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Let B(E) be the complex Banach algebra of all bounded linear operators on a complex Banach space E. For
n-tuples 4 = (Ay,...,A,) and B=(By,...,B,) of operators on E, let R, p denote the operator on B(E)
defined by RAB(X) = Zil:lA,XBl

For A, Be B(E), we put UA,B = R(A.B)A, (B, A)-

In this note, we prove that

cod Y i, ...,a) € V(A), (B, B) € V(B } C Wo(Ra 5l])
i=1

where V() is the joint spatial numerical range, W, (-) is the algebraic numerical range and J is a norm ideal of
B(E). We shall show that this inclusion becomes an equality when R4 p is taken to be a derivation. Also, we
deduce that w(U,4 g|J) > 2(v/2 — Dw(Aw(B), for A, B € B(E) and J is a norm ideal of B(E), where w(-) is the
numerical radius.

On the other hand, in the particular case when E is a Hilbert space, we shall prove that the lower estimate
bound [|Uy |/ = 2(v/2 — D[ A]||1B]| holds, if one of the following two conditions is satisfied:

(i) J is a standard operator algebra of B(E) and A4, B € J.
(ii) J is a norm ideal of B(E) and A, B € B(E).
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1. INTRODUCTION

All operators considered here are linear bounded operators on a complex Banach space
E. The collection of operators on E is denoted by B(E).

Notation 1

(i) If M c C, we denote by M~, co M and M, respectively the closure of M, the
convex hull of M, and the set {1 : 1 € M}.
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(i) For (x,f)e€ E x E*, we denote by x®f the operator on E given by

(x®/)) =f)x.
(iii) If E is a Hilbert space and if x,y € E, we denote by x ® y the operator on F

given by (x ® y)(z) = (z,y)x.
(iv) If K,L C C", weput KoL ={}" ;i (o1,...,00) € K, (Bu,....Bu) € L}.

Definition 1 Let Q be a complex unital Banach algebra with identity 7 and let 4 € Q.
(1) We define:
(i) the spectrum of A4 by:
o(4) = {» € C: A — Al is not invertible in Q}
(i1) the spectral radius of A4 by:
r(A) = sup{|A|: A € o(4)}
(iii) the set of states on 2 by:
P ={fefO=|r|=1}
(iv) the algebraic numerical range of 4 by:
Wo(d) = { [ (4):f € P()}
(v) the numerical radius of A4 by:

w(A4) = sup{|A|: & € Wo(A4)}

(2) A is called convexiod if Wy(A) = coo(A).

It is known that Wy(A4) is convex and compact (this result follows at once from the
corresponding properties of the set of states) and contains o(4) (see [16]). If Q = B(E)
and E is a Hilbert space, then w(4) = || 4] iff r(4) = ||A||( see [6]).

Definition 2 For A € B(E), define the spatial numerical range of 4 by:
V(4)={f(4x): (x.f) € 1T}

where IT = {(x,/) € E x E* ||x|| = |l /Il =f(x) = 1}.

This notion of spatial numerical range is introduced by Lumer in [7], where it is
proved that Wy(A4) = co V(A)~, for every A € B(E). In the particular case, when E is
a Hilbert space, it is known that Wy(A4) = W(A)~, where W(A) = {{Ax,x): x € E,
|lx|| = 1} is the numerical range of 4.

Definition 3 For n-tuples A = (4y,...,A4,)and B = (By,..., B,) of operators on E, we
define:

(i) the joint spatial numerical range of A4 (see [4]) by:

V() = {(/(41x),....[(4x)): (x.[) € T}
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(i1) the joint numerical range of A by:

W(A) = {((41x,x),...,(Ax,x)): x € E, ||x]| = 1}

(iii) the elementary operator R, g: B(E) — B(E) by:

n
VX € B(E): Ry p(X) =Y A:XB;
i=1

Definition 4 For A, B € B(E), define the particular elementary operators:
(1) the left multiplication operator L4: B(E) — B(E) by:

VX € B(E): Ly(X) = AX
(i1) the right multiplication operator Rg: B(E) — B(E) by:
VX € B(E): Rp(X) = XB

(iii) the generalized derivation (induced by A4, B) by 4.5 = L4 — Rp.
(iv) the elementary multiplication operator (induced by A4, B) by M4 g = L4Rp
(v) the operator Uy p, by Uy p =My p+ Mp 4.

In the sequel, T4, p will stand for any one of the above linear operators.

Let J be a standard operator algebra or a norm ideal of B(E). Note that a standard
operator algebra of B(FE) is a subalgebra of B(E) associated with the usual operator
norm and containing all finite rank operators, and a norm ideal of B(E) is a two-sided
ideal of B(E) associated with a symmetric norm ideal (which satisfies axioms like those
in Hilbert space case (see [5,10,13])) . We denote by |.||; the norm on J.

If J is a norm ideal, then T4 p(J ) C J, so we can define the operator 7 4 5 on J
by Ty, 4.8(X) = T4, 5(X).

If J is a standard operator algebra and A4,BeJ, define U; 45:J — J by
Uy, 4,8(X) = Uy, p(X).

Many facts about the relation betwen the spectrum of R, p and the joint spectrum
(spectrum in the sense of Taylor (see [17])) of two commuting n-tuples 4 and B of
operators on E are known (see [3]). Recently in [11,12], we are interested in the relation
betwen the numerical range of R; 4 p and the joint numerical ranges of any n-tuples
A and B of operators on E, in the particular case where E is a Hilbert space and J is
B(E) or a Schatten p-ideal of B(E). For any A, B € B(E), we have proved that:

(i) co(W(A)o W(B))" C Wo(R;, 4.8)
(i) Wo(ds.4,8) = Wo(4) — Wo(B).

Section 2 of this note was motivated by the question: To what extent do the
properties (i) and (ii) hold in the general situation of Banach space? It will be shown
that for any norm ideal J the properties (i) and (ii) remain true, but the condition (i)
may be modified by taking V'(-) instead of W (-). As a consequence of the main result of
this section (Theorem 2), we shall prove that w(Uy, 4. 5) = 2(v/2 — D)w(4)w(B), for any
A, B € B(E).
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While the proof of the main result of this section is simple, it leads to some rather
surprising consequences such as Wy(Ly 4) = Wo(Ry 4) = Wo(A) and Wy(8s. 4.8) =
Wo(A) — Wy(B) independent of which symmetric norm ideal one chooses.

In Section 3, we establish a lower estimate bound for the norm of U; 4 p. Note that,
Stacho and Zalar are interested to know whether there exists a uniform lower for the
norm of the operator Uj 4 p, in the case where E is a Hilbert space, J is a standard
operator algebra and A4, B € J. Especially, in [14] they proved that (x) |Us 4. 5| >
2(v2 — 1)||A||||B]l, and in [15], they obtained the best estimate (xx) || U4 sl = IIAIIBI,
for symmetric operators A and B. Also, Barraa and Boumazgour [1], proved that ()
holds if inf,cc||A — AB|| = ||A|| or inf,cc||B — AA| = ||B||. Here, we shall give an easy
proof of (x) if one of the two conditions is satisfied:

(i) J is a standard operator algebra and 4, B € J,
(i1) J is a norm ideal and 4, B € B(E).

So, the Stach6—Zalar lower estimate becomes a particular case of our work. In the end
of this section, we exhibit some classes of operators 4, B such that Uy 4. 5| > || 41| Bll,
in particular we shall give a general form of the result of Barraa—Boumazgour.

In Section 4, we are interested in the characterization of the operators 4, B such that
Uy, 4,8l = 2||A|l|B|| in the particular case of Hilbert space. In particular, we shall prove
that if J is the Hilbert—Schmidt class, then ||U; 4 gll = 2||A|||| B|| iff w(4*B) = || 4||||B||.

2. THE NUMERICAL RANGE AND NUMERICAL RADIUS OF ELEMENTARY OPERATORS

In this section, we assume that J is a norm ideal.

THEOREM | Assume E is a Hilbert space and let A and B be two n-tuples of operators
on E. Then co(W(A) o W(B))” C Wy(Ry, 4.B).

Proof ForJ = B(E) (resp. J = C,(E), the Schatten p-ideal), then the result is obtained
in [11, Theorem 1] (resp. [12, Theorem 4.1]).
For any norm ideal J, the proof is analogous to that of [12, Theorem 4.1]. |

THEOREM 2 Let A and B be two n-tuples of operators on E. Then co(V(A4)o V(B))” C
Wo(Ry. 4.8)-

Proof Let (x,f),(y,g) € I1. Define the linear functional /# on B(J) by:
WF)=f(F(x®g)y), FeB(J)
We have i(I) = f(x)g(y) = 1, and since [[x ® gll; = Ix ® gll = lIx[lligl = 1, then:
|hW(F)| < |F(x® )y

<|Fx®9|
= |[Fre9],
<IFl|x®g|,
< IIF]l.

So h(I)=|lhll=1; thus h is a state on B(J). It is obvious that A(R; a B)=

Y f(A4ix)g(Biy), therefore V(A)o V(B) C Wo(Ry. 4.5). Since Wo(Ry 4 p) is closed
and convex, the result follows easily. |
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CoroLLARY 1 Let A € B(E). Then Wo(Ly 4) = Wo(Ry, 1) = Wo(A).

Proof  The inclusion co V(A4)~ C Wo(Ly. 4) follows immediately from Theorem 2.
Then Wy(A) = coV(A)~ C Wo(Ly, 4).

Now, let / be a state on B(J). Define the linear functional g on B(E) by g(X) =
f(Ly x). By a simple computation, we find that g is a state on B(E), so that g(4) =
S(Ly, 4) € Wy(A). Thus Wo(Ly, 4) C Wo(A), therefore Wy(Ly, 4) = Wo(A). By the same
argument, we find also Wy(R;, 4) = Wo(A). |

COROLLARY 2 Let A, B € B(E). Then Wy(8;.4.8) = Wo(A) — Wo(B).
Proof By Theorem 2, we have co(V(A4) — V(B))™ C Wy(8,,4,5)- Then
Wo(A) — Wo(B) =co V(A)™ —co V(B)~
= co(V(4) = V(B))~
C Wo(8s,4,8)

On the other hand using Corollary 1, we have:

Wo(8s,4,8) = Wo(Ly 4 — Ry, B)
C Wo(Ly,4) — Wo(Ry,B)
= Wo(A) — Wo(B) n

Remark 1 As a consequence of the above Corollary and by the same argument as in
[12, Theorem 3.1], we show that §; 4 p is convexoid iff 4 and B are convexoid.

CoROLLARY 3 Let A,Be B(E). Then Wy(A)Wo(B) C Wo(My 4.8), and thus
w(M, 4,8) = w(A)w(B).

Proof By Theorem 2, we obtain co(V(A)V(B))~ C W(Mj, 4 ). Then we have:
Wo(A)Wo(B) = coV(A) coV(B)~
= (coV(A)co V(B))~
C co(V(A)V(B))~
C Wo(My. 4.8)
The inequality follows immediately from this inclusion. |
THEOREM 3 Let A, B € B(E). Then w(Uy, 4,8) > 2(v2 — Dw(A)w(B).

Proof We may assume, without loss of the generality, that w(4) = w(B) = 1.
For any (x,f),(y,g) in I1, we have

J(Ax)g(By) + f(Bx)g(4y) € V(A,B) o V(B, 4)
Since V(A4,B)o V(B, A) C Wo(Uy_4.5), then
w(Uy,4.8) = | /(Ax)g(By) + /(Bx)g(4y)] ey
Applying inequality (1) for (y,g) = (x,f ), we obtain:
w(Uy, 4,8) = 2| [(Ax)|| f(Bx)| 2
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Let (x,,f,) and (y,,g,) be two sequences in IT such that:
1im|f,1(Ax,,)| =wA)=1=w(B)= 1im|gn(Byn)‘
For (x,f) = (x4, fy) and (v, g) = (¥, gn), inequality (1) yields:
W(Uys,4,8) = | fu(AX0)gn(Byn) + fu(Bxn)gn(An)| (€)

Thus,
w(Uyj, 4,8) = |fn(Axn)gn(Byn)’ - ‘fn(an)gn(Ayn)’ C))

Applying inequality (2) twice for (x,f ) = (xu,f,) and for (x,f) = (yu,gx), We obtain:

W(UJ,A,B) = 2|fn(Axn)||ﬁ1(an)| (5)
w(Uj, 4,8) = 2|gn(Ayn)| |gn(Byn)| (6)

Since the two complex sequences (f,(Bx,)) and (g,(4y,)) are bounded, we can
extract a convergent subsequence from each one. We can put o = lim|f,(Bx,)| and

B = lim |g,(Ayn)].
Letting n — 400, in (4), (5) and (6), we obtain,

w(Uy, 4,5) = max{1 — ||, 2|a],2|B]|}
Therefore,

{ w(Uy. 4.8)° +4w(Uy 4.5) > 4laB| + 41 — |Bl)
> 4.

Thus we have w(Uy, 4. 5) > 2(v2 - 1). |

3. A LOWER BOUND FOR THE NORM OF U, 4
In this section, we assume that E is a Hilbert space. Let 4, B € B(E). We assume that if
J is a standard operator algebra, then 4, B € J.

Definition 5 We define the numerical range of 4*B relative to B by:
Wp(A*B) = (A € C: A = lim(4" Bx,, x,,), lim| Bx, || = [|Bl, x.] = 1}

This concept of this numerical range is introduced by Magajna in [9]. The most
interesting properties of Wjg(A4*B) are given as below (see [9]):

1. Wp(A*B) is not empty and compact subset of C,
2. the relation inf,cc||B — AA4|| = ||B|| holds iff 0 € Wjg(4*B).
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LemMMmA 1 We have the following properties:

(@) Uy, a,8ll = sup{| (Ao, y)(Bu, v) + (Bx, y) {(Au, )| x| = Iyl = llull = lIvll = 1}
(1)) Uy, 4,8l = 2w(A*B).
Proof
(1) Since [[x @ vll;= lx ® v[| = [Ix[[[lv]l = 1, and since | X||, > [ X], for any X € J,
then we have;

[Us.15] = |4 @ 0B+ Bx @)l
> |Ax ® B*v + Bx ® A™v||
> ||(Bu, v)Ax + (Au, v) Bx||
> [(Ax, y)(Bu,v) + (Bx, y)(Au, v)|

(ii) Let x be a unit vector in E such that Ax # 0. Using (i), we obtain, ||U; 4 5| >
[(1/]|Ax|){A* Bx, x)||Ax]|| + (A*Bx, x)||Ax]|||, then we can deduce immediately
that ||Uy 4.8l = 2|(4*Bx,x)|, for any unit vector x in E. So ||U; 45l >
2w(A*B). |

THEOREM 4  We have the following property.

1Us. 48] = 2(v2 = DI AIlIBII.

Proof We may assume, without loss of the generality, that ||A|| = ||B|l = 1. Let
A€ Wp(A*B) and p € Wy(B*A). Then, there exist two sequences (x,) and (y,) of
unit vectors in E such that lim|Bx,| =lim|Ay,|| =1, and lim{(A4*Bx,,x,) = X,
lim(B*Ayy, y,) = n. By Lemma 1.(i), we have:

|Us a5 = | (A* By, yu){B* Axy, Xu) + || Ayu || 1 Bx,l

1
| Ay, || I1Bx, |

Letting n — 400, we get [|Uy, 4. gl = |1 +Amt| = |1 + Aul.

On the other hand, by Lemma 1.(i1), we have ||U,_4 gll > max{2|A|, 2|u|}; therefore
U, 4 8l = max{|1 + Aunl|, 2|A|, 2|n|}, and by the same argument as in the proof of
Theorem 3, we obtain the inequality. |

Remark 2 The above Theorem is proved by Stach6 and Zalar in [14] in the particular
case where J is a standard operator algebra, but here, we have obtained it, in a more
general situation by a direct proof.

THEOREM 5 If A and B are not zero, we have:

A
IAl1BI

|Us 8] = Sup{‘IIAIIIIBII + A€ Wp(A™B), € WA(B*A)}

Proof Let . € Wg(A*B) and u € W4(B*A). By the same argument as in the proof of
the Theorem 4, we obtain U, 4 gl = |41l BIl + (Au/ Al BIDI- |
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CoRrOLLARY 4  The inequality ||Uy 4.8l = |AIBI holds, if any one of the following
conditions is satisfied.:

() 3r € Wy(4*B), 3 € W4(B*A): Re(pr) > 0,
(i) A°B>0 or AB* > 0,
(iii) 360 € [0,27]: W(4*B) C {z € C:0 <argz <6+ 7/2}.

Proof

(1) Let A € Wg(A*B) and n € W4(B*A) such that Re(Aun) > 0. Then, by Theorem 5,

we have | Uy 4,1l = 41| Bl + (Re(Ap)/I| ANl BI)). Therefore, Uy, 4,5l = A1l BIl.

(i1) If 4*B >0, it is clear that Re(Au) > 0,for every A € Wp(A*B) and every

w e Wy(B*A), so we deduce the Corollary, by (i). On the other hand, if

AB* >0, and since ||[U; 4.8l = |Uj, 4+, p+|| (Where J* ={X*: X € J}), we
obtain the Corollary, only by using the first step.

(iii) We put By =¢ B, then WyA4*B)C{zeC:0<argz<m/2}, since

Wpg (A*By) C Wy(A*B;) and W4(BiA) C Wy(A*B;), so we have Re(Au) >0,

for all A € Wg (4*B) and for all u e Wy(Bji4). Then we can obtain (iii)

immediately using (i) and the fact that [|U; 4,5/ = 1Us, 4.5 |

Remark 3 1t is proved in [1] that ||U gll = Al BIl, if 0 € W4(B*A) U Wp(A*B), so
that the Corollary 4.1, is a generalisation of this result in our general situation.

CoRrOLLARY 5 The inequality Uy 4.8l = |AIIBI + (1/1IABI) holds, if A =S and
B = (S*)"", for some invertible operator S on H.

Proof There exist two sequences (x,) and (y,) of unit vectors in E such that
lim|[Ax,|| = |4 =S| and lim[|By,| = |BIl = [IS~"|; and since lim(4*Bx,,x,) =
Ixa7= 1= [[pall> = lim(B*Ap,,,), then 1 € W4(B*A) N Wg(A*B), so we have, by
Theorem 5, Uy, 4.5l = IANIBI + (1/114111BI).

THEOREM 6 We have Uy 4 5l > IIAIIBI, if IBII*(4*A) < | AII*(B*B) or || A|*(B*B) <
| BII*(A* A).

Proof We can assume || 4| = ||B|| = 1. Then, by Lemmal.(i), we have: |Us 4 gl >
(1/11Ax||I| Bx|)|(A* Bx, x)|*+]|| Ax| || Bx||, for any unit vector x in E such that Ax # 0 and
Bx #0. So we obtain ||Uy 4 5| > Il Ax|l|Bx||, for any unit vector x in E. Then, if
A*A < B*B, we have || U; 4.5 > | Ax|%; thus l1Uys, 4. 8]l = 1. By the same argument, the
inequality holds with the second condition. |

4. WHEN IS ||U; 48] = 2|AllIB|?

In this section, we also assume that E is a Hilbert space.
Lemma 2 If w(A*B) = || A||||B|l, for some A, B € B(E), then |U;_ 4 gl = 2||A|l|lB]l.
Proof 1t follows immediately from Lemma 1.(ii). |

Lemma 3 Let J be a standard operator algebra and A, B € J. If ||U;_4.8| = 2| 4]/l B,
then | A*B| = [ Alll|BI.

Proof This Lemma is proved by Barraa and Boumazgour in [1] in the particular case
J = B(E). Note that the same proof works in any standard operator algebra.
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THEOREM 7 If J=Cs(E) (the Hilbert—Schmidt class) and A, B € B(E), then ||U; 4 8l =
2|[AINBI iff w(A*B) = [ Al BII.

Proof Assume that [|Uy 4 gl =2l 4|lIIBll. Since M 4 8l = 1M  4ll = | AlllBI,
then we have ||Uy 4,8l = My, 4,8l + My 5 4ll, where My 4.5, My B 4, Uy 4,8 € B(J),
and J is a Hilbert space. Thus, by [2], we obtain |M; 4 sllIIM, s 4ll = | A B|€e
Wo((My, 4,5)" (M p.4)). and since (M 4 p)* =M, 4 p-, then we have |A|*|B|*e
Wo(Mj, 4+p a5+). Therefore

IAI1IBI* < w(My, 4+p. ap-)
< | My, 45 a5
= | 4*BI|| AB"||
< 141*1BI?

So we have w(M;, 4+, ap) = IMy 425 ap|l = Il A1I*I1BlI*, which implies (M 4p ap) =
1My, 45, ap:l = IAIPIBI?.  Since r(My 4 pap) < r(A*B)r(AB*) < || 4]*||B|*, and
r(A*B) = r(BA*) = r((BA*)*) = r(AB*), therefore r(4*B) = | A|||B||. So we have
r(A*B) = ||A*B|l = [ 4|l Bll, and thus w(4*B) = || 4*B|| = [ A|ll| B].

The converse implication follows immediately by Lemma 2. |

THEOREM 8 Let J be a standard operator algebra and let A, B € J be such that A*B is
normaloid. Then Uy, 4,5l = 2l ANl BIl iff w(A*B) = | A[llBIl.

Proof  Assume that ||Us 4. gl =2||A|ll|Bll. Then, by Lemma 3, we have [|A*B| =
| 4|11 B]l, and since w(A4*B) = ||A*B||, we obtain w(A4*B) = ||A||||B||. By Lemma 2, we
obtain the converse implication. |

Remark 4 1In general, Theorem 8 is not true without the condition that A*B is
normaloid. For example, let

Ll R A T

then w(4*B) = (1/2) < 1 = [|A[||BIl but U4, gl =2 = 2| 4]l BI.

THEOREM 9 Let J be a standard operator algebra and A,B € J. Then we have
WUs 4.8l = 211ANNBI iff 1|4*Bll = AN BIl, if one of the following conditions is satisfied:

(1) B normal and 4B = BA,
(i) B normal and 4 > 0,
(i) [[(4*B)*|| = | 4*B]’.

Proof Assume that ||4]| = ||B|| = 1. By Lemma 3, we have only to prove that , if

[A*Bl = I AIIBI then [[Uy 4 5l =2IAllBIl. It is clear that Uy 4 5l = |A(B*B)+

(BB*)A|; then by Mclntosh’s inequality [8], we have |U; 4 5l = 2||B*AB*|| =

2||BA*B||. Then, by this inequality, we may deduce the following implications:
Assume [|4*B|| = || 4]l B]|-

(1) Since B is normal, then ||BA*B|| = |B*A*B||, and by Putnam—Fuglede theorem,
we have AB* = B*A, so we obtain ||U; 4 pll > 2||AB*A*B| = 2||B*AA*B|| =
2||4*B|>= 2.
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(ii) Since IUy 4.8l > 211 BAB| = 2||B*AB| = 2| 4*B|%, then
|Us 4.8l = 2] AB|*= 2.
(i) Since || Uy 4 ]l > 21BA*B||, then Uy 4 pll > 2||A*BA*B|| = 2||A*B|*= 2.
| |

Remark 5

(i) Theorem 9.(i) is a general form of the known result ||Uy /|| = 2|/ 4|, for all
A € B(H).

(i1) If B is a unitary operator, it is abvious that ||U4 | = 2||4|||1B]l and [|4*B| =
|4l Bll, for every operator A.

We may ask the following questions:

Question 1 Does Theorem 9.(1) (resp. Theorem 9.(ii)) remain true with only the
condition for B to be normal?

Question 2 Does Theorem 9 remain true if we drop all conditions on 4 and B?
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