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THE NUMERICAL RANGE OF ELEMENTARY OPERATORS

A. SEDDIK

For n-tuples A = (A, ..., Aa) and B = (By, ..., B,) of operators on a Hilbert space
H, let Ry 5 denote the operator on L(H) defined by Rap(X) =1, AXB;. In
this paper we prove that

co {i aifi: (a1, -..,an) € W(A), (B, ..., Ba) € W(B)}_ C Wo(Ra,B)

i=1

where W is the joint spatial numerical range and W, is the numerical range. We
will show also that this inclusion becomes an equahty when R4 p is taken to be
a generalized derivation, and it is strict when R4 p is taken to be an elementary
multiplication operator mduced by non scalar self—adjomts operators.

Introduction.

All operators considered here are bounded operators on a complex Hilbert space H. The
collection of operators in H is denoted by L(H).
We denote by tr the trace map on the Banach space (C;(H), ||.||,) of operators of class trace
on H; and if M C C, we denote by M~ and coM respectively the closure and the convex
hull of M.
If A is a complex unital Banach algebra and A € A, we denote by Wy(A), the numerical
range of A given by:

Wo(A) = {f(4) : f e P(A)}

where P(A) = {f eA:fh=|fll= 1} is the set of all states on A. It is known that
Wo(A) is convex and compact, this result follows at once from the corresponding properties
of the set of states. A is called Hermitian if Wy(A) is real.
If A = L(H), then Wy(A) is the closure of the usual numerical range W (A) of A, where
W(A) = {{Az,z) : z € H,||z|| = 1}, this result follows immediately from (2] and [6].
For more details, see [3] and [8].
For n-tuples A = (4, ..., An) and B = (By, ..., B,) of operators on H, we define:

(i) the joint spatial numerical range of A (see [5]) by:

W(AL -, 4z) = {{A1z,2) , ..., {Apz,2) : z € H, ||z]| = 1}
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(ii) the elementary operator R4 : L(H) — L(H) by:
VX € L(H): Ryp(X) = > A4,XB;
For A, B € L(H), we also define the particular elementary operator:
(iii) the left multiplication operator L4 : L(H) — L(H) by:
VX € L(H): La(X) = AX
(iv) the right multiplication operator Rg : L(H) — L{H) by:
VX eL(H): Rg(X)=XB

(v) the generalized derivation d4 p = L4 — Rp induced by A, B.

(vi) the inner derivation §4 = L4 — R4 induced by A.

(vii) the elementary multiplication operator M(A, B) = L,Rp induced by A, B.
For z,y € L(H), we define the operator (z ® y) on H by:

Ve H: (z®y)(z) =(z,y)x

Curto [4] proved that, if A and B are n-tuples of commuting operators on H then:

o(Ras) {zatﬁ, (@ o an) € 02 (A), (Bry s ) € aT<B)}

where or is the joint spectrum (the spectrum in the sense of J. L. Taylor, see [9]).
In this note, we give a similar result with the numerical range and the joint spatial numerical
range without the assumption of the commutativity, more precisely we will show that:

n -

co {Z ;0 : (Q1, oy an) € W(A), (B, -, Bn) € VV(B)} C Wo(Ra,B)
i=1

and we obtain that this inclusion becomes an equality when R, p is taken to be a derivation,

and it is strict when R4 p is taken to be an elementary multiplication operator induced by

non scalar self-adjoints operators.

Theorem 1 . Let A = (Ay,...,An) and B = (B, ..., B,) be n-tuples of operators on H.
Then we have:

co {iaiﬂi oy ey om) € W(A), (B, ..., Bn) € W(B)} C Wo(Ra,p)

Proof. The proof of this Theorem is based on the construction of a special state on
L(L(H)), we perform as follows: for z,y € H such that:|jz]| = |ly]| = 1, we define the
linear functional f on L (L (H)) by:

VFeL(L(H): f(F)=tr[y®z)F(z®y)
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Since [lx @ y||, = [t @ yll = [|=|| . ly]l = 1, then:
LF(F) iy @) F(x @y,

ly @ zfl, x [|F' (z @yl

I (z @ y)|

£l

INININIA

since f(I) =1, then we have : ||f|| = f(I) = 1; therefore f is a state on L (L {H)) ,and since
we have fori=1,...,n:

f(LaRp) = tr{(y®z)LaRp (z®y)]
tr(y ® z) (Aiz ® By))
tr{{Aiz, z) (y ® Bjy)]
(Aiz, z) (Biy, y)

I

so we obtain : "

f(RA,B) = Z (Aixa I) (Biy) y)

i=1

then:
{Z a;f;: (a1, ...,on) € W(A), (B, ..., 0.) € W(B)} C Wo(Ra,8)

and since Wy(R4 p) is compact and convex, we deduce:

Co{iaiﬂi : (al, ...,CY") € W(A)7 (ﬂla -~-»/3n) € W(B)} C WO(RA,B)

Corollary 2 . Let A, B € L(H). Then we have Wy(34,8) = Wy(4) — Wy(B).

Proof. By Theorem 1, we obtain W(A) — W(B) C Wy(84,5), and since Wy(84,5) is closed,
then we have (W(A) - W(B))™ = Wy(A) — Wo(B) C Wy(éa,8), and on the other hand we
obtain by [1, Theorem 5.2} that Wy(64,8) C Wo(La) — Wo(Rg) = Wo(A) — Wo(B), so we
obtain the equality.

Remark 1 . This corollary shows that the inclusion of the Theorem 1 is in fact an equality
when the elementary operator is taken to be a generalized derivation. Also this corollary
is a generalization of [1, Theorem 5.2], where Anderson and Foias proved that Wy(L,) =
Wo(Ra) = Wy(A), for any A in L(H). Note that the proof of the Wo(6a,8) C Wo(La) —
Wo(Rg) can be obtained only by using the immediate inclusions Wy(L 4) C Wy(A), Wo(Rg) C
Wo(B). The converse inclusion Wy(A) — Wo(B) C Wy(da,p) is obtained only by using Theo-
rem 1 and the elementary properties of the numerical range. Therefore, our proof makes no
appeal to [1, Theorem 5.2] (the Anderson and Foias theorem makes appeal to Hohn-Banach
theorem).

Theorem 3 . Let A, B are two non zero operators in L(H). Then M(A, B) is a Hermitian

operator if and only if there exist 8 € ]——5, 5] such that one of the operators e A, B is
self-adjoint and the other is real scalar.
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The proof of this theorem is based on the following Lemmas.

Lemma 4 (7) . Let F € L(L(H)). Then F is Hermitian if and only if there evist two
self-adjoints operators A, B in L(H) such that F = L, + dp.

Lemma 5 . Let S,T be a non zero self-adjoints operators in L (H). Then the operator
F = M(S,T) is Hermitian if and only if one of the operators S , T is a scalar.

Proof. Assume that F' Hermitian. By Lemma 4, we obtain F'— Lp; is a derivation induced
by a self-adjoint operator, and since F'(I) = ST, then:

VX eL(H): SX'T-STX"=X'TS - TX"S,

so that:

VX e L(H): S(TX - XT)— (TX - XT)S =0,
Hence 65.6r = §;, and finally, by using [10], one of the operators S , T is scalar. On the
other hand if one of the operators S , T is scalar, then by {1, Theorem 5.2] F' is Hermitian.

Lemma 6 . Let T',§) be two subsets of C such that T # {0},Q # {0} and T x Q is real
(where T x Q = {yw : y € T,w € Q}). Then there ezist 6 € ]—— E] such that T' C Dy, 2 C

213
D_y (where D, = {ke** : k € R}, foram]—— —])

272

Proof. We can choose v in '— {0}, and then we can write v = ke®®, for some non zero real k

and some § in ] -5, 2] Then kre’®+9) is real, for all element re™® in €; then o = —6 (modm),
so we obtain Q C D_g; likewise we obtain also I' C Dy.

Proof of Theorem 3. Assume that M(A, B) is Hermitian. By Theorem 1 and since
Wo(M(A, B)) is real, then W, (A)x W (B) is real, so that by Lemma 6, Wy(A) C D,, Wo(B)
C D(_g) for some @ in ]—5, 2] It follows that Wy(e="%A) and Wy(e? B) are real, this give
that e A and ¢ B are self-adjoints and since LyRp = L, 4R, g, by Lemma 5, we obtain
that one of the operators e A, € B is self-adjoint and the other is real scalar. The converse
implication is trivial.

Corollary 7 . For A,B € L(H), we have co(W; (A) x Wy (B)) C Wy (M(A, B)), and this
inclusion is strict if A and B are non scalar self-adjoints operators.

Proof. The proof is immediate by Theorem 1 and Theorem 3.

Remark 2 . (1)The Corollary 7 shows that the inclusion of Theorem 1 may be stritct when
the elementary operator is taken to be an elementary multiplication operator induced by non
scalar self-adjoints operators.

(2) Note that Anderson and Foias [1, Theorem 5.8] proved that if P2 = P = P* € L(H),
then LpRp is Hermitian if and only if P is 0 or I. Therefore we may say that Theorem 8 is
a generalization of [1, Theorem 5.8].
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