

Available online at www.sciencedirect.com



LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 389 (2004) 183-187

www.elsevier.com/locate/laa

# On some operator norm inequalities

Ameur Seddik

Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Received 23 July 2003; accepted 17 March 2004

Submitted by R.A. Brualdi

#### Abstract

Let  $\mathscr{B}(H)$  be the  $C^*$ -algebra of all bounded linear operators on a complex Hilbert space H, S be an invertible and selfadjoint operator in  $\mathscr{B}(H)$  and let  $(I, \|.\|_I)$  denote a norm ideal of  $\mathscr{B}(H)$ . In this note, we shall show the following inequality:

 $\forall X \in I : \|SXS^{-1} - S^{-1}XS\|_{I} \leq (\|S\|\|S^{-1}\| - 1)\|SXS^{-1} + S^{-1}XS\|_{I}.$ 

© 2004 Elsevier Inc. All rights reserved.

Keywords: Hilbert space; Norm ideal; Operator norm inequality; Selfadjoint operator

## 1. Introduction

Let  $\mathscr{B}(H)$  be the  $C^*$ -algebra of all bounded linear operators on a complex Hilbert space H and let  $\|.\|$  denote the usual norm on  $\mathscr{B}(H)$ . In their work on the geometry of the space of selfadjoint invertible elements of a  $C^*$ -algebra, Corach–Porta–Recht proved in [1] that if S is invertible and selfadjoint in  $\mathscr{B}(H)$ , then

$$\forall X \in \mathscr{B}(H) : \|SXS^{-1} + S^{-1}XS\| \ge 2\|X\|. \tag{1}$$

In [2], Kittaneh obtained the inequality (1) in any norm ideal of  $\mathscr{B}(H)$ .

Note that a norm ideal of  $\mathscr{B}(H)$  is a two-sided ideal I of  $\mathscr{B}(H)$  associated with a norm  $\|.\|_I$  such that

E-mail address: seddikameur@hotmail.com (A. Seddik).

#### A. Seddik / Linear Algebra and its Applications 389 (2004) 183–187

- (i) *I* is a Banach space under the norm  $\|.\|_I$ ,
- (ii)  $||X|| = ||X||_I$  for every rank one operator X in  $\mathscr{B}(H)$ ,
- (iii)  $||AXB||_I \leq ||A|| ||X||_I ||B||$  for every  $A, B \in \mathcal{B}(H), X \in I$ .

So the general version of Corach–Porta–Recht inequality which was given by Kittaneh is the following inequality:

$$\forall X \in I : \|SXS^{-1} + S^{-1}XS\|_{I} \ge 2\|X\|_{I}.$$
<sup>(2)</sup>

Examples of norm ideals are the Schatten *p*-ideals  $\mathfrak{C}_p$  of  $\mathscr{B}(H)$  associated with the *p*-norms  $\|.\|_p$   $(1 \leq p \leq \infty)$  and  $\mathscr{B}(H)$  associated with the usual norm.

Recently in [5], we have obtained that the set of all invertible operators S in  $\mathscr{B}(H)$  satisfying the inequality (1) is given by

$$\{\lambda M : \lambda \in \mathbb{C}^*, M \text{ is an invertible and selfadjoint operator in } \mathscr{B}(H)\}.$$

Corach–Porta–Recht have mentioned in [1, Remark 2] that the (usual) norm of  $SXS^{-1} + S^{-1}XS$  is in general unrelated to the (usual) norm of  $SXS^{-1} - S^{-1}XS$ , for  $S, X \in \mathcal{B}(H)$  such that S is invertible and selfadjoint.

From the work of McIntoch [3], Kittaneh deduced immediately in [2] that for  $1 , there exists a constant <math>\gamma_p > 0$  such that

$$\forall X \in \mathfrak{C}_p : \|SXS^{-1} - S^{-1}XS\|_p \leqslant \gamma_p \|SXS^{-1} + S^{-1}XS\|_p, \tag{3}$$

where S is invertible and selfadjoint in  $\mathcal{B}(H)$ .

Here, we shall prove that for any norm ideal  $(I, ||.||_I)$  of  $\mathscr{B}(H)$ , we have

$$\forall X \in I : \|SXS^{-1} - S^{-1}XS\|_{I} \le (\|S\|\|S^{-1}\| - 1)\|SXS^{-1} + S^{-1}XS\|_{I},$$
(4)

where S is invertible and selfadjoint in  $\mathcal{B}(H)$ .

Note that Kittaneh has obtained the inequality (3) in a particular norm ideal where the implicit constant  $\gamma_p$  depends only on the *p*-norm and not on the operator *S*. But the inequality (4) is obtained in any norm ideal where the explicit constant  $c_S = \|S\| \|S^{-1}\| - 1$  depends only on the operator *S* and not on the given unitarily invariant norm.

In this note, we consider  $(I, \|.\|_I)$  to be a norm ideal of  $\mathscr{B}(H)$  and  $S \in \mathscr{B}(H)$  denotes an invertible and selfadjoint operator.

For  $A, B \in \mathcal{B}(H)$ , define the two operators  $U_{I,A,B}$  and  $V_{I,A,B}$  on I by

$$\begin{cases} U_{I,A,B}(X) = AXB + BXA, \\ V_{I,A,B}(X) = AXB - BXA, \end{cases}$$

We denote by  $\Phi_{I,S}$  and  $\Psi_{I,S}$  the operators  $U_{I,S,S^{-1}}$  and  $V_{I,S,S^{-1}}$  respectively. It is clear that  $U_{I,A,B}$ ,  $V_{I,A,B}$ ,  $\Phi_{I,S}$ ,  $\Psi_{I,S} \in \mathscr{B}(I)$ .

#### A. Seddik / Linear Algebra and its Applications 389 (2004) 183–187

In the case, where I is the Schatten p-ideal  $(1 \le p \le \infty)$ , we denote  $\Phi_{I,S}$  and  $\Psi_{I,S}$  by  $\Phi_{p,S}$  and  $\Psi_{p,S}$  respectively.

More recently in [4], we are interested to know whether there exists a uniform lower bound for the operator  $U_{I,A,B}$ . We have obtained that  $||U_{I,A,B}|| \ge 2(\sqrt{2} - 1)||A|| ||B||$ , for any  $A, B \in \mathcal{B}(H)$ , and  $||\Phi_{I,S}|| \ge ||S|| ||S^{-1}|| + (1/||S|| ||S^{-1}||)$ .

In this note, we shall give an alternative proof for the last estimation and we shall also give a similar estimation for  $\Psi_{I,S}$ . Precisely, we find that  $\|\Psi_{I,S}\| \ge \|S\| \|S^{-1}\| - (1/\|S\| \|S^{-1}\|)$ . For the upper estimate, we show that  $\|\Psi_{I,S}\| \le 2(\|S\| \|S^{-1}\| - 1)$ .

### 2. Some operator inequalities

**Theorem 2.1.** We have the following inequalities:

$$\left\{ \| \Phi_{I,S} \| \ge \| S \| \| S^{-1} \| + (1/\|S\| \| S^{-1} \|),$$
(5)

$$\{ \|\Psi_{I,S}\| \ge \|S\| \|S^{-1}\| - (1/\|S\| \|S^{-1}\|),$$
(6)

$$\|\Psi_{I,S}\| \leq 2(\|S\|\|S^{-1}\| - 1).$$
<sup>(7)</sup>

**Proof.** Let S = UP be the polar decomposition of S, where P = |S| and  $U = U^* = U^{-1}$ .

So for every  $X \in I$ , we have  $||SXS^{-1} \pm S^{-1}XS||_I = ||PXP^{-1} \pm P^{-1}XP||_I$ . Thus  $||\Phi_{I,S}|| = ||\Phi_{I,P}||$  and  $||\Psi_{I,S}|| = ||\Psi_{I,P}||$ . Let *F* denote the operator on *I* defined by  $F(X) = PXP^{-1}$  and let  $\mathscr{A}$  denote the maximal commutative Banach algebra containing *F* and  $F^{-1}$ . We denote by  $M_{\mathscr{A}}$  the set of all multiplicative functionals on  $\mathscr{A}$ . Since  $F, F^{-1} \in \mathscr{A}$  and  $\min\{\varphi(F) : \varphi \in M_{\mathscr{A}}\} = \frac{1}{||P|||P^{-1}||}$ , max $\{\varphi(F) : \varphi \in M_{\mathscr{A}}\} = ||P|||P^{-1}||$ , so the numerical radius of  $F \pm F^{-1}$  is given by

$$r(F \pm F^{-1}) = \max\left\{ |\varphi(F) \pm \frac{1}{\varphi(F)}| : \varphi \in M_{\mathscr{A}} \right\} = \|P\| \|P^{-1}\| \pm \frac{1}{\|P\| \|P^{-1}\|}$$

Therefore

$$\begin{cases} \|\Phi_{I,P}\| = \|F + F^{-1}\| \ge r(F + F^{-1}) = \|P\| \|P^{-1}\| + \frac{1}{\|P\| \|P^{-1}\|}, \\ \|\Psi_{I,P}\| = \|F - F^{-1}\| \ge r(F - F^{-1}) = \|P\| \|P^{-1}\| - \frac{1}{\|P\| \|P^{-1}\|}. \end{cases}$$

In view of  $\|\Phi_{I,S}\| = \|\Phi_{I,P}\|, \|\Psi_{I,S}\| = \|\Psi_{I,P}\|, \|S\| = \|P\|$  and  $\|S^{-1}\| = \|P^{-1}\|$ , we have

$$\begin{cases} \|\Phi_{I,S}\| \ge \|S\| \|S^{-1}\| + \frac{1}{\|S\| \|S^{-1}\|}, \\ \|\Psi_{I,S}\| \ge \|S\| \|S^{-1}\| - \frac{1}{\|S\| \|S^{-1}\|}. \end{cases}$$

#### A. Seddik / Linear Algebra and its Applications 389 (2004) 183-187

On the other hand, we obtain the inequality (7) in two steps: Step 1. Suppose ||P|| = 1.

Since  $\Psi_{I,P} = V_{I,P,P^{-1}-\lambda P}$ , for all complex  $\lambda$ , it follows that

$$\|\Psi_{I,P}\| \leq 2\|P^{-1} - \|P^{-1}\|P\| = 2(\|P^{-1}\| - 1).$$

Step 2. From the step 1, we obtain

$$\|\Psi_{I,P}\| = \|\Psi_{I,\frac{P}{\|P\|}}\| \le 2(\|P\|\|P^{-1}\| - 1).$$

Thus, we find that

 $\|\Psi_{I,S}\| \leq 2(\|S\|\|S^{-1}\| - 1).$ 

**Theorem 2.2.** We have the following equalities:

$$\int \|\Phi_{2,S}\| = \|S\| \|S^{-1}\| + \frac{1}{\|S\| \|S^{-1}\|},\tag{8}$$

$$\|\Psi_{2,S}\| = \|S\| \|S^{-1}\| - \frac{1}{\|S\| \|S^{-1}\|}.$$
(9)

**Proof.** Employing the notation used in the proof of the preceding theorem (where  $I = \mathfrak{C}_2$ ) and since  $F \pm F^{-1}$  is a bounded selfadjoint operator on the Hilbert space  $\mathfrak{C}_2$  and  $\sigma(F) = \sigma(F^{-1}) = \sigma(P) \sigma(P^{-1})$ , we get

$$\|F \pm F^{-1}\| = r(F \pm F^{-1}) = \|P\| \|P^{-1}\| \pm \frac{1}{\|P\| \|P^{-1}\|}.$$

Then the result follows immediately.  $\Box$ 

**Theorem 2.3.** We have the following inequality:

$$\forall X \in I : \|SXS^{-1} - S^{-1}XS\|_I \leq (\|S\|\|S^{-1}\| - 1)\|SXS^{-1} + S^{-1}XS\|_I.$$

**Proof.** The inequality follows immediately from the inequalities (2) and (7).  $\Box$ 

**Corollary 2.1.** If  $||S|| ||S^{-1}|| \leq 2$ , then we have the following inequality:

$$\forall X \in I : \|SXS^{-1} - S^{-1}XS\|_{I} \leq \|SXS^{-1} + S^{-1}XS\|_{I}.$$

#### References

- [1] G. Corach, H. Porta, L. Recht, An operator inequality, Linear Algebra Appl. 142 (1990) 153-158.
- [2] F. Kittaneh, On some operator inequalities, Linear Algebra Appl. 208-209 (1994) 19-28.
- [3] A. McIntosh, Heinz inequalities and perturbation of spectral families, Macquarie Mathematical Reports, Macquarie University, 1979.

A. Seddik / Linear Algebra and its Applications 389 (2004) 183–187

- [4] A. Seddik, On the numerical range and norm of elementary operators, Linear Multilinear Algebra 52 (3–4) (2004) 293–302.
- [5] A. Seddik, Some results related to the Corach–Porta–Recht inequality, Proc. Amer. Math. Soc. 129 (2001) 3009–3015.