
Linear and Multilinear Algebra, 2004, Vol. 52, Nos. 3–4, pp. 293–302

On the Numerical Rangeand Normof
Elementary Operators

AMEUR SEDDIK*

Department of Mathematics, Faculty of Science, King Abdulaziz University,
P.O. Box 80203, Jeddah 21589, Saudi Arabia

(Received 8 April 2002; In final form10 April 2003)

Let BðEÞ be the complex Banach algebra of all bounded linear operators on a complex Banach space E: For
n-tuples A ¼ A1, . . . ,Anð Þ and B ¼ B1, . . . ,Bnð Þ of operators on E, let RA,B denote the operator on BðEÞ
defined by RA,BðXÞ ¼

Pn
i¼1AiXBi :

For A,B 2 BðEÞ, we put UA,B ¼ RðA,BÞ, ðB,AÞ:
In this note, we prove that

co
Xn
i¼1

�i�i: ð�1, . . . ,�nÞ 2 VðAÞ, ð�1, . . . ,�nÞ 2 VðBÞ

( )�

� W0ðRA,B Jj Þ

where Vð�Þ is the joint spatial numerical range, W0ð�Þ is the algebraic numerical range and J is a norm ideal of
BðEÞ: We shall show that this inclusion becomes an equality when RA,B is taken to be a derivation. Also, we
deduce that wðUA,B Jj Þ � 2ð

ffiffiffi
2

p
� 1ÞwðAÞwðBÞ, for A,B 2 BðEÞ and J is a norm ideal of BðEÞ, where wð�Þ is the

numerical radius.
On the other hand, in the particular case when E is a Hilbert space, we shall prove that the lower estimate

bound kUA,BjJk � 2ð
ffiffiffi
2

p
� 1ÞkAkkBk holds, if one of the following two conditions is satisfied:

(i) J is a standard operator algebra of BðEÞ and A,B 2 J:
(ii) J is a norm ideal of BðEÞ and A,B 2 BðEÞ:
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1. INTRODUCTION

All operators considered here are linear bounded operators on a complex Banach space
E. The collection of operators on E is denoted by BðEÞ.

Notation 1

(i) If M � C, we denote by M�, coM and M, respectively the closure of M, the
convex hull of M, and the set � : � 2 M

� �
:
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(ii) For ðx, f Þ 2 E � E�, we denote by x� f the operator on E given by
ðx� f ÞðyÞ ¼ f ðyÞx:

(iii) If E is a Hilbert space and if x, y 2 E, we denote by x� y the operator on E
given by ðx� yÞðzÞ ¼ hz, yix:

(iv) If K ,L � C
n, we put K � L ¼

Pn
i¼1�i�i: ð�1, . . . ,�nÞ 2 K , ð�1, . . . ,�nÞ 2 L

� �
:

Definition 1 Let � be a complex unital Banach algebra with identity I and let A 2 �.

(1) We define:

(i) the spectrum of A by:

�ðAÞ ¼ � 2 C: A� �I is not invertible in �f g

(ii) the spectral radius of A by:

rðAÞ ¼ sup �j j : � 2 �ðAÞ
� �

(iii) the set of states on � by:

Pð�Þ ¼ f 2 ��: f ðIÞ ¼ f
�� �� ¼ 1

� �
(iv) the algebraic numerical range of A by:

W0ðAÞ ¼ f ðAÞ: f 2 Pð�Þ
� �

(v) the numerical radius of A by:

wðAÞ ¼ sup �j j : � 2 W0ðAÞ
� �

(2) A is called convexiod if W0ðAÞ ¼ co �ðAÞ:

It is known that W0ðAÞ is convex and compact (this result follows at once from the
corresponding properties of the set of states) and contains �ðAÞ (see 16½ 	Þ. If � ¼ BðEÞ
and E is a Hilbert space, then wðAÞ ¼ Ak k iff rðAÞ ¼ Ak k( see 6½ 	Þ:

Definition 2 For A 2 BðEÞ, define the spatial numerical range of A by:

VðAÞ ¼ f ðAxÞ: ðx, f Þ 2 �
� �

where � ¼ ðx, f Þ 2 E � E�: xk k ¼ k f k ¼ f ðxÞ ¼ 1
� �

:

This notion of spatial numerical range is introduced by Lumer in 7½ 	, where it is
proved that W0ðAÞ ¼ coVðAÞ�, for every A 2 BðEÞ: In the particular case, when E is
a Hilbert space, it is known that W0ðAÞ ¼ WðAÞ�, where WðAÞ ¼ Ax, xh i: x 2 E,f

xk k ¼ 1g is the numerical range of A.

Definition 3 For n-tuples A ¼ A1, . . . ,Anð Þ and B ¼ B1, . . . ,Bnð Þ of operators on E, we
define:

(i) the joint spatial numerical range of A (see 4½ 	) by:

VðAÞ ¼ ð f ðA1xÞ, . . . , f ðAnxÞÞ: ðx, f Þ 2 �
� �
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(ii) the joint numerical range of A by:

WðAÞ ¼ A1x, xh i, . . . , Anx, xh ið Þ: x 2 E, xk k ¼ 1
� �

(iii) the elementary operator RA,B: BðEÞ �!BðEÞ by:

8X 2 BðEÞ: RA,BðXÞ ¼
Xn
i¼1

AiXBi

Definition 4 For A,B 2 BðEÞ, define the particular elementary operators:

(i) the left multiplication operator LA: BðEÞ �!BðEÞ by:

8X 2 BðEÞ: LAðXÞ ¼ AX

(ii) the right multiplication operator RB: BðEÞ �!BðEÞ by:

8X 2 BðEÞ: RBðXÞ ¼ XB

(iii) the generalized derivation (induced by A,BÞ by �A,B ¼ LA � RB.
(iv) the elementary multiplication operator (induced by A,BÞ by MA,B ¼ LARB

(v) the operator UA,B, by UA,B ¼ MA,B þMB, A:

In the sequel, TA,B will stand for any one of the above linear operators.
Let J be a standard operator algebra or a norm ideal of BðEÞ: Note that a standard

operator algebra of BðEÞ is a subalgebra of BðEÞ associated with the usual operator
norm and containing all finite rank operators, and a norm ideal of BðEÞ is a two-sided
ideal of BðEÞ associated with a symmetric norm ideal (which satisfies axioms like those
in Hilbert space case (see [5,10,13])) . We denote by k:kJ the norm on J.

If J is a norm ideal, then TA,BðJ Þ � J, so we can define the operator TJ,A,B on J
by TJ,A,BðXÞ ¼ TA,BðXÞ:

If J is a standard operator algebra and A,B 2 J, define UJ,A,B : J ! J by
UJ,A,BðXÞ ¼ UA,BðXÞ:

Many facts about the relation betwen the spectrum of RA,B and the joint spectrum
(spectrum in the sense of Taylor (see 17½ 	)) of two commuting n-tuples A and B of
operators on E are known (see 3½ 	). Recently in [11,12], we are interested in the relation
betwen the numerical range of RJ,A,B and the joint numerical ranges of any n-tuples
A and B of operators on E, in the particular case where E is a Hilbert space and J is
BðEÞ or a Schatten p-ideal of BðEÞ: For any A,B 2 BðEÞ, we have proved that:

(i) coðWðAÞ �WðBÞÞ� � W0ðRJ,A,BÞ,
(ii) W0ð�J,A,BÞ ¼ W0ðAÞ �W0ðBÞ:

Section 2 of this note was motivated by the question: To what extent do the
properties (i) and (ii) hold in the general situation of Banach space? It will be shown
that for any norm ideal J the properties (i) and (ii) remain true, but the condition (i)
may be modified by taking Vð�Þ instead of Wð�Þ. As a consequence of the main result of
this section (Theorem 2), we shall prove that wðUJ,A,BÞ � 2ð

ffiffiffi
2

p
� 1ÞwðAÞwðBÞ, for any

A,B 2 BðEÞ:
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While the proof of the main result of this section is simple, it leads to some rather
surprising consequences such as W0ðLJ,AÞ ¼ W0ðRJ,AÞ ¼ W0ðAÞ and W0ð�J,A,BÞ ¼
W0ðAÞ �W0ðBÞ independent of which symmetric norm ideal one chooses.

In Section 3, we establish a lower estimate bound for the norm of UJ,A,B. Note that,
Stachó and Zalar are interested to know whether there exists a uniform lower for the
norm of the operator UJ,A,B, in the case where E is a Hilbert space, J is a standard
operator algebra and A,B 2 J. Especially, in 14½ 	 they proved that (�) kUJ,A,Bk �

2ð
ffiffiffi
2

p
� 1ÞkAkkBk, and in [15], they obtained the best estimate (��) kUA,Bk � kAkkBk,

for symmetric operators A and B. Also, Barraa and Boumazgour 1½ 	, proved that (��)
holds if inf�2CkA� �Bk ¼ kAk or inf�2CkB� �Ak ¼ kBk: Here, we shall give an easy
proof of (�) if one of the two conditions is satisfied:

(i) J is a standard operator algebra and A,B 2 J,
(ii) J is a norm ideal and A,B 2 BðEÞ:

So, the Stachó–Zalar lower estimate becomes a particular case of our work. In the end
of this section, we exhibit some classes of operators A,B such that kUJ,A,Bk � kAkkBk,
in particular we shall give a general form of the result of Barraa–Boumazgour.

In Section 4, we are interested in the characterization of the operators A,B such that
kUJ,A,Bk ¼ 2kAkkBk in the particular case of Hilbert space: In particular, we shall prove
that if J is the Hilbert–Schmidt class, then kUJ,A,Bk ¼ 2kAkkBk iff wðA�BÞ ¼ Ak k Bk k:

2. THE NUMERICAL RANGE AND NUMERICAL RADIUS OF ELEMENTARY OPERATORS

In this section, we assume that J is a norm ideal.

THEOREM 1 Assume E is a Hilbert space and let A and B be two n-tuples of operators
on E: Then coðWðAÞ �WðBÞÞ� � W0ðRJ,A,BÞ:

Proof For J ¼ BðEÞ (resp. J ¼ CpðEÞ, the Schatten p-ideal), then the result is obtained
in [11, Theorem 1] (resp. [12, Theorem 4.1]).

For any norm ideal J, the proof is analogous to that of [12, Theorem 4.1]. g

THEOREM 2 Let A and B be two n-tuples of operators on E: Then coðVðAÞ � VðBÞÞ� �

W0ðRJ,A,BÞ:

Proof Let ðx, f Þ, ð y, gÞ 2 �. Define the linear functional h on BðJÞ by:

hðFÞ ¼ f ðFðx� gÞyÞ, F 2 BðJÞ

We have hðIÞ ¼ f ðxÞgðyÞ ¼ 1, and since kx� gkJ ¼ kx� gk ¼ kxkkgk ¼ 1, then:

hðF Þ
�� �� 
 Fðx� gÞy

�� ��

 Fðx� gÞ

�� ��

 Fðx� gÞ

�� ��
J


 Fk k x� g
�� ��

J


 Fk k:

8>>>>>><
>>>>>>:

So hðIÞ ¼ hk k ¼ 1; thus h is a state on BðJÞ: It is obvious that hðRJ, A, BÞ ¼Pn
i¼1 f ðAixÞgðBiyÞ, therefore VðAÞ � VðBÞ � W0ðRJ,A,BÞ: Since W0ðRJ,A,BÞ is closed

and convex, the result follows easily. g
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COROLLARY 1 Let A 2 BðEÞ: Then W0ðLJ,AÞ ¼ W0ðRJ,AÞ ¼ W0ðAÞ:

Proof The inclusion coVðAÞ� � W0ðLJ,AÞ follows immediately from Theorem 2.
Then W0ðAÞ ¼ coVðAÞ� � W0ðLJ,AÞ:

Now, let f be a state on BðJÞ: Define the linear functional g on BðEÞ by gðXÞ ¼

f ðLJ,X Þ: By a simple computation, we find that g is a state on BðEÞ, so that gðAÞ ¼
f ðLJ,AÞ 2 W0ðAÞ: Thus W0ðLJ,AÞ � W0ðAÞ, therefore W0ðLJ,AÞ ¼ W0ðAÞ: By the same
argument, we find also W0ðRJ,AÞ ¼ W0ðAÞ: g

COROLLARY 2 Let A,B 2 BðEÞ: Then W0ð�J,A,BÞ ¼ W0ðAÞ �W0ðBÞ:

Proof By Theorem 2, we have coðVðAÞ � VðBÞÞ� � W0ð�J,A,BÞ: Then

W0ðAÞ �W0ðBÞ ¼ coVðAÞ� � coVðBÞ�

¼ coðVðAÞ � VðBÞÞ�

� W0ð�J,A,BÞ

On the other hand using Corollary 1, we have:

W0ð�J,A,BÞ ¼ W0ðLJ,A � RJ,BÞ

� W0ðLJ,AÞ �W0ðRJ,BÞ

¼ W0ðAÞ �W0ðBÞ g

Remark 1 As a consequence of the above Corollary and by the same argument as in
[12, Theorem 3.1], we show that �J,A,B is convexoid iff A and B are convexoid.

COROLLARY 3 Let A,B 2 BðEÞ: Then W0ðAÞW0ðBÞ � W0ðMJ,A,BÞ, and thus
wðMJ,A,BÞ � wðAÞwðBÞ:

Proof By Theorem 2, we obtain coðVðAÞVðBÞÞ� � WðMJ,A,BÞ: Then we have:

W0ðAÞW0ðBÞ ¼ coVðAÞ�coVðBÞ�

¼ ðcoVðAÞcoVðBÞÞ�

� coðVðAÞVðBÞÞ�

� W0ðMJ,A,BÞ

The inequality follows immediately from this inclusion. g

THEOREM 3 Let A,B 2 BðEÞ: Then wðUJ,A,BÞ � 2ð
ffiffiffi
2

p
� 1ÞwðAÞwðBÞ:

Proof We may assume, without loss of the generality, that wðAÞ ¼ wðBÞ ¼ 1:
For any ðx, f Þ, ðy, gÞ in �, we have

f ðAxÞgðByÞ þ f ðBxÞgðAyÞ 2 VðA,BÞ � VðB,AÞ

Since VðA,BÞ � VðB,AÞ � W0ðUJ,A,BÞ, then

wðUJ,A,BÞ � f ðAxÞgðByÞ þ f ðBxÞgðAyÞ
�� �� ð1Þ

Applying inequality (1) for ðy, gÞ ¼ ðx, f Þ, we obtain:

wðUJ,A,BÞ � 2 f ðAxÞ
�� �� f ðBxÞ

�� �� ð2Þ
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Let ðxn, fnÞ and ðyn, gnÞ be two sequences in � such that:

lim fnðAxnÞ
�� �� ¼ wðAÞ ¼ 1 ¼ wðBÞ ¼ lim gnðBynÞ

�� ��
For ðx, f Þ ¼ ðxn, fnÞ and ðy, gÞ ¼ ð yn, gnÞ, inequality (1) yields:

wðUJ,A,BÞ � fnðAxnÞgnðBynÞ þ fnðBxnÞgnðAynÞ
�� �� ð3Þ

Thus,

wðUJ,A,BÞ � fnðAxnÞgnðBynÞ
�� ��� fnðBxnÞgnðAynÞ

�� �� ð4Þ

Applying inequality (2) twice for ðx, f Þ ¼ ðxn, fnÞ and for ðx, f Þ ¼ ð yn, gnÞ, we obtain:

wðUJ,A,BÞ � 2 fnðAxnÞ
�� �� fnðBxnÞ

�� ��: ð5Þ

wðUJ,A,BÞ � 2 gnðAynÞ
�� �� gnðBynÞ�� �� ð6Þ

(

Since the two complex sequences ð fnðBxnÞÞ and ðgnðAynÞÞ are bounded, we can
extract a convergent subsequence from each one. We can put � ¼ lim j fnðBxnÞj and
� ¼ lim jgnðAynÞj:

Letting n !þ1, in (4), (5) and (6), we obtain,

wðUJ,A,BÞ � max 1� ��
�� ��, 2 �j j, 2 �

�� ��� �
Therefore,

wðUJ,A,BÞ
2
þ 4wðUJ,A,BÞ � 4 ��

�� ��þ 4ð1� ��
�� ��Þ

� 4:

�

Thus we have wðUJ,A,BÞ � 2ð
ffiffiffi
2

p
� 1Þ: g

3. A LOWER BOUND FOR THE NORM OF UJ , A, B

In this section, we assume that E is a Hilbert space. Let A,B 2 BðEÞ. We assume that if
J is a standard operator algebra, then A,B 2 J.

Definition 5 We define the numerical range of A�B relative to B by:

WBðA
�BÞ ¼ � 2 C: � ¼ lim A�Bxn, xnh i, lim Bxnk k ¼ Bk k, xnk k ¼ 1f g

This concept of this numerical range is introduced by Magajna in [9]. The most
interesting properties of WBðA

�BÞ are given as below (see [9]):

1. WBðA
�BÞ is not empty and compact subset of C,

2. the relation inf�2C B� �Ak k ¼ Bk k holds iff 0 2 WBðA
�BÞ:
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LEMMA 1 We have the following properties:

(i) kUJ,A,Bk � supfjhAx, yihBu, vi þ hBx, yihAu, vij: kxk ¼ kyk ¼ kuk ¼ kvk ¼ 1g
(ii) kUJ,A,Bk � 2wðA�BÞ:

Proof
(i) Since x� vk kJ¼ x� vk k ¼ xk k vk k ¼ 1, and since Xk kJ � Xk k, for any X 2 J,

then we have;

UJ,A,B

�� �� � Aðx� vÞBþ Bðx� vÞA
�� ��

J

� Ax� B�vþ Bx� A�vk k

� Bu, vh iAxþ Au, vh iBxk k

� hAx, yihBu, vi þ hBx, yihAu, vi
�� ��

(ii) Let x be a unit vector in E such that Ax 6¼ 0. Using (i), we obtain, kUJ,A,Bk �

jð1=kAxkÞ A�Bx, xh i Axk k þ A�Bx, xh i Axk kj, then we can deduce immediately
that kUJ,A,Bk � 2jhA�Bx, xij, for any unit vector x in E: So kUJ,A,Bk �

2wðA�BÞ: g

THEOREM 4 We have the following property:

UJ,A,B

�� �� � 2ð
ffiffiffi
2

p
� 1Þ Ak k Bk k:

Proof We may assume, without loss of the generality, that Ak k ¼ Bk k ¼ 1: Let
� 2 WBðA

�BÞ and � 2 WAðB
�AÞ: Then, there exist two sequences ðxnÞ and ðynÞ of

unit vectors in E such that lim Bxnk k ¼ lim kAynk ¼ 1, and lim A�Bxn,xnh i ¼ �,
limhB�Ayn, yni ¼ �: By Lemma 1.(i), we have:

UJ,A,B

�� �� �

���� 1

Ayn
�� �� Bxnk k

A�Byn, yn
� �

B�Axn, xnh i þ Ayn
�� �� Bxnk k

����
Letting n ! þ1, we get kUJ, A, Bk � j1þ ��j ¼ 1þ ��j j:

On the other hand, by Lemma 1.(ii), we have kUJ,A,Bk � max 2 �j j, 2 �j jf g; therefore
kUJ,A,Bk � max 1þ ��j j, 2 �j j, 2 �j jf g, and by the same argument as in the proof of
Theorem 3, we obtain the inequality. g

Remark 2 The above Theorem is proved by Stachó and Zalar in 14½ 	 in the particular
case where J is a standard operator algebra, but here, we have obtained it, in a more
general situation by a direct proof.

THEOREM 5 If A and B are not zero, we have:

UJ,A,B

�� �� � sup Ak k Bk k þ
��

Ak k Bk k

����
����, � 2 WBðA

�BÞ, � 2 WAðB
�AÞ

� 	

Proof Let � 2 WBðA
�BÞ and � 2 WAðB

�AÞ: By the same argument as in the proof of
the Theorem 4, we obtain kUJ,A,Bk � jkAkkBk þ ð��=kAkkBkÞj. g
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COROLLARY 4 The inequality kUJ,A,Bk � Ak k Bk k holds, if any one of the following
conditions is satisfied:

(i) 9� 2 WBðA
�BÞ, 9� 2 WAðB

�AÞ: Reð��Þ � 0,
(ii) A�B � 0 or AB� � 0,
(iii) 9 � 2 0, 2�½ ½ : WðA�BÞ � z 2 C : � 
 arg z 
 � þ �=2

� �
:

Proof

(i) Let � 2 WBðA
�BÞ and � 2 WAðB

�AÞ such that Reð��Þ � 0: Then, by Theorem 5,
we have kUJ,A,Bk � Ak k Bk kþ ðReð��Þ= Ak k Bk kÞ: Therefore, kUJ,A,Bk � Ak k Bk k:

(ii) If A�B � 0, it is clear that Reð��Þ � 0, for every � 2 WBðA
�BÞ and every

� 2 WAðB
�AÞ, so we deduce the Corollary, by (i). On the other hand, if

AB� � 0, and since kUJ,A,Bk ¼ kUJ�, A�, B�k (where J� ¼ X�: X 2 Jf gÞ, we
obtain the Corollary, only by using the first step.

(iii) We put B1 ¼ e�i�B, then W0ðA
�B1Þ � fz 2 C : 0 
 arg z 
 �=2g, since

WB1
ðA�B1Þ � W0ðA

�B1Þ and WAðB
�
1AÞ � W0ðA�B1Þ, so we have Reð��Þ � 0,

for all � 2 WB1
ðA�B1Þ and for all � 2 WAðB

�
1AÞ: Then we can obtain (iii)

immediately using (i) and the fact that kUJ,A,Bk ¼ kUJ,A,B1
k: g

Remark 3 It is proved in [1] that kUA,Bk � kAkkBk, if 0 2 WAðB
�AÞ [ WBðA

�BÞ, so
that the Corollary 4.i, is a generalisation of this result in our general situation.

COROLLARY 5 The inequality kUJ,A,Bk � kAkkBk þ ð1=kAkkBkÞ holds, if A ¼ S and
B ¼ S�ð Þ

�1, for some invertible operator S on H:

Proof There exist two sequences ðxnÞ and ðynÞ of unit vectors in E such that
lim Axnk k ¼ Ak k = Sk k and lim kBynk ¼ Bk k ¼ kS�1k; and since lim A�Bxn, xnh i ¼

xnk k2¼ 1 ¼ kynk
2 ¼ limhB �Ayn, yni, then 1 2 WAðB

�AÞ \WBðA
�BÞ, so we have, by

Theorem 5, kUJ,A,Bk � Ak k Bk k þ ð1= Ak k Bk kÞ:

THEOREM 6 We have kUJ,A,Bk � Ak k Bk k, if Bk k2ðA�AÞ 
 Ak k2ðB�BÞ or Ak k2ðB�BÞ 

Bk k2ðA�AÞ:

Proof We can assume Ak k ¼ Bk k ¼ 1: Then, by Lemma1.(i), we have: kUJ,A,Bk �

ð1= Axk k Bxk kÞ A�Bx, xh ij j2þ Axk k Bxk k, for any unit vector x in E such that Ax 6¼ 0 and
Bx 6¼ 0: So we obtain UJ,A,B

�� �� � Axk k Bxk k, for any unit vector x in E: Then, if
A�A 
 B�B, we have kUJ,A,Bk � Axk k2; thus kUJ,A,Bk � 1: By the same argument, the
inequality holds with the second condition. g

4. WHEN IS kUJ , A, Bk ¼ 2 Ak k Bk k?

In this section, we also assume that E is a Hilbert space.

LEMMA 2 If wðA�BÞ ¼ Ak k Bk k, for some A,B 2 BðEÞ, then kUJ,A,Bk ¼ 2 Ak k Bk k:

Proof It follows immediately from Lemma 1.(ii). g

LEMMA 3 Let J be a standard operator algebra and A,B 2 J. If kUJ,A,Bk ¼ 2 Ak k Bk k,
then A�Bk k ¼ Ak k Bk k:

Proof This Lemma is proved by Barraa and Boumazgour in 1½ 	 in the particular case
J ¼ BðEÞ: Note that the same proof works in any standard operator algebra.
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THEOREM 7 If J¼C2ðEÞ (the Hilbert–Schmidt class) and A,B 2 BðEÞ, then kUJ,A,Bk ¼

2 Ak k Bk k iff wðA�BÞ ¼ Ak k Bk k:

Proof Assume that kUJ,A,Bk ¼ 2 Ak k Bk k: Since kMJ,A,Bk ¼ kMJ,B,Ak ¼ Ak k Bk k,
then we have kUJ,A,Bk ¼ kMJ,A,Bk þ kMJ,B,Ak, where MJ,A,B,MJ,B,A, UJ,A,B 2 BðJÞ,
and J is a Hilbert space. Thus, by 2½ 	, we obtain kMJ,A,BkkMJ,B,Ak ¼ Ak k2 Bk k22

W0ððMJ,A,BÞ
�
ðMJ,B,AÞÞ, and since ðMJ,A,BÞ

�
¼MJ,A�,B� , then we have Ak k2 Bk k22

W0ðMJ,A�B,AB� Þ: Therefore

Ak k2 Bk k2 
 wðMJ, A�B, AB� Þ


 MJ, A�B, AB�

�� ��
¼ A�Bk k AB�k k


 Ak k2 Bk k2

8>>>><
>>>>:

So we have wðMJ, A�B, AB� Þ ¼ kMJ,A�B,AB�k ¼ Ak k2 Bk k2, which implies rðMJ,A�B,AB� Þ ¼

kMJ,A�B,AB�k ¼ Ak k2 Bk k2: Since rðMJ,A�B,AB� Þ 
 rðA�BÞrðAB�Þ 
 Ak k2 Bk k2, and
rðA�BÞ ¼ rðBA�Þ ¼ rððBA�Þ

�
Þ ¼ rðAB�Þ, therefore rðA�BÞ ¼ Ak k Bk k: So we have

rðA�BÞ ¼ A�Bk k ¼ Ak k Bk k, and thus wðA�BÞ ¼ A�Bk k ¼ Ak k Bk k:
The converse implication follows immediately by Lemma 2. g

THEOREM 8 Let J be a standard operator algebra and let A,B 2 J be such that A�B is
normaloid. Then kUJ,A,Bk ¼ 2 Ak k Bk k iff wðA�BÞ ¼ Ak k Bk k:

Proof Assume that kUJ,A,Bk ¼ 2 Ak k Bk k: Then, by Lemma 3, we have A�Bk k ¼

Ak k Bk k, and since wðA�BÞ ¼ A�Bk k, we obtain wðA�BÞ ¼ Ak k Bk k: By Lemma 2, we
obtain the converse implication. g

Remark 4 In general, Theorem 8 is not true without the condition that A�B is
normaloid. For example, let

A ¼
0 1
0 0


 �
, B ¼

1 0
0 1


 �

then wðA�BÞ ¼ ð1=2Þ < 1 ¼ Ak k Bk k but kUA,Bk ¼ 2 ¼ 2 Ak k Bk k:

THEOREM 9 Let J be a standard operator algebra and A,B 2 J. Then we have
kUJ,A,Bk ¼ 2 Ak k Bk k iff A�Bk k ¼ Ak k Bk k, if one of the following conditions is satisfied:

(i) B normal and AB ¼ BA,
(ii) B normal and A � 0,
(iii) kðA�BÞ2k ¼ A�Bk k2:

Proof Assume that Ak k ¼ Bk k ¼ 1: By Lemma 3, we have only to prove that , if
A�Bk k ¼ Ak k Bk k then kUJ,A,Bk ¼ 2 Ak k Bk k: It is clear that kUJ,A,Bk � kAðB�BÞþ
ðBB�ÞAk; then by McIntosh’s inequality 8½ 	, we have kUJ,A,Bk � 2 B�AB�k k ¼

2 BA�Bk k: Then, by this inequality, we may deduce the following implications:
Assume A�Bk k ¼ Ak k Bk k.

(i) Since B is normal, then BA�Bk k ¼ B�A�Bk k, and by Putnam–Fuglede theorem,
we have AB� ¼ B�A, so we obtain kUJ,A,Bk � 2 AB�A�Bk k ¼ 2 B�AA�Bk k ¼

2 A�Bk k2¼ 2:
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(ii) Since kUJ,A,Bk � 2 BABk k ¼ 2 B�ABk k ¼ 2kA
1
2Bk2, then

kUJ,A,Bk � 2 ABk k2¼ 2:
(iii) Since kUJ,A,Bk � 2 BA�Bk k, then kUJ,A,Bk � 2 A�BA�Bk k ¼ 2 A�Bk k2¼ 2:

g

Remark 5

(i) Theorem 9.(i) is a general form of the known result kUA, Ik ¼ 2 Ak k, for all
A 2 BðHÞ:

(ii) If B is a unitary operator, it is abvious that kUA,Bk ¼ 2 Ak k Bk k and A�Bk k ¼

Ak k Bk k, for every operator A:

We may ask the following questions:

Question 1 Does Theorem 9.(i) (resp. Theorem 9.(ii)) remain true with only the
condition for B to be normal?

Question 2 Does Theorem 9 remain true if we drop all conditions on A and B?
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