

On the Numerical Range and Norm of Elementary Operators

AMEUR SEDDIK*

Department of Mathematics, Faculty of Science, King Abdulaziz University, PO. Box 80203, Jeddah 21589, Saudi Arabia

(Received 8 April 2002; In final form 10 April 2003)

Let $\mathcal{B}(E)$ be the complex Banach algebra of all bounded linear operators on a complex Banach space *E*. For *n*-tuples $A = (A_1, \ldots, A_n)$ and $B = (B_1, \ldots, B_n)$ of operators on *E*, let $R_{A,B}$ denote the operator on $\mathcal{B}(E)$ defined by $R_{A,B}(X) = \sum_{i=1}^{n} A_i X B_i$.

For $A, B \in \mathcal{B}(E)$, we put $U_{A,B} = R_{(A,B), (B,A)}$. In this note, we prove that

$$co\left\{\sum_{i=1}^{n} \alpha_{i}\beta_{i}: (\alpha_{1}, \ldots, \alpha_{n}) \in V(A), \ (\beta_{1}, \ldots, \beta_{n}) \in V(B)\right\}^{-} \subset W_{0}(R_{A, B}|J)$$

where $V(\cdot)$ is the joint spatial numerical range, $W_0(\cdot)$ is the algebraic numerical range and J is a norm ideal of $\mathcal{B}(E)$. We shall show that this inclusion becomes an equality when $R_{A,B}$ is taken to be a derivation. Also, we deduce that $w(U_{A,B}|J) \ge 2(\sqrt{2}-1)w(A)w(B)$, for $A, B \in \mathcal{B}(E)$ and J is a norm ideal of $\mathcal{B}(E)$, where $w(\cdot)$ is the numerical radius.

On the other hand, in the particular case when E is a Hilbert space, we shall prove that the lower estimate bound $||U_{A,B}|J|| \ge 2(\sqrt{2}-1)||A|| ||B||$ holds, if one of the following two conditions is satisfied:

- (i) J is a standard operator algebra of $\mathcal{B}(E)$ and $A, B \in J$.
- (ii) J is a norm ideal of $\mathcal{B}(E)$ and $A, B \in \mathcal{B}(E)$.

Keywords: Numerical range; Numerical radius; Norm ideal; Standard operator algebra

1991 Mathematics Subject Classifications: 46L35; 47A12; 47B47

1. INTRODUCTION

All operators considered here are linear bounded operators on a complex Banach space E. The collection of operators on E is denoted by $\mathcal{B}(E)$.

Notation 1

(i) If M ⊂ C, we denote by M⁻, co M and M
, respectively the closure of M, the convex hull of M, and the set {λ
 : λ ∈ M}.

^{*}E-mail address: seddikameur@hotmail.com

- (ii) For $(x, f) \in E \times E^*$, we denote by $x \otimes f$ the operator on E given by $(x \otimes f)(y) = f(y)x$.
- (iii) If E is a Hilbert space and if $x, y \in E$, we denote by $x \otimes y$ the operator on E given by $(x \otimes y)(z) = \langle z, y \rangle x$.
- (iv) If $K, L \subset \mathbb{C}^n$, we put $K \circ L = \left\{ \sum_{i=1}^n \alpha_i \beta_i : (\alpha_1, \dots, \alpha_n) \in K, (\beta_1, \dots, \beta_n) \in L \right\}.$

Definition 1 Let Ω be a complex unital Banach algebra with identity I and let $A \in \Omega$.

(1) We define:

(i) the spectrum of A by:

 $\sigma(A) = \{\lambda \in \mathbb{C} : A - \lambda I \text{ is not invertible in } \Omega\}$

(ii) the spectral radius of A by:

$$r(A) = \sup\{|\lambda| \colon \lambda \in \sigma(A)\}$$

(iii) the set of states on Ω by:

$$\mathcal{P}(\Omega) = \left\{ f \in \Omega^* : f(I) = \| f \| = 1 \right\}$$

(iv) the algebraic numerical range of A by:

$$W_0(A) = \left\{ f(A) \colon f \in \mathcal{P}(\Omega) \right\}$$

(v) the numerical radius of A by:

$$w(A) = \sup\{|\lambda| \colon \lambda \in W_0(A)\}$$

(2) A is called convexied if $W_0(A) = co \sigma(A)$.

It is known that $W_0(A)$ is convex and compact (this result follows at once from the corresponding properties of the set of states) and contains $\sigma(A)$ (see [16]). If $\Omega = \mathcal{B}(E)$ and *E* is a Hilbert space, then w(A) = ||A|| iff r(A) = ||A|| (see [6]).

Definition 2 For $A \in \mathcal{B}(E)$, define the spatial numerical range of A by:

$$V(A) = \left\{ f(Ax): (x, f) \in \Pi \right\}$$

where $\Pi = \{(x, f) \in E \times E^* : ||x|| = ||f|| = f(x) = 1\}.$

This notion of spatial numerical range is introduced by Lumer in [7], where it is proved that $W_0(A) = co V(A)^-$, for every $A \in \mathcal{B}(E)$. In the particular case, when E is a Hilbert space, it is known that $W_0(A) = W(A)^-$, where $W(A) = \{\langle Ax, x \rangle : x \in E, \|x\| = 1\}$ is the numerical range of A.

Definition 3 For *n*-tuples $A = (A_1, ..., A_n)$ and $B = (B_1, ..., B_n)$ of operators on *E*, we define:

(i) the joint spatial numerical range of A (see [4]) by:

$$V(A) = \{ (f(A_1x), \dots, f(A_nx)) : (x, f) \in \Pi \}$$

294

(ii) the joint numerical range of A by:

$$W(A) = \left\{ (\langle A_1 x, x \rangle, \dots, \langle A_n x, x \rangle) \colon x \in E, \|x\| = 1 \right\}$$

(iii) the elementary operator $R_{A,B}$: $\mathcal{B}(E) \longrightarrow \mathcal{B}(E)$ by:

$$\forall X \in \mathcal{B}(E): R_{A,B}(X) = \sum_{i=1}^{n} A_i X B_i$$

Definition 4 For $A, B \in \mathcal{B}(E)$, define the particular elementary operators:

(i) the left multiplication operator $L_A: \mathcal{B}(E) \longrightarrow \mathcal{B}(E)$ by:

$$\forall X \in \mathcal{B}(E): L_A(X) = AX$$

(ii) the right multiplication operator $R_B: \mathcal{B}(E) \longrightarrow \mathcal{B}(E)$ by:

$$\forall X \in \mathcal{B}(E): R_B(X) = XB$$

- (iii) the generalized derivation (induced by A, B) by $\delta_{A,B} = L_A R_B$.
- (iv) the elementary multiplication operator (induced by A, B) by $M_{A,B} = L_A R_B$
- (v) the operator $U_{A,B}$, by $U_{A,B} = M_{A,B} + M_{B,A}$.

In the sequel, $T_{A,B}$ will stand for any one of the above linear operators.

Let *J* be a standard operator algebra or a norm ideal of $\mathcal{B}(E)$. Note that a standard operator algebra of $\mathcal{B}(E)$ is a subalgebra of $\mathcal{B}(E)$ associated with the usual operator norm and containing all finite rank operators, and a norm ideal of $\mathcal{B}(E)$ is a two-sided ideal of $\mathcal{B}(E)$ associated with a symmetric norm ideal (which satisfies axioms like those in Hilbert space case (see [5,10,13])). We denote by $\|.\|_J$ the norm on *J*.

If J is a norm ideal, then $T_{A,B}(J) \subset J$, so we can define the operator $T_{J,A,B}$ on J by $T_{J,A,B}(X) = T_{A,B}(X)$.

If J is a standard operator algebra and $A, B \in J$, define $U_{J,A,B} : J \to J$ by $U_{J,A,B}(X) = U_{A,B}(X)$.

Many facts about the relation betwen the spectrum of $R_{A,B}$ and the joint spectrum (spectrum in the sense of Taylor (see [17])) of two commuting *n*-tuples *A* and *B* of operators on *E* are known (see [3]). Recently in [11,12], we are interested in the relation betwen the numerical range of $R_{J,A,B}$ and the joint numerical ranges of any *n*-tuples *A* and *B* of operators on *E*, in the particular case where *E* is a Hilbert space and *J* is $\mathcal{B}(E)$ or a Schatten *p*-ideal of $\mathcal{B}(E)$. For any $A, B \in \mathcal{B}(E)$, we have proved that:

(i)
$$co(W(A) \circ W(B))^{-} \subset W_0(R_{J,A,B}),$$

(ii)
$$W_0(\delta_{J,A,B}) = W_0(A) - W_0(B)$$
.

Section 2 of this note was motivated by the question: To what extent do the properties (i) and (ii) hold in the general situation of Banach space? It will be shown that for any norm ideal J the properties (i) and (ii) remain true, but the condition (i) may be modified by taking $V(\cdot)$ instead of $W(\cdot)$. As a consequence of the main result of this section (Theorem 2), we shall prove that $w(U_{J,A,B}) \ge 2(\sqrt{2} - 1)w(A)w(B)$, for any $A, B \in \mathcal{B}(E)$.

While the proof of the main result of this section is simple, it leads to some rather surprising consequences such as $W_0(L_{J,A}) = W_0(R_{J,A}) = W_0(A)$ and $W_0(\delta_{J,A,B}) = W_0(A) - W_0(B)$ independent of which symmetric norm ideal one chooses.

In Section 3, we establish a lower estimate bound for the norm of $U_{J,A,B}$. Note that, Stachó and Zalar are interested to know whether there exists a uniform lower for the norm of the operator $U_{J,A,B}$, in the case where *E* is a Hilbert space, *J* is a standard operator algebra and $A, B \in J$. Especially, in [14] they proved that $(*) ||U_{J,A,B}|| \ge 2(\sqrt{2}-1)||A|| ||B||$, and in [15], they obtained the best estimate $(**) ||U_{A,B}|| \ge ||A|| ||B||$, for symmetric operators *A* and *B*. Also, Barraa and Boumazgour [1], proved that (**)holds if $\inf_{\lambda \in \mathbb{C}} ||A - \lambda B|| = ||A||$ or $\inf_{\lambda \in \mathbb{C}} ||B - \lambda A|| = ||B||$. Here, we shall give an easy proof of (*) if one of the two conditions is satisfied:

- (i) J is a standard operator algebra and $A, B \in J$,
- (ii) J is a norm ideal and $A, B \in \mathcal{B}(E)$.

So, the Stachó–Zalar lower estimate becomes a particular case of our work. In the end of this section, we exhibit some classes of operators A, B such that $||U_{J,A,B}|| \ge ||A|| ||B||$, in particular we shall give a general form of the result of Barraa–Boumazgour.

In Section 4, we are interested in the characterization of the operators A, B such that $||U_{J,A,B}|| = 2||A|| ||B||$ in the particular case of Hilbert space. In particular, we shall prove that if J is the Hilbert–Schmidt class, then $||U_{J,A,B}|| = 2||A|| ||B||$ iff $w(A^*B) = ||A|| ||B||$.

2. THE NUMERICAL RANGE AND NUMERICAL RADIUS OF ELEMENTARY OPERATORS

In this section, we assume that J is a norm ideal.

THEOREM 1 Assume E is a Hilbert space and let A and B be two n-tuples of operators on E. Then $co(W(A) \circ W(B))^- \subset W_0(R_{J,A,B})$.

Proof For $J = \mathcal{B}(E)$ (resp. $J = C_p(E)$, the Schatten *p*-ideal), then the result is obtained in [11, Theorem 1] (resp. [12, Theorem 4.1]).

For any norm ideal *J*, the proof is analogous to that of [12, Theorem 4.1].

THEOREM 2 Let A and B be two n-tuples of operators on E. Then $co(V(A) \circ V(B))^- \subset W_0(R_{J,A,B})$.

Proof Let $(x, f), (y, g) \in \Pi$. Define the linear functional h on $\mathcal{B}(J)$ by:

$$h(F) = f(F(x \otimes g)y), \quad F \in \mathcal{B}(J)$$

We have h(I) = f(x)g(y) = 1, and since $||x \otimes g||_J = ||x \otimes g|| = ||x|| ||g|| = 1$, then:

$$\begin{cases} |h(F)| \leq \|F(x \otimes g)y\| \\ \leq \|F(x \otimes g)\| \\ \leq \|F(x \otimes g)\|_J \\ \leq \|F\| \|x \otimes g\|_J \\ \leq \|F\| \|x \otimes g\|_J \\ \leq \|F\|. \end{cases}$$

So h(I) = ||h|| = 1; thus *h* is a state on $\mathcal{B}(J)$. It is obvious that $h(R_{J, A, B}) = \sum_{i=1}^{n} f(A_i x) g(B_i y)$, therefore $V(A) \circ V(B) \subset W_0(R_{J,A,B})$. Since $W_0(R_{J,A,B})$ is closed and convex, the result follows easily.

COROLLARY 1 Let $A \in \mathcal{B}(E)$. Then $W_0(L_{J,A}) = W_0(R_{J,A}) = W_0(A)$.

Proof The inclusion $co V(A)^- \subset W_0(L_{J,A})$ follows immediately from Theorem 2. Then $W_0(A) = co V(A)^- \subset W_0(L_{J,A})$.

Now, let f be a state on $\mathcal{B}(J)$. Define the linear functional g on $\mathcal{B}(E)$ by $g(X) = f(L_{J,X})$. By a simple computation, we find that g is a state on $\mathcal{B}(E)$, so that $g(A) = f(L_{J,A}) \in W_0(A)$. Thus $W_0(L_{J,A}) \subset W_0(A)$, therefore $W_0(L_{J,A}) = W_0(A)$. By the same argument, we find also $W_0(R_{J,A}) = W_0(A)$.

COROLLARY 2 Let $A, B \in \mathcal{B}(E)$. Then $W_0(\delta_{J,A,B}) = W_0(A) - W_0(B)$.

Proof By Theorem 2, we have $co(V(A) - V(B))^{-} \subset W_0(\delta_{J,A,B})$. Then

$$W_0(A) - W_0(B) = co V(A)^- - co V(B)^-$$
$$= co(V(A) - V(B))^-$$
$$\subset W_0(\delta_{I,A,B})$$

On the other hand using Corollary 1, we have:

$$W_0(\delta_{J,A,B}) = W_0(L_{J,A} - R_{J,B})$$

$$\subset W_0(L_{J,A}) - W_0(R_{J,B})$$

$$= W_0(A) - W_0(B)$$

Remark 1 As a consequence of the above Corollary and by the same argument as in [12, Theorem 3.1], we show that $\delta_{J,A,B}$ is convexoid iff A and B are convexoid.

COROLLARY 3 Let $A, B \in \mathcal{B}(E)$. Then $W_0(A)W_0(B) \subset W_0(M_{J,A,B})$, and thus $w(M_{J,A,B}) \ge w(A)w(B)$.

Proof By Theorem 2, we obtain $co(V(A)V(B))^- \subset W(M_{J,A,B})$. Then we have:

$$W_0(A)W_0(B) = co V(A)^- co V(B)^-$$

= (co V(A)co V(B))^-
 $\subset co(V(A)V(B))^-$
 $\subset W_0(M_{J,A,B})$

The inequality follows immediately from this inclusion.

THEOREM 3 Let $A, B \in \mathcal{B}(E)$. Then $w(U_{J,A,B}) \ge 2(\sqrt{2}-1)w(A)w(B)$.

Proof We may assume, without loss of the generality, that w(A) = w(B) = 1. For any (x, f), (y, g) in Π , we have

$$f(Ax)g(By) + f(Bx)g(Ay) \in V(A, B) \circ V(B, A)$$

Since $V(A, B) \circ V(B, A) \subset W_0(U_{J,A,B})$, then

$$w(U_{J,A,B}) \ge \left| f(Ax)g(By) + f(Bx)g(Ay) \right| \tag{1}$$

Applying inequality (1) for (y, g) = (x, f), we obtain:

$$w(U_{J,A,B}) \ge 2|f(Ax)||f(Bx)| \tag{2}$$

Let (x_n, f_n) and (y_n, g_n) be two sequences in Π such that:

$$\lim_{x \to \infty} |f_n(Ax_n)| = w(A) = 1 = w(B) = \lim_{x \to \infty} |g_n(By_n)|$$

For $(x, f) = (x_n, f_n)$ and $(y, g) = (y_n, g_n)$, inequality (1) yields:

$$w(U_{J,A,B}) \ge \left| f_n(Ax_n)g_n(By_n) + f_n(Bx_n)g_n(Ay_n) \right|$$
(3)

Thus,

$$w(U_{J,A,B}) \ge \left| f_n(Ax_n)g_n(By_n) \right| - \left| f_n(Bx_n)g_n(Ay_n) \right| \tag{4}$$

Applying inequality (2) twice for $(x, f) = (x_n, f_n)$ and for $(x, f) = (y_n, g_n)$, we obtain:

$$\int w(U_{J,A,B}) \ge 2 \left| f_n(Ax_n) \right| \left| f_n(Bx_n) \right|.$$
(5)

$$w(U_{J,A,B}) \ge 2|g_n(Ay_n)||g_n(By_n)|$$
 (6)

Since the two complex sequences $(f_n(Bx_n))$ and $(g_n(Ay_n))$ are bounded, we can extract a convergent subsequence from each one. We can put $\alpha = \lim |f_n(Bx_n)|$ and $\beta = \lim |g_n(Ay_n)|$.

Letting $n \to +\infty$, in (4), (5) and (6), we obtain,

$$w(U_{J,A,B}) \ge \max\{1 - |\alpha\beta|, 2|\alpha|, 2|\beta|\}$$

Therefore,

$$\begin{cases} w(U_{J,A,B})^2 + 4w(U_{J,A,B}) \ge 4 |\alpha\beta| + 4(1 - |\alpha\beta|) \\ \ge 4. \end{cases}$$

Thus we have $w(U_{J,A,B}) \ge 2(\sqrt{2} - 1)$.

3. A LOWER BOUND FOR THE NORM OF $U_{J,A,B}$

In this section, we assume that E is a Hilbert space. Let $A, B \in \mathcal{B}(E)$. We assume that if J is a standard operator algebra, then $A, B \in J$.

Definition 5 We define the numerical range of A^*B relative to B by:

$$W_B(A^*B) = \{\lambda \in \mathbb{C} : \lambda = \lim \langle A^*Bx_n, x_n \rangle, \lim \|Bx_n\| = \|B\|, \|x_n\| = 1\}$$

This concept of this numerical range is introduced by Magajna in [9]. The most interesting properties of $W_B(A^*B)$ are given as below (see [9]):

- 1. $W_B(A^*B)$ is not empty and compact subset of \mathbb{C} ,
- 2. the relation $\inf_{\lambda \in \mathbb{C}} ||B \lambda A|| = ||B||$ holds iff $0 \in W_B(A^*B)$.

LEMMA 1 We have the following properties:

- (i) $||U_{J,A,B}|| \ge \sup\{|\langle Ax, y \rangle \langle Bu, v \rangle + \langle Bx, y \rangle \langle Au, v \rangle|: ||x|| = ||y|| = ||u|| = ||v|| = 1\}$
- (ii) $||U_{J,A,B}|| \ge 2w(A^*B).$

Proof

- (i) Since $||x \otimes v||_J = ||x \otimes v|| = ||x|| ||v|| = 1$, and since $||X||_J \ge ||X||$, for any $X \in J$, then we have;
 - $\begin{aligned} \left\| U_{J,A,B} \right\| &\geq \left\| A(x \otimes v)B + B(x \otimes v)A \right\|_{J} \\ &\geq \left\| Ax \otimes B^{*}v + Bx \otimes A^{*}v \right\| \\ &\geq \left\| \langle Bu, v \rangle Ax + \langle Au, v \rangle Bx \right\| \\ &\geq \left\| \langle Ax, y \rangle \langle Bu, v \rangle + \langle Bx, y \rangle \langle Au, v \rangle \right\| \end{aligned}$
- (ii) Let x be a unit vector in E such that $Ax \neq 0$. Using (i), we obtain, $||U_{J,A,B}|| \geq |(1/||Ax||)\langle A^*Bx, x\rangle||Ax|| + \langle A^*Bx, x\rangle||Ax|||$, then we can deduce immediately that $||U_{J,A,B}|| \geq 2|\langle A^*Bx, x\rangle|$, for any unit vector x in E. So $||U_{J,A,B}|| \geq 2w(A^*B)$.

THEOREM 4 We have the following property:

$$||U_{J,A,B}|| \ge 2(\sqrt{2}-1)||A|| ||B||.$$

Proof We may assume, without loss of the generality, that ||A|| = ||B|| = 1. Let $\lambda \in W_B(A^*B)$ and $\mu \in W_A(B^*A)$. Then, there exist two sequences (x_n) and (y_n) of unit vectors in E such that $\lim ||Bx_n|| = \lim ||Ay_n|| = 1$, and $\lim \langle A^*Bx_n, x_n \rangle = \lambda$, $\lim \langle B^*Ay_n, y_n \rangle = \mu$. By Lemma 1.(i), we have:

$$\|U_{J,A,B}\| \ge \left|\frac{1}{\|Ay_n\|\|Bx_n\|} \langle A^*By_n, y_n \rangle \langle B^*Ax_n, x_n \rangle + \|Ay_n\|\|Bx_n\|\right|$$

Letting $n \to +\infty$, we get $||U_{J,A,B}|| \ge |1 + \overline{\lambda \mu}| = |1 + \lambda \mu|$.

On the other hand, by Lemma 1.(ii), we have $||U_{J,A,B}|| \ge \max\{2|\lambda|, 2|\mu|\}$; therefore $||U_{J,A,B}|| \ge \max\{|1 + \lambda\mu|, 2|\lambda|, 2|\mu|\}$, and by the same argument as in the proof of Theorem 3, we obtain the inequality.

Remark 2 The above Theorem is proved by Stachó and Zalar in [14] in the particular case where J is a standard operator algebra, but here, we have obtained it, in a more general situation by a direct proof.

THEOREM 5 If A and B are not zero, we have:

$$||U_{J,A,B}|| \ge \sup\left\{ \left| ||A|| ||B|| + \frac{\lambda\mu}{||A|| ||B||} \right|, \lambda \in W_B(A^*B), \ \mu \in W_A(B^*A) \right\}$$

Proof Let $\lambda \in W_B(A^*B)$ and $\mu \in W_A(B^*A)$. By the same argument as in the proof of the Theorem 4, we obtain $||U_{J,A,B}|| \ge ||A|| ||B|| + (\lambda \mu / ||A|| ||B||)|$.

COROLLARY 4 The inequality $||U_{J,A,B}|| \ge ||A|| ||B||$ holds, if any one of the following conditions is satisfied:

- (i) $\exists \lambda \in W_B(A^*B), \exists \mu \in W_A(B^*A)$: $\operatorname{Re}(\lambda \mu) \ge 0$,
- (ii) $A^*B \ge 0$ or $AB^* \ge 0$,
- (iii) $\exists \theta \in [0, 2\pi[: W(A^*B) \subset \{z \in \mathbb{C} : \theta \le \arg z \le \theta + \pi/2\}.$

Proof

- (i) Let $\lambda \in W_B(A^*B)$ and $\mu \in W_A(B^*A)$ such that $Re(\lambda\mu) \ge 0$. Then, by Theorem 5, we have $||U_{J,A,B}|| \ge ||A|| ||B|| + (Re(\lambda\mu)/||A|| ||B||)$. Therefore, $||U_{J,A,B}|| \ge ||A|| ||B||$.
- (ii) If $A^*B \ge 0$, it is clear that $Re(\lambda\mu) \ge 0$, for every $\lambda \in W_B(A^*B)$ and every $\mu \in W_A(B^*A)$, so we deduce the Corollary, by (i). On the other hand, if $AB^* \ge 0$, and since $||U_{J,A,B}|| = ||U_{J^*,A^*,B^*}||$ (where $J^* = \{X^*: X \in J\}$), we obtain the Corollary, only by using the first step.
- (iii) We put $B_1 = e^{-i\theta}B$, then $W_0(A^*B_1) \subset \{z \in \mathbb{C} : 0 \le \arg z \le \pi/2\}$, since $W_{B_1}(A^*B_1) \subset W_0(A^*B_1)$ and $W_A(B_1^*A) \subset \overline{W_0(A^*B_1)}$, so we have $Re(\lambda\mu) \ge 0$, for all $\lambda \in W_{B_1}(A^*B_1)$ and for all $\mu \in W_A(B_1^*A)$. Then we can obtain (iii) immediately using (i) and the fact that $||U_{J,A,B}|| = ||U_{J,A,B_1}||$.

Remark 3 It is proved in [1] that $||U_{A,B}|| \ge ||A|| ||B||$, if $0 \in W_A(B^*A) \cup W_B(A^*B)$, so that the Corollary 4.i, is a generalisation of this result in our general situation.

COROLLARY 5 The inequality $||U_{J,A,B}|| \ge ||A|| ||B|| + (1/||A|| ||B||)$ holds, if A = S and $B = (S^*)^{-1}$, for some invertible operator S on H.

Proof There exist two sequences (x_n) and (y_n) of unit vectors in *E* such that $\lim ||Ax_n|| = ||A|| = ||S||$ and $\lim ||By_n|| = ||B|| = ||S^{-1}||$; and since $\lim \langle A^*Bx_n, x_n \rangle = ||x_n||^2 = 1 = ||y_n||^2 = \lim \langle B^*Ay_n, y_n \rangle$, then $1 \in W_A(B^*A) \cap W_B(A^*B)$, so we have, by Theorem 5, $||U_{J,A,B}|| \ge ||A|| ||B|| + (1/||A||||B||)$.

THEOREM 6 We have $||U_{J,A,B}|| \ge ||A|| ||B||$, if $||B||^2 (A^*A) \le ||A||^2 (B^*B)$ or $||A||^2 (B^*B) \le ||B||^2 (A^*A)$.

Proof We can assume ||A|| = ||B|| = 1. Then, by Lemma1.(i), we have: $||U_{J,A,B}|| \ge (1/||Ax|| ||Bx||)|\langle A^*Bx, x\rangle|^2 + ||Ax|| ||Bx||$, for any unit vector x in E such that $Ax \ne 0$ and $Bx \ne 0$. So we obtain $||U_{J,A,B}|| \ge ||Ax|| ||Bx||$, for any unit vector x in E. Then, if $A^*A \le B^*B$, we have $||U_{J,A,B}|| \ge ||Ax||^2$; thus $||U_{J,A,B}|| \ge 1$. By the same argument, the inequality holds with the second condition.

4. WHEN IS $||U_{J,A,B}|| = 2||A|| ||B||$?

In this section, we also assume that E is a Hilbert space.

LEMMA 2 If $w(A^*B) = ||A|| ||B||$, for some $A, B \in \mathcal{B}(E)$, then $||U_{J,A,B}|| = 2||A|| ||B||$.

Proof It follows immediately from Lemma 1.(ii).

LEMMA 3 Let J be a standard operator algebra and $A, B \in J$. If $||U_{J,A,B}|| = 2||A|| ||B||$, then $||A^*B|| = ||A|| ||B||$.

Proof This Lemma is proved by Barraa and Boumazgour in [1] in the particular case $J = \mathcal{B}(E)$. Note that the same proof works in any standard operator algebra.

300

THEOREM 7 If $J = C_2(E)$ (the Hilbert–Schmidt class) and $A, B \in \mathcal{B}(E)$, then $||U_{J,A,B}|| = 2||A|| ||B||$ iff $w(A^*B) = ||A|| ||B||$.

Proof Assume that $||U_{J,A,B}|| = 2||A|| ||B||$. Since $||M_{J,A,B}|| = ||M_{J,B,A}|| = ||A|| ||B||$, then we have $||U_{J,A,B}|| = ||M_{J,A,B}|| + ||M_{J,B,A}||$, where $M_{J,A,B}, M_{J,B,A}, U_{J,A,B} \in \mathcal{B}(J)$, and J is a Hilbert space. Thus, by [2], we obtain $||M_{J,A,B}|| ||M_{J,B,A}|| = ||A||^2 ||B||^2 \in W_0((M_{J,A,B})^*(M_{J,B,A}))$, and since $(M_{J,A,B})^* = M_{J,A^*,B^*}$, then we have $||A||^2 ||B||^2 \in W_0(M_{J,A^*B,AB^*})$. Therefore

$$\begin{cases} \|A\|^2 \|B\|^2 \le w(M_{J, A^*B, AB^*}) \\ \le \|M_{J, A^*B, AB^*}\| \\ = \|A^*B\| \|AB^*\| \\ \le \|A\|^2 \|B\|^2 \end{cases}$$

So we have $w(M_{J, A^*B, AB^*}) = ||M_{J, A^*B, AB^*}|| = ||A||^2 ||B||^2$, which implies $r(M_{J, A^*B, AB^*}) = ||M_{J, A^*B, AB^*}|| = ||A||^2 ||B||^2$. Since $r(M_{J, A^*B, AB^*}) \le r(A^*B)r(AB^*) \le ||A||^2 ||B||^2$, and $r(A^*B) = r(BA^*) = r((BA^*)^*) = r(AB^*)$, therefore $r(A^*B) = ||A|| ||B||$. So we have $r(A^*B) = ||A^*B|| = ||A|| ||B||$, and thus $w(A^*B) = ||A^*B|| = ||A|| ||B||$.

The converse implication follows immediately by Lemma 2.

THEOREM 8 Let J be a standard operator algebra and let $A, B \in J$ be such that A^*B is normaloid. Then $||U_{J,A,B}|| = 2||A|| ||B||$ iff $w(A^*B) = ||A|| ||B||$.

Proof Assume that $||U_{J,A,B}|| = 2||A|| ||B||$. Then, by Lemma 3, we have $||A^*B|| = ||A|| ||B||$, and since $w(A^*B) = ||A^*B||$, we obtain $w(A^*B) = ||A|| ||B||$. By Lemma 2, we obtain the converse implication.

Remark 4 In general, Theorem 8 is not true without the condition that A^*B is normaloid. For example, let

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

then $w(A^*B) = (1/2) < 1 = ||A|| ||B||$ but $||U_{A,B}|| = 2 = 2||A|| ||B||$.

THEOREM 9 Let J be a standard operator algebra and $A, B \in J$. Then we have $||U_{J,A,B}|| = 2||A|| ||B||$ iff $||A^*B|| = ||A|| ||B||$, if one of the following conditions is satisfied:

- (i) *B* normal and AB = BA,
- (ii) *B* normal and $A \ge 0$,
- (iii) $||(A^*B)^2|| = ||A^*B||^2$.

Proof Assume that ||A|| = ||B|| = 1. By Lemma 3, we have only to prove that , if $||A^*B|| = ||A|| ||B||$ then $||U_{J,A,B}|| = 2||A|| ||B||$. It is clear that $||U_{J,A,B}|| \ge ||A(B^*B) + (BB^*)A||$; then by McIntosh's inequality [8], we have $||U_{J,A,B}|| \ge 2||B^*AB^*|| = 2||BA^*B||$. Then, by this inequality, we may deduce the following implications: Assume $||A^*B|| = ||A|| ||B||$.

(i) Since *B* is normal, then $||BA^*B|| = ||B^*A^*B||$, and by Putnam–Fuglede theorem, we have $AB^* = B^*A$, so we obtain $||U_{J,A,B}|| \ge 2||AB^*A^*B|| = 2||B^*AA^*B|| = 2||A^*B||^2 = 2$.

- (ii) Since $||U_{J,A,B}|| \ge 2||BAB|| = 2||B^*AB|| = 2||A^{\frac{1}{2}}B||^2$, then $||U_{J,A,B}|| \ge 2||AB||^2 = 2$.
- (iii) Since $||U_{J,A,B}|| \ge 2||BA^*B||$, then $||U_{J,A,B}|| \ge 2||A^*BA^*B|| = 2||A^*B||^2 = 2$.

Remark 5

- (i) Theorem 9.(i) is a general form of the known result $||U_{A, I}|| = 2||A||$, for all $A \in \mathcal{B}(H)$.
- (ii) If B is a unitary operator, it is abvious that $||U_{A,B}|| = 2||A|| ||B||$ and $||A^*B|| = ||A|| ||B||$, for every operator A.

We may ask the following questions:

Question 1 Does Theorem 9.(i) (resp. Theorem 9.(ii)) remain true with only the condition for B to be normal?

Question 2 Does Theorem 9 remain true if we drop all conditions on A and B?

References

- [1] M. Barraa and M. Boumazgour (2001). A lower bound for the norm of the operator $X \rightarrow AXB + BXA$. Extracta Mathematicae, 16(2).
- [2] M. Barraa and M. Boumazgour (2002). Inner derivation and norm equality. Proc. Amer. Math. Soc., 130, 471–476.
- [3] R.E. Curto (1983). The spectra of elementary operators. *Indiana University Mathematical Journal*, **32**, 193–197.
- [4] N.P. Dekker (1969). Joint numerical range and spectrum of Hilbert space operators, Ph. D, Amsterdam.
- [5] I.C. Gohberg and M.G. Krein (1969). Introduction to the theory of linear non-selfadjoint operators. *Trans. Math. Monographs*, **18**. Amer. Math. Soc., Providence, RI.
- [6] P.R. Halmos (1970). A Hilbert Space Problem Book, 2nd ed. Springer Verlag, New York.
- [7] G. Lumer (1961). Semi-inner product spaces. Trans. Amer. Math. Soc., 100, 29-43.
- [8] A. McIntosh (1979). Heinz inequalities and perturbation of spectral families. *Macquarie Mathematics Reports*, 79-0006.
- [9] B. Magajna (1993). On the distance to the finite-dimensional subspaces in operator algebras. J. London Math. Soc., 47(2), 516–532.
- [10] R. Schatten (1960). Norms Ideals of Completely Continuous Operators. Springer-Verlag, Berlin.
- [11] A. Seddik (2002). The numerical range of elementary operators. Integr. Equ. Oper. Theory, 43, 248–252.
- [12] A. Seddik (2001). The numerical range of elementary operators II. Linear Algebra Appl., 338, 239-244.
- [13] B. Simon (1979). Trace Ideals and their Applications. Cambridge University Press, Cambridge.
- [14] L.L. Stachó and B. Zalar (1996). On the norm of Jordan elementary operators in standard operator algebras. Publ. Math., Debrencen, 49, 127–134.
- [15] L.L. Stachó and B. Zalar (1998). Uniform primeness of the Jordan algebra of symmetric operators. Proc. Amer. Math. Soc., 126, 2241–2247.
- [16] J.G. Stampfli and J.P. Williams (1968). Growth condition and the numerical range in a Banach algebra. Tohoku Math. Journ., 20, 417–424.
- [17] J. Taylor (1970). A joint spectrum for several commuting operators. J. Funct. Anal., 6, 172-191.

302