On some operator norm inequalities

Ameur Seddik
Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203 ,
Jeddah 21589, Saudi Arabia
Received 23 July 2003; accepted 17 March 2004
Submitted by R.A. Brualdi

Abstract

Let $\mathscr{B}(H)$ be the C^{*}-algebra of all bounded linear operators on a complex Hilbert space H, S be an invertible and selfadjoint operator in $\mathscr{B}(H)$ and let $\left(I,\|\cdot\|_{I}\right)$ denote a norm ideal of $\mathscr{B}(H)$. In this note, we shall show the following inequality:

$$
\forall X \in I:\left\|S X S^{-1}-S^{-1} X S\right\|_{I} \leqslant\left(\|S\|\left\|S^{-1}\right\|-1\right)\left\|S X S^{-1}+S^{-1} X S\right\|_{I} .
$$

© 2004 Elsevier Inc. All rights reserved.
Keywords: Hilbert space; Norm ideal; Operator norm inequality; Selfadjoint operator

1. Introduction

Let $\mathscr{B}(H)$ be the C^{*}-algebra of all bounded linear operators on a complex Hilbert space H and let $\|$.$\| denote the usual norm on \mathscr{B}(H)$. In their work on the geometry of the space of selfadjoint invertible elements of a C^{*}-algebra, Corach-Porta-Recht proved in [1] that if S is invertible and selfadjoint in $\mathscr{B}(H)$, then

$$
\begin{equation*}
\forall X \in \mathscr{B}(H):\left\|S X S^{-1}+S^{-1} X S\right\| \geqslant 2\|X\| . \tag{1}
\end{equation*}
$$

In [2], Kittaneh obtained the inequality (1) in any norm ideal of $\mathscr{B}(H)$.
Note that a norm ideal of $\mathscr{B}(H)$ is a two-sided ideal I of $\mathscr{B}(H)$ associated with a norm $\|\cdot\|_{I}$ such that

[^0](i) I is a Banach space under the norm $\|\cdot\|_{I}$,
(ii) $\|X\|=\|X\|_{I}$ for every rank one operator X in $\mathscr{B}(H)$,
(iii) $\|A X B\|_{I} \leqslant\|A\|\|X\|_{I}\|B\|$ for every $A, B \in \mathscr{B}(H), X \in I$.

So the general version of Corach-Porta-Recht inequality which was given by Kittaneh is the following inequality:

$$
\begin{equation*}
\forall X \in I:\left\|S X S^{-1}+S^{-1} X S\right\|_{I} \geqslant 2\|X\|_{I} . \tag{2}
\end{equation*}
$$

Examples of norm ideals are the Schatten p-ideals \mathfrak{C}_{p} of $\mathscr{B}(H)$ associated with the p-norms $\|\cdot\|_{p}(1 \leqslant p \leqslant \infty)$ and $\mathscr{B}(H)$ associated with the usual norm.

Recently in [5], we have obtained that the set of all invertible operators S in $\mathscr{B}(H)$ satisfying the inequality (1) is given by
$\left\{\lambda M: \lambda \in \mathbb{C}^{*}, M\right.$ is an invertible and selfadjoint operator in $\left.\mathscr{B}(H)\right\}$.
Corach-Porta-Recht have mentioned in [1, Remark 2] that the (usual) norm of $S X S^{-1}+S^{-1} X S$ is in general unrelated to the (usual) norm of $S X S^{-1}-S^{-1} X S$, for $S, X \in \mathscr{B}(H)$ such that S is invertible and selfadjoint.

From the work of McIntoch [3], Kittaneh deduced immediately in [2] that for $1<p<\infty$, there exists a constant $\gamma_{p}>0$ such that

$$
\begin{equation*}
\forall X \in \mathfrak{C}_{p}:\left\|S X S^{-1}-S^{-1} X S\right\|_{p} \leqslant \gamma_{p}\left\|S X S^{-1}+S^{-1} X S\right\|_{p}, \tag{3}
\end{equation*}
$$

where S is invertible and selfadjoint in $\mathscr{B}(H)$.
Here, we shall prove that for any norm ideal $\left(I,\|\cdot\|_{I}\right)$ of $\mathscr{B}(H)$, we have

$$
\begin{equation*}
\forall X \in I:\left\|S X S^{-1}-S^{-1} X S\right\|_{I} \leqslant\left(\|S\|\left\|S^{-1}\right\|-1\right)\left\|S X S^{-1}+S^{-1} X S\right\|_{I} \tag{4}
\end{equation*}
$$

where S is invertible and selfadjoint in $\mathscr{B}(H)$.
Note that Kittaneh has obtained the inequality (3) in a particular norm ideal where the implicit constant γ_{p} depends only on the p-norm and not on the operator S. But the inequality (4) is obtained in any norm ideal where the explicit constant $c_{S}=$ $\|S\|\left\|S^{-1}\right\|-1$ depends only on the operator S and not on the given unitarily invariant norm.

In this note, we consider $\left(I,\|\cdot\|_{I}\right)$ to be a norm ideal of $\mathscr{B}(H)$ and $S \in \mathscr{B}(H)$ denotes an invertible and selfadjoint operator.

For $A, B \in \mathscr{B}(H)$, define the two operators $U_{I, A, B}$ and $V_{I, A, B}$ on I by

$$
\left\{\begin{array}{l}
U_{I, A, B}(X)=A X B+B X A, \\
V_{I, A, B}(X)=A X B-B X A .
\end{array}\right.
$$

We denote by $\Phi_{I, S}$ and $\Psi_{I, S}$ the operators $U_{I, S, S^{-1}}$ and $V_{I, S, S^{-1}}$ respectively. It is clear that $U_{I, A, B}, V_{I, A, B}, \Phi_{I, S}, \Psi_{I, S} \in \mathscr{B}(I)$.

In the case, where I is the Schatten p-ideal $(1 \leqslant p \leqslant \infty)$, we denote $\Phi_{I, S}$ and $\Psi_{I, S}$ by $\Phi_{p, S}$ and $\Psi_{p, S}$ respectively.

More recently in [4], we are interested to know whether there exists a uniform lower bound for the operator $U_{I, A, B}$. We have obtained that $\left\|U_{I, A, B}\right\| \geqslant 2(\sqrt{2}$ $-1)\|A\|\|B\|$, for any $A, B \in \mathscr{B}(H)$, and $\left\|\Phi_{I, S}\right\| \geqslant\|S\|\left\|S^{-1}\right\|+\left(1 /\|S\|\left\|S^{-1}\right\|\right)$.

In this note, we shall give an alternative proof for the last estimation and we shall also give a similar estimation for $\Psi_{I, S}$. Precisely, we find that $\left\|\Psi_{I, S}\right\| \geqslant\|S\|\left\|S^{-1}\right\|-$ $\left(1 /\|S\|\left\|S^{-1}\right\|\right)$. For the upper estimate, we show that $\left\|\Psi_{I, S}\right\| \leqslant 2\left(\|S\|\left\|S^{-1}\right\|-1\right)$.

2. Some operator inequalities

Theorem 2.1. We have the following inequalities:

$$
\left\{\begin{array}{l}
\left\|\Phi_{I, S}\right\| \geqslant\|S\|\left\|S^{-1}\right\|+\left(1 /\|S\|\left\|S^{-1}\right\|\right) \tag{5}\\
\left\|\Psi_{I, S}\right\| \geqslant\|S\|\left\|S^{-1}\right\|-\left(1 /\|S\|\left\|S^{-1}\right\|\right) \\
\left\|\Psi_{I, S}\right\| \leqslant 2\left(\|S\|\left\|S^{-1}\right\|-1\right)
\end{array}\right.
$$

Proof. Let $S=U P$ be the polar decomposition of S, where $P=|S|$ and $U=$ $U^{*}=U^{-1}$.

So for every $X \in I$, we have $\left\|S X S^{-1} \pm S^{-1} X S\right\|_{I}=\left\|P X P^{-1} \pm P^{-1} X P\right\|_{I}$. Thus $\left\|\Phi_{I, S}\right\|=\left\|\Phi_{I, P}\right\|$ and $\left\|\Psi_{I, S}\right\|=\left\|\Psi_{I, P}\right\|$. Let F denote the operator on I defined by $F(X)=P X P^{-1}$ and let \mathscr{A} denote the maximal commutative Banach algebra containing F and F^{-1}. We denote by $M_{\mathscr{A}}$ the set of all multiplicative functionals on \mathscr{A}. Since $F, F^{-1} \in \mathscr{A}$ and $\min \left\{\varphi(F): \varphi \in M_{\mathscr{A}}\right\}=\frac{1}{\|P\|\left\|P^{-1}\right\|}$, $\max \left\{\varphi(F): \varphi \in M_{\mathscr{A}}\right\}=\|P\|\left\|P^{-1}\right\|$, so the numerical radius of $F \pm F^{-1}$ is given by

$$
r\left(F \pm F^{-1}\right)=\max \left\{\left|\varphi(F) \pm \frac{1}{\varphi(F)}\right|: \varphi \in M_{\mathscr{A}}\right\}=\|P\|\left\|P^{-1}\right\| \pm \frac{1}{\|P\|\left\|P^{-1}\right\|}
$$

Therefore

$$
\left\{\begin{array}{l}
\left\|\Phi_{I, P}\right\|=\left\|F+F^{-1}\right\| \geqslant r\left(F+F^{-1}\right)=\|P\|\left\|P^{-1}\right\|+\frac{1}{\|P\|\left\|P^{-1}\right\|}, \\
\left\|\Psi_{I, P}\right\|=\left\|F-F^{-1}\right\| \geqslant r\left(F-F^{-1}\right)=\|P\|\left\|P^{-1}\right\|-\frac{1}{\|P\|\left\|P^{-1}\right\|}
\end{array}\right.
$$

In view of $\left\|\Phi_{I, S}\right\|=\left\|\Phi_{I, P}\right\|,\left\|\Psi_{I, S}\right\|=\left\|\Psi_{I, P}\right\|,\|S\|=\|P\|$ and $\left\|S^{-1}\right\|=$ $\left\|P^{-1}\right\|$, we have

$$
\left\{\begin{array}{l}
\left\|\Phi_{I, S}\right\| \geqslant\|S\|\left\|S^{-1}\right\|+\frac{1}{\|S\|\left\|S^{-1}\right\|}, \\
\left\|\Psi_{I, S}\right\| \geqslant\|S\|\left\|S^{-1}\right\|-\frac{1}{\|S\|\left\|S^{-1}\right\|} .
\end{array}\right.
$$

On the other hand, we obtain the inequality (7) in two steps:
Step 1. Suppose $\|P\|=1$.
Since $\Psi_{I, P}=V_{I, P, P^{-1}-\lambda P}$, for all complex λ, it follows that

$$
\left\|\Psi_{I, P}\right\| \leqslant 2\left\|P^{-1}-\right\| P^{-1}\|P\|=2\left(\left\|P^{-1}\right\|-1\right)
$$

Step 2. From the step 1, we obtain

$$
\left\|\Psi_{I, P}\right\|=\left\|\Psi_{I, \frac{P}{\|P\|}}\right\| \leqslant 2\left(\|P\|\left\|P^{-1}\right\|-1\right)
$$

Thus, we find that

$$
\left\|\Psi_{I, S}\right\| \leqslant 2\left(\|S\|\left\|S^{-1}\right\|-1\right)
$$

Theorem 2.2. We have the following equalities:

$$
\left\{\begin{array}{l}
\left\|\Phi_{2, S}\right\|=\|S\|\left\|S^{-1}\right\|+\frac{1}{\|S\|\left\|S^{-1}\right\|}, \tag{8}\\
\left\|\Psi_{2, S}\right\|=\|S\|\left\|S^{-1}\right\|-\frac{1}{\|S\|\left\|S^{-1}\right\|}
\end{array}\right.
$$

Proof. Employing the notation used in the proof of the preceding theorem (where $I=\mathfrak{C}_{2}$) and since $F \pm F^{-1}$ is a bounded selfadjoint operator on the Hilbert space \mathfrak{C}_{2} and $\sigma(F)=\sigma\left(F^{-1}\right)=\sigma(P) \sigma\left(P^{-1}\right)$, we get

$$
\left\|F \pm F^{-1}\right\|=r\left(F \pm F^{-1}\right)=\|P\|\left\|P^{-1}\right\| \pm \frac{1}{\|P\|\left\|P^{-1}\right\|}
$$

Then the result follows immediately.
Theorem 2.3. We have the following inequality:
$\forall X \in I:\left\|S X S^{-1}-S^{-1} X S\right\|_{I} \leqslant\left(\|S\|\left\|S^{-1}\right\|-1\right)\left\|S X S^{-1}+S^{-1} X S\right\|_{I}$.
Proof. The inequality follows immediately from the inequalities (2) and (7).
Corollary 2.1. If $\|S\|\left\|S^{-1}\right\| \leqslant 2$, then we have the following inequality:
$\forall X \in I:\left\|S X S^{-1}-S^{-1} X S\right\|_{I} \leqslant\left\|S X S^{-1}+S^{-1} X S\right\|_{I}$.

References

[1] G. Corach, H. Porta, L. Recht, An operator inequality, Linear Algebra Appl. 142 (1990) 153-158.
[2] F. Kittaneh, On some operator inequalities, Linear Algebra Appl. 208-209 (1994) 19-28.
[3] A. McIntosh, Heinz inequalities and perturbation of spectral families, Macquarie Mathematical Reports, Macquarie University, 1979.
[4] A. Seddik, On the numerical range and norm of elementary operators, Linear Multilinear Algebra 52 (3-4) (2004) 293-302.
[5] A. Seddik, Some results related to the Corach-Porta-Recht inequality, Proc. Amer. Math. Soc. 129 (2001) 3009-3015.

[^0]: E-mail address: seddikameur@hotmail.com (A. Seddik).
 0024-3795/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
 doi:10.1016/j.laa.2004.03.027

