

Linear Algebra and its Applications 338 (2001) 239-244

www.elsevier.com/locate/laa

The numerical range of elementary operators II

Ameur Seddik

Department of Mathematics, Faculty of Science, University of Sana'a, P.O. Box 14026, Sana'a, Yemen Received 21 March 2001; accepted 23 May 2001

Submitted by R.A. Brualdi

Abstract

For $A, B \in L(H)$ (the algebra of all bounded linear operators on the Hilbert space H), it is proved that: (i) the generalized derivation $\delta_{A,B}$ is convexoid if and only if A and B are convexoid; (ii) the operators $\delta_{A,B}$ and $\delta_{A,B} | \mathscr{C}_p$ (where $p \ge 1$) have the same numerical range and are equal to $W_0(A) - W_0(B)$ (where \mathscr{C}_p is the Banach space of the *p*-Schatten class operators on H). © 2001 Elsevier Science Inc. All rights reserved.

Keywords: Hilbert space; Bounded linear operator; Generalized derivation; Elementary operator; Numerical range

1. Introduction

Let L(H) be the algebra of all bounded linear operators acting on a complex Hilbert space *H*. All operators considered here acting on *H* are in L(H).

If Ω is a unital complex Banach algebra and $A \in \Omega$, then we design by $\sigma(A)$, r(A) and $W_0(A)$, respectively, the spectrum, the spectral radius and the numerical range of A.

For $p \ge 1$, we design by $(\mathscr{C}_p(H), \|.\|_p)$ the Banach space of the *p*-Schatten class operators on *H*.

We denote by tr, the trace map on $\mathscr{C}_1(H)$.

For $A = (A_1, ..., A_n)$, $B = (B_1, ..., B_n)$ be two *n*-tuples of operators on *H* and $p \ge 1$, we define:

(1) the elementary operator R(A, B) on L(H) by

$$R(A, B)(X) = \sum_{i=1}^{n} A_i X B_i$$

E-mail address: seddik.ameur@caramail.com (A. Seddik).

^{0024-3795/01/}\$ - see front matter © 2001 Elsevier Science Inc. All rights reserved. PII: S 0 0 2 4 - 3 7 9 5 (0 1) 0 0 3 8 9 - 5

(2) the elementary operator $R_p(A, B)$ on $\mathscr{C}_p(H)$ by

$$R_p(A, B)(X) = \sum_{i=1}^n A_i X B_i,$$

(3) the joint spacial numerical range W(A) of A by

$$W(A) = \{(\langle A_1 x, x \rangle, \dots, \langle A_n x, x \rangle) : ||x|| = 1\},\$$

(4) the subset $W(A) \circ W(B)$ of *C* by

$$W(A) \circ W(B) = \left\{ \sum_{i=1}^{n} \alpha_i \beta_i : (\alpha_1, \dots, \alpha_n) \in W(A), (\beta_1, \dots, \beta_n) \in W(B) \right\}.$$

For $A, B \in L(H)$, we define the particular elementary operator on L(H):

(5) the left multiplication operator by

 $\forall X \in L(H): \quad L_A(X) = AX,$

(6) the right multiplication operator by

 $\forall X \in L(H): \quad R_B(X) = XB,$

- (7) the generalized derivation $\delta_{A,B} = L_A R_B$ induced by A, B.
- (8) the elementary multiplication operator $\mathcal{M}(A, B) = L_A R_B$ induced by A, B.

For $A, B \in L(H)$ and $p \ge 1$, we can also define the particular elementary operators $L_A|\mathscr{C}_p, R_B|\mathscr{C}_p, \delta_{A,B}|\mathscr{C}_p$ and $\mathscr{M}p(A, B)$ on $\mathscr{C}_p(H)$ by

$$\begin{cases} \left(L_A | \mathscr{C}_p\right)(X) = L_A(X), \\ (R_B | \mathscr{C}_p)(X) = R_B(X), \\ (\delta_{A,B} | \mathscr{C}_p)(X) = \delta_{A,B}(X), \\ \mathscr{M}_p(A, B)(X) = \mathscr{M}(A, B)(X) \end{cases}$$

For $x, y \in L(H)$, we define the operator $(x \otimes y)$ on H by

 $\forall z \in H: (x \otimes y)(z) = \langle z, y \rangle x.$

If $\Gamma \subset C$, we denote by Γ^- the closure of Γ and by co Γ the convex hull of Γ .

In [1, Proposition 2.2], Bouali and Charles proved that if for $A, B \in L(H)$ such that $||A - \lambda|| = r(A - \lambda)$, $||B - \lambda|| = r(B - \lambda)$ for all complex λ , then $\delta_{A,B}$ is convexoid.

In [3], it is proved that:

(i) For *A*, *B* be two *n*-tuples of operators on *H*: co(*W*(*A*) ∘ *W*(*B*))[−] ⊂ *W*₀(*R*(*A*, *B*)).
(ii) For *A*, *B* ∈ *L*(*H*): *W*₀(δ_{*A*,*B*}) = *W*₀(*A*) − *W*₀(*B*).

The reader will find in the second part of this paper a reformulation of known results concerning the numerical range of these operators.

In the third part, we prove that $\delta_{A,B}$ is convexoid if and only if A and B are convexoid.

In the fourth part, we prove also that results (i) and (ii) stay true, if we replace R(A, B) and $\delta_{A,B}$, respectively, by $R_p(A, B)$ and $\delta_{A,B} | \mathscr{C}_p$ for all $p \ge 1$.

240

2. Preliminaries

Definition 2.1. Let Ω be a complex Banach algebra with identity *I*. (1) The set of states on Ω is by definition

$$P(\Omega) = \{ f \in \Omega^* : f(I) = ||f|| = 1 \}.$$

(2) The numerical range of an element A in Ω is by definition the set

$$W_0(A) = \left\{ f(A) : f \in P(\Omega) \right\}$$

- (3) An element *A* in Ω is called convexoid if $W_0(A) = \operatorname{co} \sigma(A)$.
- (4) The usual numerical range of $A \in L(H)$ is by the definition the set

 $W(A) = \{ \langle Ax, x \rangle : ||x|| = 1 \}.$

Theorem 2.1 [4, Theorem 1]. If $A \in \Omega$, then $W_0(A)$ is a convex compact set and contains $\sigma(A)$.

Theorem 2.2 [4, Theorem 6]. If $A \in L(H)$, then $W_0(A) = W(A)^-$.

Theorem 2.3 [5]. If $A \in \Omega$ and $||A - \lambda|| = r(A - \lambda)$ for all complex λ , then A is convexoid.

Theorem 2.4 [3, Theorem 1]. If A, B are two n-tuples of operators on H, then $co(W(A) \circ W(B))^- \subset W_0(R(A, B))$.

Theorem 2.5 [3, Theorem 2]. If $A, B \in L(H)$, then $W_0(\delta_{A,B}) = W_0(A) - W_0(B)$.

3. The convexoid generalized derivation

Theorem 3.1. Let $A, B \in L(H)$. Then $\delta_{A,B}$ is convexoid if and only if A and B are convexoid.

The proof of this theorem results from the following lemmas.

Lemma 3.1. Let M, N and K be three convex compact subsets of C. (i) If $M + N \subset M + K$, then $N \subset K$. (ii) If M + N = M + K, then N = K.

Proof. (i) Let *a* in *N* and choose b_1 in *M*. Then there exist b_2 in *M* and c_1 in *K* such that $a + b_1 = b_2 + c_1$. By the same, since $a + b_2 \in M + K$, then we can also choose b_3 in *M* and c_2 in *K* such that $a + b_2 = b_3 + c_2$. Then by induction, we can construct a sequence (b_n) in *M* and a sequence (c_n) in *K* such that

 $a + b_n = b_{n+1} + c_n, \quad n \ge 1.$

So we obtain

$$na + b_1 = (c_1 + \dots + c_n) + b_{n+1}, \quad n \ge 1,$$

and also

$$a = \frac{1}{n}(c_1 + \dots + c_n) + \frac{1}{n}(b_{n+1} - b_1), \quad n \ge 1.$$

Since *K* is convex and *M* is bounded,

$$\frac{1}{n}(c_1 + \dots + c_n) \in K$$
 and $\lim \frac{1}{n}(b_{n+1} - b_1) = 0.$

It follows that $a \in K$, since K is closed. (ii) Follows immediately from (i). \Box

Lemma 3.2. Let M, N, K and L be four convex compact subsets of C. If M + N = K + L and $M \subset K$, $N \subset L$, then M = K and N = L.

Proof. Since $K + N \subset M + N = K + L \subset K + N$, then K + L = K + N. It follows from Lemma 3.1, N = L; and by the same, M = K. \Box

Proof of Theorem 3.1. Assume that $W_0(\delta_{A,B}) = \operatorname{co} \sigma(\delta_{A,B})$; since $W_0(\delta_{A,B}) = W_0(A) - W_0(B)$, by Theorem 2.5 and since $\sigma(\delta_{A,B}) = \sigma(A) - \sigma(B)$, by [2, Corollary 3.20], we have

$$W_0(A) - W_0(B) = \operatorname{co}(\sigma(A) - \sigma(B)) = \operatorname{co}\sigma(A) - \operatorname{co}\sigma(B),$$

and since $co \sigma(A)$, $co \sigma(B)$, $W_0(A)$ and $W_0(B)$ are convex compact with $co \sigma(A) \subset W_0(A)$, $co \sigma(B) \subset W_0(B)$, then by Lemma 3.2, we obtain $W_0(A) = co \sigma(A)$ and $W_0(B) = co \sigma(B)$.

Now, if A and B are convexoid, it follows that

$$W_0(\delta_{A,B}) = W_0(A) - W_0(B)$$

= co \sigma(A) - co \sigma(B)
= co(\sigma(A) - \sigma(B))
= co(\sigma(\delta_{A,B})).

Remark 3.1. Theorem 3.1 gives a characterization of a convexoid generalized derivation, and also it is a generalization of [1, Proposition 2.2], by using Theorem 2.3. Note that Theorem 3.1 is false if we replace the generalized derivation $\delta_{A,B}$ by the elementary multiplication operator $\mathcal{M}(A, B)$.

Indeed, if *A*, *B* are two nonscalar self-adjoint operators, then, by [3, Theorem 3], $W_0(\mathcal{M}(A, B))$ is not real, but $\operatorname{co} \sigma(\mathcal{M}(A, B)) = \operatorname{co}(\sigma(A) \cdot \sigma(B))$ is.

242

4. The numerical range of elementary operator acting on $\mathscr{C}_p(H)$

Theorem 4.1. Let A and B be two n-tuples of operators on H and let $p \ge 1$. Then $co(W(A) \circ W(B))^- \subset W_0(R_p(A, B))$.

Proof. Let $x, y \in H$ such that ||x|| = ||y|| = 1. Define the map f on $L(\mathscr{C}_p(H))$ by

$$\forall F \in L(\mathscr{C}_p(H)): \ f(F) = \operatorname{tr}\left[(y \otimes x)F(x \otimes y)\right].$$

Since $||x \otimes y||_p = ||x \otimes y||_1 = ||x \otimes y|| = ||x|| ||y|| = 1$, and since $||X|| \leq ||X||_p$ for all $X \in \mathcal{C}_p(H)$, we have

$$|f(F)| \leq ||(y \otimes x)F(x \otimes y)||_1$$
$$\leq ||x \otimes y||_1 ||F(x \otimes y)||$$
$$\leq ||F(x \otimes y)||_p$$
$$\leq ||F||$$

and f(I) = 1 so that f is a state on $L(\mathscr{C}_p(H))$; and since

$$f(R_p(A, B)) = \sum_{i=1}^n \langle A_i x, x \rangle \cdot \langle B_i y, y \rangle \in W_0(R_p(A, B)),$$

we obtain $W(A) \circ W(B) \subset W_0(R_p(A, B))$, and since $W_0(R_p(A, B))$ is compact and convex, thus $\operatorname{co}(W(A) \circ W(B))^- \subset W_0(R_p(A, B))$. \Box

Corollary 4.1. Let $A \in L(H)$. Then $W_0(L_A|\mathscr{C}_p) = W_0(R_A|\mathscr{C}_p) = W_0(A)$.

Proof. The inclusions $W_0(A) \subset W_0(L_A|\mathscr{C}_p)$, $W_0(A) \subset W_0(R_A|\mathscr{C}_p)$ follow immediately from Theorems 4.1 and 2.2.

Now, let *f* be a state on $L(\mathscr{C}_p(H))$ and we define the map *g* on L(H) by $g(X) = f(L_X|\mathscr{C}_p)$. By a simple computation, we find that *g* is a state on L(H) so that $g(A) = f(L_A|\mathscr{C}_p) \in W_0(A)$. Therefore $W_0(L_A|\mathscr{C}_p) \subset W_0(A)$. By the same, we find also $W_0(R_A|\mathscr{C}_p) \subset W_0(A)$. \Box

Corollary 4.2. Let $A, B \in L(H)$ and $p \ge 1$. Then $W_0(\delta_{A,B}|\mathscr{C}_p) = W_0(\delta_{A,B})$.

Proof. By Theorems 4.1, 2.2 and Corollary 4.1, we obtain

$$W_0(A) - W_0(B) \subset W_0(\delta_{A,B}|\mathscr{C}_p) \subset W_0(L_A|\mathscr{C}_p) - W_0(R_B|\mathscr{C}_p)$$

= $W_0(A) - W_0(B)$. \Box

Remark 4.1. Corollary 4.2 is false if we replace the generalized derivation $\delta_{A,B}$ by the elementary multiplication operator $\mathcal{M}(A, B)$.

Indeed, if *A*, *B* are two nonscalar self-adjoint operators and p = 2, then $W_0(\mathcal{M}(A, B))$ is not real but $W_0(\mathcal{M}_2(A, B))$ is, because $\mathcal{M}_2(A, B)$ is a self-adjoint operator on the Hilbert space $\mathscr{C}_2(H)$.

Corollary 4.3. Let $A, B \in L(H)$ and $p \ge 1$. Then $\delta_{A,B} | \mathscr{C}_p$ is convexoid if and only if A and B are convexoid.

Proof. Since $W_0(\delta_{A,B}|\mathscr{C}_p) = W_0(\delta_{A,B})$ and $\sigma(\delta_{A,B}|\mathscr{C}_p) = \sigma(\delta_{A,B})$, the proof follows immediately if we use Theorem 3.1. \Box

References

- S. Bouali, J. Charles, Generalized derivation and numerical range, Acta Sci. Math. (Szeged) 63 (1997) 563–570.
- [2] P. Rosenblum, On the operator equation BX XA = Q, Duke Math. J. 23 (1956) 263–269.
- [3] A. Seddik, The numerical range of elementary operator, Integral Equation Operator Theory (to appear).
- [4] J.G. Stampfli, J.P. Williams, Growth condition and the numerical range in a Banach algebra, Tohoku Math. J. 20 (1968) 417–424.
- [5] J.P. Williams, Finite operators, Proc. Amer. Math. Soc. 26 (1970) 129–136.