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T H E  N U M E R I C A L  R A N G E  O F  E L E M E N T A R Y  O P E R A T O R S  

A. SEDDIK 

For n-tuples A = (At, ..., AN) and B = (BI, ..., Bn) of operators on aHilber!  space 
H,  let RA,B denote the operator on L(H) defined by RA,B(X) = ~i=1AiX Bi. In 
this paper we prove that  

co c~i13i : (a,,..., an) C W(A), (131, ..., 1~) e W(B)  C Wo(RA,B) 

where W is the joint spatial numerical range and W0 is the numerical range. We 
will show also that  this inclusion becomes an equality when I~A,B is taken to be 
a generalized derivation, and it is strict when RA,B is taken to be an elementary 
multiplication operator induced by non scalar self-adjoints operators. 

I n t r o d u c t i o n .  

All operators considered here are bounded operators on a complex Hilbert space H. The 
collection of operators in H is denoted by L(H). 
We denote by tr the trace map on the Banach space (Cl(H), I[-[11) of operators of class trace 
on H; and if M C C, we denote by M -  and coM respectively the closure and the convex 
hull of M. 
If A is a complex unital Banach algebra and A E A, we denote by W0(A), the numerical 
range of A given by: 

Wo(A) = { f ( A ) :  f �9 P (A)}  

where {S } = : f ( I ) = ] ] f ] ] = l  is the set of all states on `4. It is known that  
Wo(A) is convex and compact, this result follows at once from the corresponding properties 
of the set of states. A is called Hermitian if Wo(A) is real. 
If ,4 -- L(H), then Wo(A) is the closure of the usual numerical range W(A) of A, where 
W(A) = {(Ax, x) : x E H, IIx[] = 1}, this result follows immediately from [2] and [6]. 
For more details, see [3] and [8]. 
For n-tuples A = (A1, ..., AN) and B = (B1,..., B~) of operators on H, we define: 

(i) the joint spatial numerical range of A (see [5]) by: 

W(A1,...,AN) = {(A,x,x) , . . . ,  (dnz, x) : x e H, [[x[[ = 1} 
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(ii) the elementary operator R.~,u : L(H)  ---+ L(H)  by: 

#z 

VX E L ( H ) :  R:t,B(X) = ~ d i X B i  
/ = i  

For .4, B E L(H), we also define the particular elementary operator: 
(iii) the left multiplication operator LA : L(H)  > L(H)  by: 

VX E n ( g ) :  LA(X)  = A X  

(iv) the right multiplication operator RB : L(H)  ---+ L(H)  by: 

VX E L ( H ) :  Rs(X)  = X B  

(v) the generalized derivation 6A,S = LA -- RB induced by A, B. 
(vi) the inner derivation ~A : LA  -- I~A induced by A. 
(vii) the elementary multiplication operator A4(A, B) = L A R s  induced by A, B. 

For x, y E L(H),  we define the operator (x | y) on H by: 

Vz e H :  (5 | y)(z) = <z, y> 

Curto [4] proved that, if A and B are n-tuples of commuting operators on H then: 

~(RA,~) = ~,#~: (~1,-.., ~n) e o~(A), (#1,-.-, #n) e o~(B 

where ~T is the joint spectrum (the spectrum in the sense of J. L. Taylor, see [9]). 
In this note, we give a similar result with the numerical range and the joint spatial numerical 
range without the assumption of the commutativity, more precisely we will show that: 

}- 
co a,13i : (41, ..., a,~) E W ( A ) ,  (ill, ..., ft,) E W ( B )  C Wo(RA,B) 

k i = l  

and we obtain that this inclusion becomes an equality when RA,B is taken to be a derivation, 
and it is strict when RA,B is taken to be an elementary multiplication operator induced by 
non scalar self-adjoints operators. 

T h e o r e m  1 . Let A = (A1, ..., A , )  and B = (B1, ...,B~) be n-tuples of operators on H. 
Then we have: 

,} ~o ~#~ : (~1,..., ~ )  E W(A), (#~, ..., #~) E W(B c Wo(RA,~) 

Proof .  The proof of this Theorem is based on the construction of a special state on 
L ( L ( H ) ) ,  we perform as follows: for x , y  e H such that:nxl] = IlY[I = 1, we define the 
linear functional f on L (L (H)) by: 

V F E L ( L ( H ) ) :  f ( F ) = t r [ ( y | 1 7 4  
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Since II:~' | :'?1~ : I1:,: | yll : I1:~:11. Ilyll : 1~ then:  

] f ( F ) l  Ii(y o :,:) F (:~ O y)II, 
Ily e ~11, x l ie  (:~: e y)ll 

< [ I F ( x  | y)ll 
_< IIFll 

since f ( I )  -- 1, then  we h a v e :  ]lfH -- f ( I )  = 1; therefore f is a s ta te  on L (L ( H ) ) , a n d  since 
we have for i = 1, ..., n : 

f (LA, RBi) = tr [(y | x) LAiRs, (z | y)] 

= tr [(y | x) (Aix | B~y)] 

= tr [(Aix, x) (y | B'y)] 

= (A~x,x) (B~y,y) 

so we ob ta in  : 

then: 

f(RA,B) = ~ (Aix, x) (Biy, y) 
i=1 

i = 1  

and  since Wo(RA,B) is compact  and  convex, we deduce: 

} co aifli : (al, ..., an) r W(A) ,  (ill, ..., ~ )  r W(B)  C Wo(RA,,) 
i : 1  

C o r o l l a r y  2 . Let A, B E L(H). Then we have WO(hA,B) = Wo(A) - Wo(B). 

P r o o f .  By Theorem 1, we ob ta in  W(A)  - W(B)  C Wo(hA,B), and  since WO(hA,B) is closed, 
then  we have (W(A) - W ( B ) ) -  = Wo(A) - Wo(B) C WO(hA,B), and  on the  other  hand  we 

ob t a in  by [1, Theorem 5.2] t ha t  WO(hA,B) C Wo(LA) - Wo(RB) = Wo(A) - Wo(B), so we 
ob t a in  the equality. 

R e m a r k  i . This corollary shows that the inclusion of the Theorem 1 is in fact an equality 
when the elementary operator is taken to be a generalized derivation. Also this corollary 
is a generalization of [1, Theorem 5.2], where Anderson and Foias proved that Wo(LA) = 
Wo(RA) = Wo(A), for any A in L(H). Note that the proof of the WO(hA.B) C Wo(LA) - 
Wo(RB) can be obtained only by using the immediate inclusions Wo(LA) C Wo(A), Wo(RB) C 
Wo(B). The converse inclusion Wo(A) - Wo(B) C WO(hA,B) is obtained only by using Theo- 
rem 1 and the elementary properties of the numerical range. Therefore, our proof makes no 
appeal to [1, Theorem 5.2] (the Anderson and Foias theorem makes appeal to Hahn-Banach 
theorem). 

T h e o r e m  3 . Let A, B are two non zero operators in L(H). Then 2~4(A, B) is a Hermitian 
operator if and only if there exist 0 E ] -~ ,  ~] such that one of the operators e-leA, eieB is 
self-adjoint and the other is real scalar. 
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The proof of this theorem is based on the following Lemmas. 

L e m m a  4 (7) . Let F 6 L(L(H)).  Then F is Hermitian 'if o.nd only if there ezist two 
self-adjoints operators ,4, B in L(H) such that F = LA + 5B. 

L e m m a  5 . Let S , T  be a non zero self-adjoints operators in L (H). Then the operator 
F = Ad(S,T) is Hermitian if and only if one of the operators S , T is a scalar'. 

P r o o f .  Assume that  F Hermitian. By Lemma 4, we obtain F -  LF(I) is a derivation induced 
by a self-adjoint operator, and since F (I) = ST,  then: 

VX 6 L (H) : S X * T  - STX*  = X * T S  - TX*S,  

so that: 
VXEL(H): S(TX-XT)-(TX-XT)S=O, 

Hence 6S.6T = 6t, and finally, by using [I0], one of the operators S , T is scalar. On the 
other hand if one of the operators S , T is scalar, then by [1, Theorem 5.2] F is Hermitian. 

L e m m a 6  . Let F , ~  be two subsets o f t  such that F # { 0 } , g t # { 0 }  and F x ~ is real 

(where F > f~ = {7co: 7 6 F,w E 12}). Then there exist 0 E ] - ~ ,  ~] such that F C Do, ~ < 

D-o (where D~ = {ke~ : k E R } ,  for o~ in ] - ~ ,  ~]). 

P r o o f .  We can choose 7 in F -  {0}, and then we can write "7 = ke i~ for some non zero real k 
and some 0 in ] - ~ ,  ~] .  Then kre i(a+~ is real, for all element re ia in ~; then ol -- - 0  (modTr), 
so we obtain ~ C D-0; likewise we obtain also F C Do. 

P r o o f  o f  T h e o r e m  3. Assume that  J%4(A,B) is Hermitian. By Theorem 1 and since 
Wo(Ad(A, B)) is real, then W0 (A)• (B) is real, so that  by Lemma 6, Wo(A) C Do, Wo(B) 
C D(-e) for some 0 in ] - ~ ,  ~].  It follows that  Wo(e-i~ and W0(e'~ are real, this give 

that  e-i~ and ei~ are self-adjoints and since LARB = Le-leAReleB, by Lemma 5, we obtain 
that  one of the operators e-ieA, ei~ is self-adjoint and the other is real scalar. The converse 
implication is trivial. 

C o r o l l a r y  7 . For A, B E L(H),  we have co(Wo (A) • Wo (B)) C Wo (JM(A, B)), and this 
inclusion is strict if A and B are non scalar self-adjoints operators. 

P r o o f .  The proof is immediate by Theorem 1 and Theorem 3. 

R e m a r k  2 . (1)The Corollary 7 shows that the inclusion of Theorem I may be stritct when 
the elementary operator is taken to be an elementary multiplication operator induced by non 
scalar self-adjoints operators. 
(2) Note that Anderson and Foias [1, Theorem 5.8] proved that if p2 = g = p ,  6 L(H),  
then LpRp is Hermitian if and only if P is 0 or I. Therefore we may say that Theorem 3 is 
a generalization of [1, Theorem 5.8]. 
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