The numerical range of elementary operators II

Ameur Seddik
Department of Mathematics, Faculty of Science, University of Sana'a, P.O. Box 14026, Sana'a, Yemen Received 21 March 2001; accepted 23 May 2001
Submitted by R.A. Brualdi

Abstract

For $A, B \in L(H)$ (the algebra of all bounded linear operators on the Hilbert space H), it is proved that: (i) the generalized derivation $\delta_{A, B}$ is convexoid if and only if A and B are convexoid; (ii) the operators $\delta_{A, B}$ and $\delta_{A, B} \mid \mathscr{C}_{p}$ (where $p \geqslant 1$) have the same numerical range and are equal to $W_{0}(A)-W_{0}(B)$ (where \mathscr{C}_{p} is the Banach space of the p-Schatten class operators on H). © 2001 Elsevier Science Inc. All rights reserved.

Keywords: Hilbert space; Bounded linear operator; Generalized derivation; Elementary operator; Numerical range

1. Introduction

Let $L(H)$ be the algebra of all bounded linear operators acting on a complex Hilbert space H. All operators considered here acting on H are in $L(H)$.

If Ω is a unital complex Banach algebra and $A \in \Omega$, then we design by $\sigma(A), r(A)$ and $W_{0}(A)$, respectively, the spectrum, the spectral radius and the numerical range of A.

For $p \geqslant 1$, we design by $\left(\mathscr{C}_{p}(H),\|\cdot\|_{p}\right)$ the Banach space of the p-Schatten class operators on H.

We denote by tr, the trace map on $\mathscr{C}_{1}(H)$.
For $A=\left(A_{1}, \ldots, A_{n}\right), B=\left(B_{1}, \ldots, B_{n}\right)$ be two n-tuples of operators on H and $p \geqslant 1$, we define:
(1) the elementary operator $R(A, B)$ on $L(H)$ by

$$
R(A, B)(X)=\sum_{i=1}^{n} A_{i} X B_{i},
$$

[^0](2) the elementary operator $R_{p}(A, B)$ on $\mathscr{C}_{p}(H)$ by
$$
R_{p}(A, B)(X)=\sum_{i=1}^{n} A_{i} X B_{i},
$$
(3) the joint spacial numerical range $W(A)$ of A by
$$
W(A)=\left\{\left(\left\langle A_{1} x, x\right\rangle, \ldots,\left\langle A_{n} x, x\right\rangle\right):\|x\|=1\right\}
$$
(4) the subset $W(A) \circ W(B)$ of C by
$$
W(A) \circ W(B)=\left\{\sum_{i=1}^{n} \alpha_{i} \beta_{i}:\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in W(A),\left(\beta_{1}, \ldots, \beta_{n}\right) \in W(B)\right\} .
$$

For $A, B \in L(H)$, we define the particular elementary operator on $L(H)$:
(5) the left multiplication operator by

$$
\forall X \in L(H): \quad L_{A}(X)=A X,
$$

(6) the right multiplication operator by

$$
\forall X \in L(H): \quad R_{B}(X)=X B,
$$

(7) the generalized derivation $\delta_{A, B}=L_{A}-R_{B}$ induced by A, B.
(8) the elementary multiplication operator $\mathscr{M}(A, B)=L_{A} R_{B}$ induced by A, B.

For $A, B \in L(H)$ and $p \geqslant 1$, we can also define the particular elementary operators $L_{A}\left|\mathscr{C}_{p}, R_{B}\right| \mathscr{C}_{p}, \delta_{A, B} \mid \mathscr{C}_{p}$ and $\mathscr{M} p(A, B)$ on $\mathscr{C}_{p}(H)$ by

$$
\left\{\begin{array}{l}
\left(L_{A} \mid \mathscr{C}_{p}\right)(X)=L_{A}(X), \\
\left(R_{B} \mid \mathscr{C}_{p}\right)(X)=R_{B}(X), \\
\left(\delta_{A, B} \mid \mathscr{C}_{p}\right)(X)=\delta_{A, B}(X) \\
\mathscr{M}_{p}(A, B)(X)=\mathscr{M}(A, B)(X)
\end{array}\right.
$$

For $x, y \in L(H)$, we define the operator $(x \otimes y)$ on H by

$$
\forall z \in H: \quad(x \otimes y)(z)=\langle z, y\rangle x .
$$

If $\Gamma \subset \mathrm{C}$, we denote by Γ^{-}the closure of Γ and by co Γ the convex hull of Γ.
In [1, Proposition 2.2], Bouali and Charles proved that if for $A, B \in L(H)$ such that $\|A-\lambda\|=r(A-\lambda),\|B-\lambda\|=r(B-\lambda)$ for all complex λ, then $\delta_{A, B}$ is convexoid.

In [3], it is proved that:
(i) For A, B be two n-tuples of operators on H : $\operatorname{co}(W(A) \circ W(B))^{-} \subset W_{0}(R(A, B))$.
(ii) For $A, B \in L(H): W_{0}\left(\delta_{A, B}\right)=W_{0}(A)-W_{0}(B)$.

The reader will find in the second part of this paper a reformulation of known results concerning the numerical range of these operators.

In the third part, we prove that $\delta_{A, B}$ is convexoid if and only if A and B are convexoid.

In the fourth part, we prove also that results (i) and (ii) stay true, if we replace $R(A, B)$ and $\delta_{A, B}$, respectively, by $R_{p}(A, B)$ and $\delta_{A, B} \mid \mathscr{C}_{p}$ for all $p \geqslant 1$.

2. Preliminaries

Definition 2.1. Let Ω be a complex Banach algebra with identity I.
(1) The set of states on Ω is by definition

$$
P(\Omega)=\left\{f \in \Omega^{*}: f(I)=\|f\|=1\right\} .
$$

(2) The numerical range of an element A in Ω is by definition the set

$$
W_{0}(A)=\{f(A): f \in P(\Omega)\} .
$$

(3) An element A in Ω is called convexoid if $W_{0}(A)=\operatorname{co} \sigma(A)$.
(4) The usual numerical range of $A \in L(H)$ is by the definition the set

$$
W(A)=\{\langle A x, x\rangle:\|x\|=1\} .
$$

Theorem 2.1 [4, Theorem 1]. If $A \in \Omega$, then $W_{0}(A)$ is a convex compact set and contains $\sigma(A)$.

Theorem 2.2 [4, Theorem 6]. If $A \in L(H)$, then $W_{0}(A)=W(A)^{-}$.
Theorem 2.3 [5]. If $A \in \Omega$ and $\|A-\lambda\|=r(A-\lambda)$ for all complex λ, then A is convexoid.

Theorem 2.4 [3, Theorem 1]. If A, B are two n-tuples of operators on H, then $\operatorname{co}(W(A) \circ W(B))^{-} \subset W_{0}(R(A, B))$.

Theorem 2.5 [3, Theorem 2]. If $A, B \in L(H)$, then $W_{0}\left(\delta_{A, B}\right)=W_{0}(A)-W_{0}(B)$.

3. The convexoid generalized derivation

Theorem 3.1. Let $A, B \in L(H)$. Then $\delta_{A, B}$ is convexoid if and only if A and B are convexoid.

The proof of this theorem results from the following lemmas.
Lemma 3.1. Let M, N and K be three convex compact subsets of C.
(i) If $M+N \subset M+K$, then $N \subset K$.
(ii) If $M+N=M+K$, then $N=K$.

Proof. (i) Let a in N and choose b_{1} in M. Then there exist b_{2} in M and c_{1} in K such that $a+b_{1}=b_{2}+c_{1}$. By the same, since $a+b_{2} \in M+K$, then we can also choose b_{3} in M and c_{2} in K such that $a+b_{2}=b_{3}+c_{2}$. Then by induction, we can construct a sequence (b_{n}) in M and a sequence $\left(c_{n}\right)$ in K such that

$$
a+b_{n}=b_{n+1}+c_{n}, \quad n \geqslant 1
$$

So we obtain

$$
n a+b_{1}=\left(c_{1}+\cdots+c_{n}\right)+b_{n+1}, \quad n \geqslant 1
$$

and also

$$
a=\frac{1}{n}\left(c_{1}+\cdots+c_{n}\right)+\frac{1}{n}\left(b_{n+1}-b_{1}\right), \quad n \geqslant 1 .
$$

Since K is convex and M is bounded,

$$
\frac{1}{n}\left(c_{1}+\cdots+c_{n}\right) \in K \quad \text { and } \quad \lim \frac{1}{n}\left(b_{n+1}-b_{1}\right)=0
$$

It follows that $a \in K$, since K is closed.
(ii) Follows immediately from (i).

Lemma 3.2. Let M, N, K and L be four convex compact subsets of C. If $M+N=$ $K+L$ and $M \subset K, N \subset L$, then $M=K$ and $N=L$.

Proof. Since $K+N \subset M+N=K+L \subset K+N$, then $K+L=K+N$.
It follows from Lemma 3.1, $N=L$; and by the same, $M=K$.
Proof of Theorem 3.1. Assume that $W_{0}\left(\delta_{A, B}\right)=\operatorname{co} \sigma\left(\delta_{A, B}\right)$; since $W_{0}\left(\delta_{A, B}\right)=$ $W_{0}(A)-W_{0}(B)$, by Theorem 2.5 and since $\sigma\left(\delta_{A, B}\right)=\sigma(A)-\sigma(B)$, by [2, Corollary 3.20], we have

$$
W_{0}(A)-W_{0}(B)=\operatorname{co}(\sigma(A)-\sigma(B))=\operatorname{co} \sigma(A)-\operatorname{co} \sigma(B),
$$

and since $\operatorname{co} \sigma(A), \operatorname{co} \sigma(B), W_{0}(A)$ and $W_{0}(B)$ are convex compact with $\operatorname{co} \sigma(A) \subset W_{0}(A), \operatorname{co} \sigma(B) \subset W_{0}(B)$, then by Lemma 3.2, we obtain $W_{0}(A)=$ $\operatorname{co} \sigma(A)$ and $W_{0}(B)=\operatorname{co} \sigma(B)$.

Now, if A and B are convexoid, it follows that

$$
\begin{aligned}
W_{0}\left(\delta_{A, B}\right) & =W_{0}(A)-W_{0}(B) \\
& =\operatorname{co} \sigma(A)-\operatorname{co} \sigma(B) \\
& =\operatorname{co}(\sigma(A)-\sigma(B)) \\
& =\operatorname{co}\left(\sigma\left(\delta_{A, B}\right)\right) .
\end{aligned}
$$

Remark 3.1. Theorem 3.1 gives a characterization of a convexoid generalized derivation, and also it is a generalization of [1, Proposition 2.2], by using Theorem 2.3. Note that Theorem 3.1 is false if we replace the generalized derivation $\delta_{A, B}$ by the elementary multiplication operator $\mathscr{M}(A, B)$.

Indeed, if A, B are two nonscalar self-adjoint operators, then, by [3, Theorem 3], $W_{0}(\mathscr{M}(A, B))$ is not real, but $\operatorname{co} \sigma(\mathscr{M}(A, B))=\operatorname{co}(\sigma(A) \cdot \sigma(B))$ is.

4. The numerical range of elementary operator acting on $\mathscr{C}_{\boldsymbol{p}}(\boldsymbol{H})$

Theorem 4.1. Let A and B be two n-tuples of operators on H and let $p \geqslant 1$. Then $\operatorname{co}(W(A) \circ W(B))^{-} \subset W_{0}\left(R_{p}(A, B)\right)$.

Proof. Let $x, y \in H$ such that $\|x\|=\|y\|=1$.
Define the $\operatorname{map} f$ on $L\left(\mathscr{C}_{p}(H)\right)$ by

$$
\forall F \in L\left(\mathscr{C}_{p}(H)\right): f(F)=\operatorname{tr}[(y \otimes x) F(x \otimes y)] .
$$

Since $\|x \otimes y\|_{p}=\|x \otimes y\|_{1}=\|x \otimes y\|=\|x\|\|y\|=1$, and since $\|X\| \leqslant\|X\|_{p}$ for all $X \in \mathscr{C}_{p}(H)$, we have

$$
\begin{aligned}
|f(F)| & \leqslant\|(y \otimes x) F(x \otimes y)\|_{1} \\
& \leqslant\|x \otimes y\|_{1}\|F(x \otimes y)\| \\
& \leqslant\|F(x \otimes y)\|_{p} \\
& \leqslant\|F\|
\end{aligned}
$$

and $f(I)=1$ so that f is a state on $L\left(\mathscr{C}_{p}(H)\right)$; and since

$$
f\left(R_{p}(A, B)\right)=\sum_{i=1}^{n}\left\langle A_{i} x, x\right\rangle \cdot\left\langle B_{i} y, y\right\rangle \in W_{0}\left(R_{p}(A, B)\right),
$$

we obtain $W(A) \circ W(B) \subset W_{0}\left(R_{p}(A, B)\right)$, and since $W_{0}\left(R_{p}(A, B)\right)$ is compact and convex, thus $\operatorname{co}(W(A) \circ W(B))^{-} \subset W_{0}\left(R_{p}(A, B)\right)$.

Corollary 4.1. Let $A \in L(H)$. Then $W_{0}\left(L_{A} \mid \mathscr{C}_{p}\right)=W_{0}\left(R_{A} \mid \mathscr{C}_{p}\right)=W_{0}(A)$.
Proof. The inclusions $W_{0}(A) \subset W_{0}\left(L_{A} \mid \mathscr{C}_{p}\right), W_{0}(A) \subset W_{0}\left(R_{A} \mid \mathscr{C}_{p}\right)$ follow immediately from Theorems 4.1 and 2.2.

Now, let f be a state on $L\left(\mathscr{C}_{p}(H)\right)$ and we define the map g on $L(H)$ by $g(X)=$ $f\left(L_{X} \mid \mathscr{C}_{p}\right)$. By a simple computation, we find that g is a state on $L(H)$ so that $g(A)=f\left(L_{A} \mid \mathscr{C}_{p}\right) \in W_{0}(A)$. Therefore $W_{0}\left(L_{A} \mid \mathscr{C}_{p}\right) \subset W_{0}(A)$. By the same, we find also $W_{0}\left(R_{A} \mid \mathscr{C}_{p}\right) \subset W_{0}(A)$.

Corollary 4.2. Let $A, B \in L(H)$ and $p \geqslant 1$. Then $W_{0}\left(\delta_{A, B} \mid \mathscr{C}_{p}\right)=W_{0}\left(\delta_{A, B}\right)$.
Proof. By Theorems 4.1, 2.2 and Corollary 4.1, we obtain

$$
\begin{aligned}
& W_{0}(A)-W_{0}(B) \subset W_{0}\left(\delta_{A, B} \mid \mathscr{C}_{p}\right) \subset W_{0}\left(L_{A} \mid \mathscr{C}_{p}\right)-W_{0}\left(R_{B} \mid \mathscr{C}_{p}\right) \\
& \quad=W_{0}(A)-W_{0}(B) . \quad \square
\end{aligned}
$$

Remark 4.1. Corollary 4.2 is false if we replace the generalized derivation $\delta_{A, B}$ by the elementary multiplication operator $\mathscr{M}(A, B)$.

Indeed, if A, B are two nonscalar self-adjoint operators and $p=2$, then $W_{0}(\mathscr{M}(A, B))$ is not real but $W_{0}\left(\mathscr{M}_{2}(A, B)\right)$ is, because $\mathscr{M}_{2}(A, B)$ is a self-adjoint operator on the Hilbert space $\mathscr{C}_{2}(H)$.

Corollary 4.3. Let $A, B \in L(H)$ and $p \geqslant 1$. Then $\delta_{A, B} \mid \mathscr{C}_{p}$ is convexoid if and only if A and B are convexoid.

Proof. Since $W_{0}\left(\delta_{A, B} \mid \mathscr{C}_{p}\right)=W_{0}\left(\delta_{A, B}\right)$ and $\sigma\left(\delta_{A, B} \mid \mathscr{C}_{p}\right)=\sigma\left(\delta_{A, B}\right)$, the proof follows immediately if we use Theorem 3.1.

References

[1] S. Bouali, J. Charles, Generalized derivation and numerical range, Acta Sci. Math. (Szeged) 63 (1997) 563-570.
[2] P. Rosenblum, On the operator equation $B X-X A=Q$, Duke Math. J. 23 (1956) 263-269.
[3] A. Seddik, The numerical range of elementary operator, Integral Equation Operator Theory (to appear).
[4] J.G. Stampfli, J.P. Williams, Growth condition and the numerical range in a Banach algebra, Tohoku Math. J. 20 (1968) 417-424.
[5] J.P. Williams, Finite operators, Proc. Amer. Math. Soc. 26 (1970) 129-136.

[^0]: E-mail address: seddik.ameur@caramail.com (A. Seddik).

