) \in E \times E^{*}$, we denote by $x \otimes f$ the operator on E given by $(x \otimes f)(y)=f(y) x$.
(iii) If E is a Hilbert space and if $x, y \in E$, we denote by $x \otimes y$ the operator on E given by $(x \otimes y)(z)=\langle z, y\rangle x$.
(iv) If $K, L \subset \mathbb{C}^{n}$, we put $K \circ L=\left\{\sum_{i=1}^{n} \alpha_{i} \beta_{i}:\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in K,\left(\beta_{1}, \ldots, \beta_{n}\right) \in L\right\}$.

Definition 1 Let Ω be a complex unital Banach algebra with identity I and let $A \in \Omega$.
(1) We define:
(i) the spectrum of A by:

$$
\sigma(A)=\{\lambda \in \mathbb{C}: A-\lambda I \text { is not invertible in } \Omega\}
$$

(ii) the spectral radius of A by:

$$
r(A)=\sup \{|\lambda|: \lambda \in \sigma(A)\}
$$

(iii) the set of states on Ω by:

$$
\mathcal{P}(\Omega)=\left\{f \in \Omega^{*}: f(I)=\|f\|=1\right\}
$$

(iv) the algebraic numerical range of A by:

$$
W_{0}(A)=\{f(A): f \in \mathcal{P}(\Omega)\}
$$

(v) the numerical radius of A by:

$$
w(A)=\sup \left\{|\lambda|: \lambda \in W_{0}(A)\right\}
$$

(2) A is called convexiod if $W_{0}(A)=\operatorname{co\sigma }(A)$.

It is known that $W_{0}(A)$ is convex and compact (this result follows at once from the corresponding properties of the set of states) and contains $\sigma(A)$ (see [16]). If $\Omega=\mathcal{B}(E)$ and E is a Hilbert space, then $w(A)=\|A\|$ iff $r(A)=\|A\|$ (see [6]).
Definition 2 For $A \in \mathcal{B}(E)$, define the spatial numerical range of A by:

$$
V(A)=\{f(A x):(x, f) \in \Pi\}
$$

where $\Pi=\left\{(x, f) \in E \times E^{*}:\|x\|=\|f\|=f(x)=1\right\}$.
This notion of spatial numerical range is introduced by Lumer in [7], where it is proved that $W_{0}(A)=\operatorname{co} V(A)^{-}$, for every $A \in \mathcal{B}(E)$. In the particular case, when E is a Hilbert space, it is known that $W_{0}(A)=W(A)^{-}$, where $W(A)=\{\langle A x, x\rangle: x \in E$, $\|x\|=1\}$ is the numerical range of A.

Definition 3 For n-tuples $A=\left(A_{1}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, \ldots, B_{n}\right)$ of operators on E, we define:
(i) the joint spatial numerical range of A (see [4]) by:

$$
V(A)=\left\{\left(f\left(A_{1} x\right), \ldots, f\left(A_{n} x\right)\right):(x, f) \in \Pi\right\}
$$

(ii) the joint numerical range of A by:

$$
W(A)=\left\{\left(\left\langle A_{1} x, x\right\rangle, \ldots,\left\langle A_{n} x, x\right\rangle\right): x \in E,\|x\|=1\right\}
$$

(iii) the elementary operator $R_{A, B}: \mathcal{B}(E) \longrightarrow \mathcal{B}(E)$ by:

$$
\forall X \in \mathcal{B}(E): R_{A, B}(X)=\sum_{i=1}^{n} A_{i} X B_{i}
$$

Definition 4 For $A, B \in \mathcal{B}(E)$, define the particular elementary operators:
(i) the left multiplication operator $L_{A}: \mathcal{B}(E) \longrightarrow \mathcal{B}(E)$ by:

$$
\forall X \in \mathcal{B}(E): L_{A}(X)=A X
$$

(ii) the right multiplication operator $R_{B}: \mathcal{B}(E) \longrightarrow \mathcal{B}(E)$ by:

$$
\forall X \in \mathcal{B}(E): R_{B}(X)=X B
$$

(iii) the generalized derivation (induced by A, B) by $\delta_{A, B}=L_{A}-R_{B}$.
(iv) the elementary multiplication operator (induced by A, B) by $M_{A, B}=L_{A} R_{B}$
(v) the operator $U_{A, B}$, by $U_{A, B}=M_{A, B}+M_{B, A}$.

In the sequel, $T_{A, B}$ will stand for any one of the above linear operators.
Let J be a standard operator algebra or a norm ideal of $\mathcal{B}(E)$. Note that a standard operator algebra of $\mathcal{B}(E)$ is a subalgebra of $\mathcal{B}(E)$ associated with the usual operator norm and containing all finite rank operators, and a norm ideal of $\mathcal{B}(E)$ is a two-sided ideal of $\mathcal{B}(E)$ associated with a symmetric norm ideal (which satisfies axioms like those in Hilbert space case (see $[5,10,13])$). We denote by $\|.\|_{J}$ the norm on J.

If J is a norm ideal, then $T_{A, B}(J) \subset J$, so we can define the operator $T_{J, A, B}$ on J by $T_{J, A, B}(X)=T_{A, B}(X)$.

If J is a standard operator algebra and $A, B \in J$, define $U_{J, A, B}: J \rightarrow J$ by $U_{J, A, B}(X)=U_{A, B}(X)$.

Many facts about the relation betwen the spectrum of $R_{A, B}$ and the joint spectrum (spectrum in the sense of Taylor (see [17])) of two commuting n-tuples A and B of operators on E are known (see [3]). Recently in [11,12], we are interested in the relation betwen the numerical range of $R_{J, A, B}$ and the joint numerical ranges of any n-tuples A and B of operators on E, in the particular case where E is a Hilbert space and J is $\mathcal{B}(E)$ or a Schatten p-ideal of $\mathcal{B}(E)$. For any $A, B \in \mathcal{B}(E)$, we have proved that:
(i) $\operatorname{co}(W(A) \circ W(B))^{-} \subset W_{0}\left(R_{J, A, B}\right)$,
(ii) $W_{0}\left(\delta_{J, A, B}\right)=W_{0}(A)-W_{0}(B)$.

Section 2 of this note was motivated by the question: To what extent do the properties (i) and (ii) hold in the general situation of Banach space? It will be shown that for any norm ideal J the properties (i) and (ii) remain true, but the condition (i) may be modified by taking $V(\cdot)$ instead of $W(\cdot)$. As a consequence of the main result of this section (Theorem 2), we shall prove that $w\left(U_{J, A, B}\right) \geq 2(\sqrt{2}-1) w(A) w(B)$, for any $A, B \in \mathcal{B}(E)$.

While the proof of the main result of this section is simple, it leads to some rather surprising consequences such as $W_{0}\left(L_{J, A}\right)=W_{0}\left(R_{J, A}\right)=W_{0}(A)$ and $W_{0}\left(\delta_{J, A, B}\right)=$ $W_{0}(A)-W_{0}(B)$ independent of which symmetric norm ideal one chooses.

In Section 3, we establish a lower estimate bound for the norm of $U_{J, A, B}$. Note that, Stachó and Zalar are interested to know whether there exists a uniform lower for the norm of the operator $U_{J, A, B}$, in the case where E is a Hilbert space, J is a standard operator algebra and $A, B \in J$. Especially, in [14] they proved that $(*)\left\|U_{J, A, B}\right\| \geq$ $2(\sqrt{2}-1)\|A\|\|B\|$, and in [15], they obtained the best estimate $(* *)\left\|U_{A, B}\right\| \geq\|A\|\|B\|$, for symmetric operators A and B. Also, Barraa and Boumazgour [1], proved that ($* *$) holds if $\inf _{\lambda \in \mathbb{C}}\|A-\lambda B\|=\|A\|$ or $\inf _{\lambda \in \mathbb{C}}\|B-\lambda A\|=\|B\|$. Here, we shall give an easy proof of $(*)$ if one of the two conditions is satisfied:
(i) J is a standard operator algebra and $A, B \in J$,
(ii) J is a norm ideal and $A, B \in \mathcal{B}(E)$.

So, the Stachó-Zalar lower estimate becomes a particular case of our work. In the end of this section, we exhibit some classes of operators A, B such that $\left\|U_{J, A, B}\right\| \geq\|A\|\|B\|$, in particular we shall give a general form of the result of Barraa-Boumazgour.

In Section 4, we are interested in the characterization of the operators A, B such that $\left\|U_{J, A, B}\right\|=2\|A\|\|B\|$ in the particular case of Hilbert space. In particular, we shall prove that if J is the Hilbert-Schmidt class, then $\left\|U_{J, A, B}\right\|=2\|A\|\|B\|$ iff $w\left(A^{*} B\right)=\|A\|\|B\|$.

2. THE NUMERICAL RANGE AND NUMERICAL RADIUS OF ELEMENTARY OPERATORS

In this section, we assume that J is a norm ideal.
Theorem 1 Assume E is a Hilbert space and let A and B be two n-tuples of operators on E. Then $\operatorname{co}(W(A) \circ W(B))^{-} \subset W_{0}\left(R_{J, A, B}\right)$.
Proof For $J=\mathcal{B}(E)$ (resp. $J=\mathcal{C}_{p}(E)$, the Schatten p-ideal), then the result is obtained in [11, Theorem 1] (resp. [12, Theorem 4.1]).

For any norm ideal J, the proof is analogous to that of [12, Theorem 4.1].
Theorem 2 Let A and B be two n-tuples of operators on E. Then $\operatorname{co}(V(A) \circ V(B))^{-} \subset$ $W_{0}\left(R_{J, A, B}\right)$.
Proof Let $(x, f),(y, g) \in \Pi$. Define the linear functional h on $\mathcal{B}(J)$ by:

$$
h(F)=f(F(x \otimes g) y), \quad F \in \mathcal{B}(J)
$$

We have $h(I)=f(x) g(y)=1$, and since $\|x \otimes g\|_{J}=\|x \otimes g\|=\|x\|\|g\|=1$, then:

$$
\left\{\begin{aligned}
|h(F)| & \leq\|F(x \otimes g) y\| \\
& \leq\|F(x \otimes g)\| \\
& \leq\|F(x \otimes g)\|_{J} \\
& \leq\|F\|\|x \otimes g\|_{J} \\
& \leq\|F\| .
\end{aligned}\right.
$$

So $h(I)=\|h\|=1$; thus h is a state on $\mathcal{B}(J)$. It is obvious that $h\left(R_{J, \mathrm{~A}, \mathrm{~B}}\right)=$ $\sum_{i=1}^{n} f\left(A_{i} x\right) g\left(B_{i} y\right)$, therefore $V(A) \circ V(B) \subset W_{0}\left(R_{J, A, B}\right)$. Since $W_{0}\left(R_{J, A, B}\right)$ is closed and convex, the result follows easily.

Corollary 1 Let $A \in \mathcal{B}(E)$. Then $W_{0}\left(L_{J, A}\right)=W_{0}\left(R_{J, A}\right)=W_{0}(A)$.
Proof The inclusion $\operatorname{co} V(A)^{-} \subset W_{0}\left(L_{J, A}\right)$ follows immediately from Theorem 2. Then $W_{0}(A)=\operatorname{coV}(A)^{-} \subset W_{0}\left(L_{J, A}\right)$.
Now, let f be a state on $\mathcal{B}(J)$. Define the linear functional g on $\mathcal{B}(E)$ by $g(X)=$ $f\left(L_{J, X}\right)$. By a simple computation, we find that g is a state on $\mathcal{B}(E)$, so that $g(A)=$ $f\left(L_{J, A}\right) \in W_{0}(A)$. Thus $W_{0}\left(L_{J, A}\right) \subset W_{0}(A)$, therefore $W_{0}\left(L_{J, A}\right)=W_{0}(A)$. By the same argument, we find also $W_{0}\left(R_{J, A}\right)=W_{0}(A)$.
Corollary 2 Let $A, B \in \mathcal{B}(E)$. Then $W_{0}\left(\delta_{J, A, B}\right)=W_{0}(A)-W_{0}(B)$.
Proof By Theorem 2, we have $\operatorname{co}(V(A)-V(B))^{-} \subset W_{0}\left(\delta_{J, A, B}\right)$. Then

$$
\begin{aligned}
W_{0}(A)-W_{0}(B) & =\operatorname{coV}(A)^{-}-\operatorname{coV} V(B)^{-} \\
& =\operatorname{co}(V(A)-V(B))^{-} \\
& \subset W_{0}\left(\delta_{J, A, B}\right)
\end{aligned}
$$

On the other hand using Corollary 1 , we have:

$$
\begin{aligned}
W_{0}\left(\delta_{J, A, B}\right) & =W_{0}\left(L_{J, A}-R_{J, B}\right) \\
& \subset W_{0}\left(L_{J, A}\right)-W_{0}\left(R_{J, B}\right) \\
& =W_{0}(A)-W_{0}(B)
\end{aligned}
$$

Remark 1 As a consequence of the above Corollary and by the same argument as in [12, Theorem 3.1], we show that $\delta_{J, A, B}$ is convexoid iff A and B are convexoid.

Corollary 3 Let $A, B \in \mathcal{B}(E)$. Then $W_{0}(A) W_{0}(B) \subset W_{0}\left(M_{J, A, B}\right)$, and thus $w\left(M_{J, A, B}\right) \geq w(A) w(B)$.
Proof By Theorem 2, we obtain $\operatorname{co}(V(A) V(B))^{-} \subset W\left(M_{J, A, B}\right)$. Then we have:

$$
\begin{aligned}
W_{0}(A) W_{0}(B) & =\operatorname{coV}(A)^{-} \operatorname{coV}(B)^{-} \\
& =(\operatorname{coV}(A) \operatorname{coV}(B))^{-} \\
& \subset \operatorname{co(V(A)V(B))^{-}} \\
& \subset W_{0}\left(M_{J, A, B}\right)
\end{aligned}
$$

The inequality follows immediately from this inclusion.
Theorem 3 Let $A, B \in \mathcal{B}(E)$. Then $w\left(U_{J, A, B}\right) \geq 2(\sqrt{2}-1) w(A) w(B)$.
Proof We may assume, without loss of the generality, that $w(A)=w(B)=1$.
For any $(x, f),(y, g)$ in Π, we have

$$
f(A x) g(B y)+f(B x) g(A y) \in V(A, B) \circ V(B, A)
$$

Since $V(A, B) \circ V(B, A) \subset W_{0}\left(U_{J, A, B}\right)$, then

$$
\begin{equation*}
w\left(U_{J, A, B}\right) \geq|f(A x) g(B y)+f(B x) g(A y)| \tag{1}
\end{equation*}
$$

Applying inequality (1) for $(y, g)=(x, f)$, we obtain:

$$
\begin{equation*}
w\left(U_{J, A, B}\right) \geq 2|f(A x)||f(B x)| \tag{2}
\end{equation*}
$$

Let $\left(x_{n}, f_{n}\right)$ and $\left(y_{n}, g_{n}\right)$ be two sequences in Π such that:

$$
\lim \left|f_{n}\left(A x_{n}\right)\right|=w(A)=1=w(B)=\lim \left|g_{n}\left(B y_{n}\right)\right|
$$

For $(x, f)=\left(x_{n}, f_{n}\right)$ and $(y, g)=\left(y_{n}, g_{n}\right)$, inequality (1) yields:

$$
\begin{equation*}
w\left(U_{J, A, B}\right) \geq\left|f_{n}\left(A x_{n}\right) g_{n}\left(B y_{n}\right)+f_{n}\left(B x_{n}\right) g_{n}\left(A y_{n}\right)\right| \tag{3}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
w\left(U_{J, A, B}\right) \geq\left|f_{n}\left(A x_{n}\right) g_{n}\left(B y_{n}\right)\right|-\left|f_{n}\left(B x_{n}\right) g_{n}\left(A y_{n}\right)\right| \tag{4}
\end{equation*}
$$

Applying inequality (2) twice for $(x, f)=\left(x_{n}, f_{n}\right)$ and for $(x, f)=\left(y_{n}, g_{n}\right)$, we obtain:

$$
\left\{\begin{array}{l}
w\left(U_{J, A, B}\right) \geq 2\left|f_{n}\left(A x_{n}\right)\right|\left|f_{n}\left(B x_{n}\right)\right| . \tag{5}\\
w\left(U_{J, A, B}\right) \geq 2\left|g_{n}\left(A y_{n}\right)\right|\left|g_{n}\left(B y_{n}\right)\right|
\end{array}\right.
$$

Since the two complex sequences $\left(f_{n}\left(B x_{n}\right)\right)$ and $\left(g_{n}\left(A y_{n}\right)\right)$ are bounded, we can extract a convergent subsequence from each one. We can put $\alpha=\lim \left|f_{n}\left(B x_{n}\right)\right|$ and $\beta=\lim \left|g_{n}\left(A y_{n}\right)\right|$.

Letting $n \rightarrow+\infty$, in (4), (5) and (6), we obtain,

$$
w\left(U_{J, A, B}\right) \geq \max \{1-|\alpha \beta|, 2|\alpha|, 2|\beta|\}
$$

Therefore,

$$
\left\{\begin{aligned}
w\left(U_{J, A, B}\right)^{2}+4 w\left(U_{J, A, B}\right) & \geq 4|\alpha \beta|+4(1-|\alpha \beta|) \\
& \geq 4 .
\end{aligned}\right.
$$

Thus we have $w\left(U_{J, A, B}\right) \geq 2(\sqrt{2}-1)$.

3. A LOWER BOUND FOR THE NORM OF $U_{J, A, B}$

In this section, we assume that E is a Hilbert space. Let $A, B \in \mathcal{B}(E)$. We assume that if J is a standard operator algebra, then $A, B \in J$.

Definition 5 We define the numerical range of $A^{*} B$ relative to B by:

$$
W_{B}\left(A^{*} B\right)=\left\{\lambda \in \mathbb{C}: \lambda=\lim \left\langle A^{*} B x_{n}, x_{n}\right\rangle, \lim \left\|B x_{n}\right\|=\|B\|,\left\|x_{n}\right\|=1\right\}
$$

This concept of this numerical range is introduced by Magajna in [9]. The most interesting properties of $W_{B}\left(A^{*} B\right)$ are given as below (see [9]):

1. $W_{B}\left(A^{*} B\right)$ is not empty and compact subset of \mathbb{C},
2. the relation $\inf _{\lambda \in \mathbb{C}}\|B-\lambda A\|=\|B\|$ holds iff $0 \in W_{B}\left(A^{*} B\right)$.

Lemma 1 We have the following properties:

(i) $\left\|U_{J, A, B}\right\| \geq \sup \{|\langle A x, y\rangle\langle B u, v\rangle+\langle B x, y\rangle\langle A u, v\rangle|:\|x\|=\|y\|=\|u\|=\|v\|=1\}$
(ii) $\left\|U_{J, A, B}\right\| \geq 2 w\left(A^{*} B\right)$.

Proof

(i) Since $\|x \otimes v\|_{J}=\|x \otimes v\|=\|x\|\|v\|=1$, and since $\|X\|_{J} \geq\|X\|$, for any $X \in J$, then we have;

$$
\begin{aligned}
\left\|U_{J, A, B}\right\| & \geq\|A(x \otimes v) B+B(x \otimes v) A\|_{J} \\
& \geq\left\|A x \otimes B^{*} v+B x \otimes A^{*} v\right\| \\
& \geq\|\langle B u, v\rangle A x+\langle A u, v\rangle B x\| \\
& \geq|\langle A x, y\rangle\langle B u, v\rangle+\langle B x, y\rangle\langle A u, v\rangle|
\end{aligned}
$$

(ii) Let x be a unit vector in E such that $A x \neq 0$. Using (i), we obtain, $\left\|U_{J, A, B}\right\| \geq$ $\left|(1 /\|A x\|)\left\langle A^{*} B x, x\right\rangle\|A x\|+\left\langle A^{*} B x, x\right\rangle\|A x\|\right|$, then we can deduce immediately that $\left\|U_{J, A, B}\right\| \geq 2\left|\left\langle A^{*} B x, x\right\rangle\right|$, for any unit vector x in E. So $\left\|U_{J, A, B}\right\| \geq$ $2 w\left(A^{*} B\right)$.
Theorem 4 We have the following property:

$$
\left\|U_{J, A, B}\right\| \geq 2(\sqrt{2}-1)\|A\|\|B\|
$$

Proof We may assume, without loss of the generality, that $\|A\|=\|B\|=1$. Let $\lambda \in W_{B}\left(A^{*} B\right)$ and $\mu \in W_{A}\left(B^{*} A\right)$. Then, there exist two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ of unit vectors in E such that $\lim \left\|B x_{n}\right\|=\lim \left\|A y_{n}\right\|=1$, and $\lim \left\langle A^{*} B x_{n}, x_{n}\right\rangle=\lambda$, $\lim \left\langle B^{*} A y_{n}, y_{n}\right\rangle=\mu$. By Lemma 1.(i), we have:

$$
\left\|U_{J, A, B}\right\| \geq\left|\frac{1}{\left\|A y_{n}\right\|\left\|B x_{n}\right\|}\left\langle A^{*} B y_{n}, y_{n}\right\rangle\left\langle B^{*} A x_{n}, x_{n}\right\rangle+\left\|A y_{n}\right\|\left\|B x_{n}\right\|\right|
$$

Letting $n \rightarrow+\infty$, we get $\left\|U_{J, A, B}\right\| \geq|1+\bar{\lambda} \bar{\mu}|=|1+\lambda \mu|$.
On the other hand, by Lemma 1.(ii), we have $\left\|U_{J, A, B}\right\| \geq \max \{2|\lambda|, 2|\mu|\}$; therefore $\left\|U_{J, A, B}\right\| \geq \max \{|1+\lambda \mu|, 2|\lambda|, 2|\mu|\}$, and by the same argument as in the proof of Theorem 3, we obtain the inequality.
Remark 2 The above Theorem is proved by Stachó and Zalar in [14] in the particular case where J is a standard operator algebra, but here, we have obtained it, in a more general situation by a direct proof.

Theorem 5 If A and B are not zero, we have:

$$
\left\|U_{J, A, B}\right\| \geq \sup \left\{\left|\|A\|\|B\|+\frac{\lambda \mu}{\|A\|\|B\|}\right|, \lambda \in W_{B}\left(A^{*} B\right), \mu \in W_{A}\left(B^{*} A\right)\right\}
$$

Proof Let $\lambda \in W_{B}\left(A^{*} B\right)$ and $\mu \in W_{A}\left(B^{*} A\right)$. By the same argument as in the proof of the Theorem 4, we obtain $\left\|U_{J, A, B}\right\| \geq|\|A\|\|B\|+(\lambda \mu /\|A\|\|B\|)|$.

Corollary 4 The inequality $\left\|U_{J, A, B}\right\| \geq\|A\|\|B\|$ holds, if any one of the following conditions is satisfied:
(i) $\exists \lambda \in W_{B}\left(A^{*} B\right), \exists \mu \in W_{A}\left(B^{*} A\right): \operatorname{Re}(\lambda \mu) \geq 0$,
(ii) $A^{*} B \geq 0$ or $A B^{*} \geq 0$,
(iii) $\exists \theta \in\left[0,2 \pi\left[: W\left(A^{*} B\right) \subset\{z \in \mathbb{C}: \theta \leq \arg z \leq \theta+\pi / 2\}\right.\right.$.

Proof
(i) Let $\lambda \in W_{B}\left(A^{*} B\right)$ and $\mu \in W_{A}\left(B^{*} A\right)$ such that $\operatorname{Re}(\lambda \mu) \geq 0$. Then, by Theorem 5, we have $\left\|U_{J, A, B}\right\| \geq\|A\|\|B\|+(\operatorname{Re}(\lambda \mu) /\|A\|\|B\|)$. Therefore, $\left\|U_{J, A, B}\right\| \geq\|A\|\|B\|$.
(ii) If $A^{*} B \geq 0$, it is clear that $\operatorname{Re}(\lambda \mu) \geq 0$, for every $\lambda \in W_{B}\left(A^{*} B\right)$ and every $\mu \in W_{A}\left(B^{*} A\right)$, so we deduce the Corollary, by (i). On the other hand, if $A B^{*} \geq 0$, and since $\left\|U_{J, A, B}\right\|=\left\|U_{J^{*}, A^{*}, B^{*}}\right\|$ (where $J^{*}=\left\{X^{*}: X \in J\right\}$), we obtain the Corollary, only by using the first step.
(iii) We put $B_{1}=e^{-i \theta} B$, then $W_{0}\left(A^{*} B_{1}\right) \subset\{z \in \mathbb{C}: 0 \leq \arg z \leq \pi / 2\}$, since $W_{B_{1}}\left(A^{*} B_{1}\right) \subset W_{0}\left(A^{*} B_{1}\right)$ and $W_{A}\left(B_{1}^{*} A\right) \subset \overline{W_{0}\left(A^{*} B_{1}\right)}$, so we have $\operatorname{Re}(\lambda \mu) \geq 0$, for all $\lambda \in W_{B_{1}}\left(A^{*} B_{1}\right)$ and for all $\mu \in W_{A}\left(B_{1}^{*} A\right)$. Then we can obtain (iii) immediately using (i) and the fact that $\left\|U_{J, A, B}\right\|=\left\|U_{J, A, B_{1}}\right\|$.

Remark 3 It is proved in [1] that $\left\|U_{A, B}\right\| \geq\|A\|\|B\|$, if $0 \in W_{A}\left(B^{*} A\right) \cup W_{B}\left(A^{*} B\right)$, so that the Corollary 4.i, is a generalisation of this result in our general situation.
Corollary 5 The inequality $\left\|U_{J, A, B}\right\| \geq\|A\|\|B\|+(1 /\|A\|\|B\|)$ holds, if $A=S$ and $B=\left(S^{*}\right)^{-1}$, for some invertible operator S on H.

Proof There exist two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ of unit vectors in E such that $\lim \left\|A x_{n}\right\|=\|A\|=\|S\|$ and $\lim \left\|B y_{n}\right\|=\|B\|=\left\|S^{-1}\right\| ;$ and since $\lim \left\langle A^{*} B x_{n}, x_{n}\right\rangle=$ $\left\|x_{n}\right\|^{2}=1=\left\|y_{n}\right\|^{2}=\lim \left\langle B^{*} A y_{n}, y_{n}\right\rangle$, then $1 \in W_{A}\left(B^{*} A\right) \cap W_{B}\left(A^{*} B\right)$, so we have, by Theorem 5, $\left\|U_{J, A, B}\right\| \geq\|A\|\|B\|+(1 /\|A\|\|B\|)$.
Theorem 6 We have $\left\|U_{J, A, B}\right\| \geq\|A\|\|B\|$, if $\|B\|^{2}\left(A^{*} A\right) \leq\|A\|^{2}\left(B^{*} B\right)$ or $\|A\|^{2}\left(B^{*} B\right) \leq$ $\|B\|^{2}\left(A^{*} A\right)$.

Proof We can assume $\|A\|=\|B\|=1$. Then, by Lemma1.(i), we have: $\left\|U_{J, A, B}\right\| \geq$ $(1 /\|A x\|\|B x\|)\left|\left\langle A^{*} B x, x\right\rangle\right|^{2}+\|A x\|\|B x\|$, for any unit vector x in E such that $A x \neq 0$ and $B x \neq 0$. So we obtain $\left\|U_{J, A, B}\right\| \geq\|A x\|\|B x\|$, for any unit vector x in E. Then, if $A^{*} A \leq B^{*} B$, we have $\left\|U_{J, A, B}\right\| \geq\|A x\|^{2}$; thus $\left\|U_{J, A, B}\right\| \geq 1$. By the same argument, the inequality holds with the second condition.

4. WHEN IS $\left\|U_{J, A, B}\right\|=2\|A\|\|B\|$?

In this section, we also assume that E is a Hilbert space.
Lemma 2 If $w\left(A^{*} B\right)=\|A\|\|B\|$, for some $A, B \in \mathcal{B}(E)$, then $\left\|U_{J, A, B}\right\|=2\|A\|\|B\|$.
Proof It follows immediately from Lemma 1.(ii).
Lemma 3 Let J be a standard operator algebra and $A, B \in J$. If $\left\|U_{J, A, B}\right\|=2\|A\|\|B\|$, then $\left\|A^{*} B\right\|=\|A\|\|B\|$.

Proof This Lemma is proved by Barraa and Boumazgour in [1] in the particular case $J=\mathcal{B}(E)$. Note that the same proof works in any standard operator algebra.

Theorem 7 If $J=\mathcal{C}_{2}(E)($ the Hilbert-Schmidt class $)$ and $A, B \in \mathcal{B}(E)$, then $\left\|U_{J, A, B}\right\|=$ $2\|A\|\|B\|$ iff $w\left(A^{*} B\right)=\|A\|\|B\|$.

Proof Assume that $\left\|U_{J, A, B}\right\|=2\|A\|\|B\|$. Since $\left\|M_{J, A, B}\right\|=\left\|M_{J, B, A}\right\|=\|A\|\|B\|$, then we have $\left\|U_{J, A, B}\right\|=\left\|M_{J, A, B}\right\|+\left\|M_{J, B, A}\right\|$, where $M_{J, A, B}, M_{J, B, A}, U_{J, A, B} \in \mathcal{B}(J)$, and J is a Hilbert space. Thus, by [2], we obtain $\left\|M_{J, A, B}\right\|\left\|M_{J, B, A}\right\|=\|A\|^{2}\|B\|^{2} \in$ $W_{0}\left(\left(M_{J, A, B}\right)^{*}\left(M_{J, B, A}\right)\right)$, and since $\left(M_{J, A, B}\right)^{*}=M_{J, A^{*}, B^{*}}$, then we have $\|A\|^{2}\|B\|^{2} \in$ $W_{0}\left(M_{J, A^{*} B, A B^{*}}\right)$. Therefore

$$
\left\{\begin{aligned}
\|A\|^{2}\|B\|^{2} & \leq w\left(M_{J, A^{*} B, A B^{*}}\right) \\
& \leq\left\|M_{J, A^{*} B, A B^{*}}\right\| \\
& =\left\|A^{*} B\right\|\left\|A B^{*}\right\| \\
& \leq\|A\|^{2}\|B\|^{2}
\end{aligned}\right.
$$

So we have $w\left(M_{J, A^{*} B, A B^{*}}\right)=\left\|M_{J, A^{*} B, A B^{*}}\right\|=\|A\|^{2}\|B\|^{2}$, which implies $r\left(M_{J, A^{*} B, A B^{*}}\right)=$ $\left\|M_{J, A^{*} B, A B^{*}}\right\|=\|A\|^{2}\|B\|^{2}$. Since $r\left(M_{J, A^{*} B, A B^{*}}\right) \leq r\left(A^{*} B\right) r\left(A B^{*}\right) \leq\|A\|^{2}\|B\|^{2}$, and $r\left(A^{*} B\right)=r\left(B A^{*}\right)=r\left(\left(B A^{*}\right)^{*}\right)=r\left(A B^{*}\right)$, therefore $r\left(A^{*} B\right)=\|A\|\|B\|$. So we have $r\left(A^{*} B\right)=\left\|A^{*} B\right\|=\|A\|\|B\|$, and thus $w\left(A^{*} B\right)=\left\|A^{*} B\right\|=\|A\|\|B\|$.

The converse implication follows immediately by Lemma 2.
Theorem 8 Let J be a standard operator algebra and let $A, B \in J$ be such that $A^{*} B$ is normaloid. Then $\left\|U_{J, A, B}\right\|=2\|A\|\|B\|$ iff $w\left(A^{*} B\right)=\|A\|\|B\|$.

Proof Assume that $\left\|U_{J, A, B}\right\|=2\|A\|\|B\|$. Then, by Lemma 3, we have $\left\|A^{*} B\right\|=$ $\|A\|\|B\|$, and since $w\left(A^{*} B\right)=\left\|A^{*} B\right\|$, we obtain $w\left(A^{*} B\right)=\|A\|\|B\|$. By Lemma 2, we obtain the converse implication.
Remark 4 In general, Theorem 8 is not true without the condition that $A^{*} B$ is normaloid. For example, let

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

then $w\left(A^{*} B\right)=(1 / 2)<1=\|A\|\|B\|$ but $\left\|U_{A, B}\right\|=2=2\|A\|\|B\|$.
Theorem 9 Let J be a standard operator algebra and $A, B \in J$. Then we have $\left\|U_{J, A, B}\right\|=2\|A\|\|B\|$ iff $\left\|A^{*} B\right\|=\|A\|\|B\|$, if one of the following conditions is satisfied:
(i) B normal and $A B=B A$,
(ii) B normal and $A \geq 0$,
(iii) $\left\|\left(A^{*} B\right)^{2}\right\|=\left\|A^{*} B\right\|^{2}$.

Proof Assume that $\|A\|=\|B\|=1$. By Lemma 3, we have only to prove that, if $\left\|A^{*} B\right\|=\|A\|\|B\|$ then $\left\|U_{J, A, B}\right\|=2\|A\|\|B\|$. It is clear that $\left\|U_{J, A, B}\right\| \geq \| A\left(B^{*} B\right)+$ ${ }^{\left(B B^{*}\right)} A \|$; then by McIntosh's inequality [8], we have $\left\|U_{J, A, B}\right\| \geq 2\left\|B^{*} A B^{*}\right\|=$ $2\left\|B A^{*} B\right\|$. Then, by this inequality, we may deduce the following implications:

Assume $\left\|A^{*} B\right\|=\|A\|\|B\|$.
(i) Since B is normal, then $\left\|B A^{*} B\right\|=\left\|B^{*} A^{*} B\right\|$, and by Putnam-Fuglede theorem, we have $A B^{*}=B^{*} A$, so we obtain $\left\|U_{J, A, B}\right\| \geq 2\left\|A B^{*} A^{*} B\right\|=2\left\|B^{*} A A^{*} B\right\|=$ $2\left\|A^{*} B\right\|^{2}=2$.
(ii) Since $\left\|U_{J, A, B}\right\| \geq 2\|B A B\| \quad=2\left\|B^{*} A B\right\|=2\left\|A^{\frac{1}{2}} B\right\|^{2}$, \quad then
$\left\|U_{J, A, B}\right\| \geq 2\|A B\|^{2}=2$.
(iii) Since $\left\|U_{J, A, B}\right\| \geq 2\left\|B A^{*} B\right\|$, then $\left\|U_{J, A, B}\right\| \geq 2\left\|A^{*} B A^{*} B\right\|=2\left\|A^{*} B\right\|^{2}=2$.

Remark 5

(i) Theorem 9.(i) is a general form of the known result $\left\|U_{A, I}\right\|=2\|A\|$, for all $A \in \mathcal{B}(H)$.
(ii) If B is a unitary operator, it is abvious that $\left\|U_{A, B}\right\|=2\|A\|\|B\|$ and $\left\|A^{*} B\right\|=$ $\|A\|\|B\|$, for every operator A.

We may ask the following questions:
Question 1 Does Theorem 9.(i) (resp. Theorem 9.(ii)) remain true with only the condition for B to be normal?

Question 2 Does Theorem 9 remain true if we drop all conditions on A and B ?

References

[1] M. Barraa and M. Boumazgour (2001). A lower bound for the norm of the operator $X \rightarrow A X B+B X A$. Extracta Mathematicae, 16(2).
[2] M. Barraa and M. Boumazgour (2002). Inner derivation and norm equality. Proc. Amer. Math. Soc., 130, 471-476.
[3] R.E. Curto (1983). The spectra of elementary operators. Indiana University Mathematical Journal, 32, 193-197.
[4] N.P. Dekker (1969). Joint numerical range and spectrum of Hilbert space operators, Ph. D, Amsterdam.
[5] I.C. Gohberg and M.G. Krein (1969). Introduction to the theory of linear non-selfadjoint operators. Trans. Math. Monographs, 18. Amer. Math. Soc., Providence, RI.
[6] P.R. Halmos (1970). A Hilbert Space Problem Book, 2nd ed. Springer Verlag, New York.
[7] G. Lumer (1961). Semi-inner product spaces. Trans. Amer. Math. Soc., 100, 29-43.
[8] A. McIntosh (1979). Heinz inequalities and perturbation of spectral families. Macquarie Mathematics Reports, 79-0006.
[9] B. Magajna (1993). On the distance to the finite-dimensional subspaces in operator algebras. J. London Math. Soc., 47(2), 516-532.
[10] R. Schatten (1960). Norms Ideals of Completely Continuous Operators. Springer-Verlag, Berlin.
[11] A. Seddik (2002). The numerical range of elementary operators. Integr. Equ. Oper. Theory, 43, 248-252.
[12] A. Seddik (2001). The numerical range of elementary operators II. Linear Algebra Appl., 338, 239-244.
[13] B. Simon (1979). Trace Ideals and their Applications. Cambridge University Press, Cambridge.
[14] L.L. Stachó and B. Zalar (1996). On the norm of Jordan elementary operators in standard operator algebras. Publ. Math., Debrencen, 49, 127-134.
[15] L.L. Stachó and B. Zalar (1998). Uniform primeness of the Jordan algebra of symmetric operators. Proc. Amer. Math. Soc., 126, 2241-2247.
[16] J.G. Stampfli and J.P. Williams (1968). Growth condition and the numerical range in a Banach algebra. Tohoku Math. Journ., 20, 417-424.
[17] J. Taylor (1970). A joint spectrum for several commuting operators. J. Funct. Anal., 6, 172-191.

[^0]: *E-mail address: seddikameur@hotmail.com

