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Let B(H) be the C∗-algebra of all bounded linear operators acting on a complex Hilbert
space H . In this note, we shall show that if S is an invertible normal operator in B(H) the
following estimation holds

∥∥S ⊗ S−1 + S−1 ⊗ S
∥∥

λ
� ‖S‖∥∥S−1

∥∥ + 1

‖S‖‖S−1‖
where ‖.‖λ is the injective norm on the tensor product B(H) ⊗ B(H). This last inequality
becomes an equality when S is invertible self-adjoint. On the other hand, we shall
characterize the set of all invertible normal operators S in B(H) satisfying the relation

∥∥S ⊗ S−1 + S−1 ⊗ S
∥∥

λ
= ‖S‖∥∥S−1

∥∥ + 1

‖S‖‖S−1‖
and also we shall give some characterizations of some subclasses of normal operators in
B(H) by inequalities or equalities.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let A be a standard operator algebra acting on a (real or complex) normed space (it is a subalgebra of bounded linear
operators acting on a normed space that contains all finite rank operators). A linear operator R : A → A defined by R(X) =∑n

i=1 Ai X Bi , where Ai, Bi ∈ A (1 � i � n) is called an elementary operator on A; and it is denoted by R = R A,B , where
A = (A1, . . . , An) and B = (B1, . . . , Bn).

This concrete class includes many important operators on A, such as the two-sided multiplication M A,B : X → A X B , the
inner derivation δA : X → A X − X A, the generalized derivation δA,B : X → A X − X B , the symmetrized two-sided multiplica-
tion U A,B : X → A X B + B X A, for given A, B ∈ A.

We denote by A ⊗ A the vector space given by

A ⊗ A =
{

n∑
i=1

Ai ⊗ Bi: n � 1, Ai, Bi ∈ A, i = 1, . . . ,n

}

(called tensor product), and by E (A) the vector space of all elementary operators acting on A. We may algebraically identify
A ⊗ A with E (A) by the natural map Θ : A ⊗ A → E (A),

∑n
i=1 Ai ⊗ Bi → Θ(

∑n
i=1 Ai ⊗ Bi) = R A,B (where A = (A1, . . . , An)

and B = (B1, . . . , Bn)). We may endowed each of the two last vector spaces with norms that make the map Θ as an
isometry. Indeed, the injective norm defined on A ⊗ A by ‖∑n

i=1 Ai ⊗ Bi‖λ = sup f ,g∈(A′)1
|∑n

i=1 f (Ai)g(Bi)| (where (A′)1
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denotes the unit sphere of the dual of A) and the norm d(R) = sup{‖R(X)‖: ‖X‖ = 1 = rank X} defined on E (A) satisfy
the relation d(Θ(ω)) = ‖ω‖λ , for every ω ∈ A ⊗ A.

This last result has given recently in [4], and before was established by Magajna and Turnsek [2] in the particular case
where A is the C∗-algebra of all bounded linear operators acting on a complex Hilbert space.

Also in [3,4], we have interested to characterize when the injective norm d(R A,B) = ‖∑n
i=1 Ai ⊗ Bi‖λ gets its maximal

value D(R A,B) = ∑n
i=1 ‖Ai‖‖Bi‖, for arbitrary elementary operators and for some particular elementary operators.

In this note, we shall interest in the case where A = B(H) is the C∗-algebra of all bounded linear operators acting on a
complex Hilbert space H .

In Section 2, we shall give some lower estimates for the injective norm d(R A,B) = ‖∑n
i=1 Ai ⊗ Bi‖λ, where A and B are

two n-tuples of commuting operators in B(H) and we shall characterize this norm for two n-tuples of commuting normal
operators.

In Section 3, we apply the results of Section 2 to the injective norm of S ⊗ S−1 + S−1 ⊗ S (where S is an invertible
operator in B(H)). We shall show that the upper estimate ‖S ⊗ S−1 + S−1 ⊗ S‖λ � ‖S‖‖S−1‖ + 1

‖S‖‖S−1‖ holds for every

invertible normal operator S in B(H). This last inequality becomes an equality when S is invertible self-adjoint. On the
other hand, we shall characterize the set of all invertible normal operators S in B(H) satisfying the relation

∥∥S ⊗ S−1 + S−1 ⊗ S
∥∥

λ
= ‖S‖∥∥S−1

∥∥ + 1

‖S‖‖S−1‖
and also we shall give some characterizations of some subclasses of normal operators in B(H) by inequalities or equalities.

Some special notation used in this note (where A ∈ B(H)):

(i) σ(A) the spectrum of A,

(ii) r(A) = supλ∈σ(A) |λ| the spectral radius of A,
(iii) σ1(A) = {α ∈ σ(A): |α| = minλ∈σ(A) |λ|},
(iv) σ2(A) = {α ∈ σ(A): |α| = r(A)},
(v) S1 the set of all unit bounded functionals acting on B(H),

(vi) |K| = supλ∈K |λ|, where K is a bounded subset of C,
(vii) L ◦ M = {∑n

i=1 αiβi: (α1, . . . ,αn) ∈ L, (β1, . . . , βn) ∈ M}, where L ⊂ C
n and K ⊂ C

n,

(viii) |A| = (A∗ A)1/2 the positive square root of A,

(ix) I(H), the set of all invertible operators in B(H),

(x) S(H), the set of all invertible self-adjoint operators in B(H),

(xi) U(H), the set of all unitary operators in B(H),

(xii) Us(H) = S(H) ∩ U(H), the set of all unitary reflection operators in B(H),

(xiii) N(H), the set of all invertible normal operators in B(H),

(xiv) L1(H) = {X ∈ L(H): ‖X‖ = 1}, where L(H) ⊂ B(H),

(xv) M S = M S,S−1 and ΦS = U S,S−1 , where S ∈ I(H),

(xvi) Dθ the straight line passing through the origin with slope tan θ , for θ ∈ [0,π [.

For a n-tuple A = (A1, . . . , An) of commuting operators in B(H), we denote by:

(xvii) ΓA the set of all multiplicative functionals acting on the maximal commutative Banach algebra that contains the
operators A1, . . . , An,

(xviii) σ(A) = {(ϕ(A1), . . . ,ϕ(An)): ϕ ∈ ΓA} the joint spectrum of A.

For a n-tuple A = (A1, . . . , An) of operators in B(H), we denote by:

(xix) V (A) = {( f (A1), . . . , f (An)): f ∈ S1, f (I) = 1} the joint algebraic numerical range of A.

(xx) For x, y ∈ H , we denote by x ⊗ y the operator defined on H by (x ⊗ y)z = 〈z, y〉x for every z ∈ H .

For the sake of completeness, we refer the reader to the following definition and propositions given in [3,4] which
represents the basic source of all results obtained in this note:

Definition 1.

(i) Let A ∈ B(H). A is called normaloid if ‖A‖ = r(A).

(ii) Let A, B ∈ B(H). We say that A is norm-parallel to B (A ‖ B) if ‖A + λB‖ = ‖A‖ + ‖B‖, for some unit scalar λ.

Proposition 1. (See [4].) Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two n-tuples of elements in B(H). The following equalities
hold:
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d(R A,B) = sup
f ,g∈S1

∣∣∣∣∣
n∑

i=1

f (Ai)g(Bi)

∣∣∣∣∣ = sup
f ∈S1

∥∥∥∥∥
n∑

i=1

f (Bi)Ai

∥∥∥∥∥ = sup
f ∈S1

∥∥∥∥∥
n∑

i=1

f (Ai)Bi

∥∥∥∥∥.

Proposition 2. (See [4].) Let A, B ∈ B(H). Then d(U A,B) = 2‖A‖‖B‖ if and only if A ‖ B.

Proposition 3. (See [3].) Let A ∈ B(H). Then d(U A,A∗ ) = 2‖A‖2 if and only if A is normaloid.

2. On the injective norm of
∑n

i=1 Ai ⊗ Bi

Lemma 1. For every commuting normal operators A1, . . . , An in B(H), and for every scalars λ1, . . . , λn the operator
∑n

i=1 λi Ai is
normal.

Proof. The proof follows immediately from Putnam–Fuglede theorem. �
Theorem 1. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two n-tuples of commuting operators in B(H). Then ‖∑n

i=1 Ai ⊗ Bi‖λ �
|σ(A) ◦ σ(B)|, and ‖∑n

i=1 Ai ⊗ Bi‖λ = |σ(A) ◦ σ(B)| if all Ai and Bi are normal operators.

Proof. Let (ϕ,ψ) be an arbitrary pair in ΓA ×ΓB . Using Hahn–Banach theorem, we may extend ϕ and ψ to unit functionals
f and g on B(H), respectively. So it follows from Proposition 1 that d(R A,B) � |∑n

i=1 f (Ai)g(Bi)| = |∑n
i=1 ϕ(Ai)ψ(Bi)|.

Therefore ‖∑n
i=1 Ai ⊗ Bi‖λ � |σ(A) ◦ σ(B)|.

Now suppose that all Ai and Bi are normal operators. It suffice to prove that |σ(A) ◦ σ(B)| � d(R A,B). Since
|σ(A) ◦ σ(B)| � |ψ(

∑n
i=1 ϕ(Ai)Bi)| and

∑n
i=1 ϕ(Ai)Bi is normal, for every (ϕ,ψ) ∈ ΓA × ΓB , then |σ(A) ◦ σ(B)| �

supψ∈ΓB
|ψ(

∑n
i=1 ϕ(Ai)Bi)| = ‖∑n

i=1 ϕ(Ai)Bi‖, for every ϕ ∈ ΓA . Thus |σ(A) ◦ σ(B)| � |∑n
i=1 ϕ(Ai) f (Bi)| =

|ϕ(
∑n

i=1 f (Bi)Ai)|, for every ϕ ∈ ΓA and f ∈ S1. Hence, |σ(A) ◦ σ(B)| � ‖∑n
i=1 f (Bi)Ai‖ for every f ∈ S1. So it follows

from Proposition 1 that |σ(A) ◦ σ(B)| � d(R A,B). �
Theorem 2. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two n-tuples of operators in B(H). Then ‖∑n

i=1 Ai ⊗ Bi‖λ �
|V (A) ◦ V (B)|, and ‖∑n

i=1 Ai ⊗ Bi‖λ = |V (A) ◦ V (B)|, if A and B are n-tuples of normal commuting operators.

Proof. The inequality follows immediately from the definition of the joint numerical range and from Proposition 1.
The equality follows using the same argument as in the above proof. �

3. On the injective norm of S ⊗ S−1 + S−1 ⊗ S

For every S ∈ I(H) it is known that:

(i) there exits V ∈ U(H) such that S = V |S| (polar decomposition of S),
(ii) S is normal if and only if V |S| = |S|V ,

(iii) S is self-adjoint if and only if V ∈ Us(H) and V |S| = |S|V .

Theorem 3. Let S ∈ I(H). Then we have

(i)
∥∥S ⊗ S−1 + S−1 ⊗ S

∥∥
λ

� sup
λ,μ∈σ(S)

∣∣∣∣ λ

μ
+ μ

λ

∣∣∣∣.
If S is normal, the above inequality becomes equality, and the following equality holds

(ii)
∥∥S∗ ⊗ S−1 + S−1 ⊗ S∗∥∥

λ
= sup

λ,μ∈σ(S)

(∣∣∣∣ λ

μ

∣∣∣∣ +
∣∣∣∣μλ

∣∣∣∣
)

.

Proof. The proof follows immediately from Theorem 1. �
Remark 1. Using the fact that σ(M S ) = σ(S)σ (S−1) and σ(ΦS ) = {ϕ(M S ) + 1

ϕ(M S )
: ϕ ∈ Γ } (where Γ is the set of all

multiplicative functionals on the maximal commutative Banach algebra that contains M S ), it is easy to see that

(i) sup
λ,μ∈σ(S)

∣∣∣∣ λ

μ
+ μ

λ

∣∣∣∣ = sup
z∈σ(M S )

∣∣∣∣z + 1

z

∣∣∣∣ = r(ΦS ),

(ii) sup
λ,μ∈σ(S)

(∣∣∣∣ λ

μ

∣∣∣∣ +
∣∣∣∣μλ

∣∣∣∣
)

= sup
z∈σ(M S )

(
|z| +

∣∣∣∣1

z

∣∣∣∣
)

.
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Corollary 1. Let P be an invertible positive operator in B(H). Then we have∥∥P ⊗ P−1 + P−1 ⊗ P
∥∥

λ
= ‖P‖∥∥P−1

∥∥ + 1

‖P‖‖P−1‖ .

Proof. From the above theorem and remark, it follows that d(ΦP ) = supt∈σ(M P )(t + 1
t ). It is clear that minσ(P ) = 1

‖P−1‖ and

maxσ(P ) = ‖P‖, and since σ(M P ) = σ(P )σ (P−1), then minσ(M P ) = 1
‖P‖‖P−1‖ = p and maxσ(M P ) = ‖P‖‖P−1‖ = 1

p .

It is easy to see that max{t + 1
t : p � t � 1

p } = p + 1
p , this maximum is attainable in p and 1

p . Thus, the result follows
immediately from the fact that p ∈ σ(M P ). �
Remark 2. Let S ∈ I(H).

(i) It follows immediately from the above theorem that ‖S ⊗ S−1 + S−1 ⊗ S‖λ � 2 and ‖S∗ ⊗ S−1 + S−1 ⊗ S∗‖λ � 2.

(ii) It is easy to see that the two last inequalities become equalities when S is unitary.
(iii) If S is normal, then ‖S ⊗ S−1 + S−1 ⊗ S‖λ = 2 if and only if | λ

μ + μ
λ
| � 2 for every λ,μ ∈ σ(S).

(iv) If ‖S ⊗ S−1 + S−1 ⊗ S‖λ = 2, then the interior of the spectrum of S is empty. Indeed, since | λ
μ + μ

λ
| � 2 for every

λ,μ ∈ σ(S), then every straight line Dθ (0 � θ < π) intercept σ(S) in at most two points.

Theorem 4. The following properties hold:

(i) ∀S ∈ I(H),
∥∥S∗ ⊗ S−1 + S−1 ⊗ S∗∥∥

λ
= ‖S‖∥∥S−1

∥∥ + 1

‖S‖‖S−1‖ ,

(ii) ∀S ∈ S(H),
∥∥S ⊗ S−1 + S−1 ⊗ S

∥∥
λ

= ‖S‖∥∥S−1
∥∥ + 1

‖S‖‖S−1‖ ,

(iii) ∀S ∈ N(H),
∥∥S ⊗ S−1 + S−1 ⊗ S

∥∥
λ

� ‖S‖∥∥S−1
∥∥ + 1

‖S‖‖S−1‖ .

Proof. (i) Let S ∈ I(H). Then there exists V ∈ U(H) such that S = V P (where P = |S|). From Corollary 1 and from the fact
that {X ∈ B1(H): rank X = 1} = {V ∗ X: X ∈ B1(H), rank X = 1}, and ‖S‖ = ‖P‖, ‖S−1‖ = ‖P−1‖ it follows that∥∥S∗ ⊗ S−1 + S−1 ⊗ S∗∥∥

λ
= sup

‖X‖=1=rank X

∥∥S∗ X S−1 + S−1 X S∗∥∥
= sup

‖X‖=1=rank X

∥∥P V ∗ X P−1 V ∗ + P−1 V ∗ X P V ∗∥∥
= sup

‖X‖=1=rank X

∥∥P (V ∗ X)P−1 + P−1(V ∗ X)P
∥∥

= sup
‖X‖=1=rank X

∥∥P X P−1 + P−1 X P
∥∥

= ∥∥P ⊗ P−1 + P−1 ⊗ P
∥∥

λ

= ‖P‖∥∥P−1
∥∥ + 1

‖P‖‖P−1‖
= ‖S‖∥∥S−1

∥∥ + 1

‖S‖‖S−1‖ .

(ii) follows immediately from (i).
(iii) Let S ∈ N(H). So from Theorem 3(i), it follows that ‖S ⊗ S−1 + S−1 ⊗ S‖λ = supλ,μ∈σ(S) | λ

μ + μ
λ
|. Hence ‖S ⊗ S−1 +

S−1 ⊗ S‖λ � supλ,μ∈σ(S)(| λ
μ |+ |μ

λ
|). Thus from Theorem 3(ii) and the above property (i), we obtain ‖S ⊗ S−1 + S−1 ⊗ S‖λ �

‖S‖‖S−1‖ + 1
‖S‖‖S−1‖ . �

Remark 3. (i) The inequality in the above theorem may be strict. Indeed, for the invertible normal operator S = [ 1 0
0 1+i

2

]
in

B(C2), by a simple computation we find that

2 = ∥∥S ⊗ S−1 + S−1 ⊗ S
∥∥

λ
< ‖S‖∥∥S−1

∥∥ + 1

‖S‖‖S−1‖ = 3
√

2

2
.

(ii) Denote by

R(H) =
{

S ∈ N(H):
∥∥S ⊗ S−1 + S−1 ⊗ S

∥∥
λ

= ‖S‖∥∥S−1
∥∥ + 1

−1

}
.
‖S‖‖S ‖
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It is easy to see that C
∗U(H) ∪ C

∗S(H) ⊂ R(H), and then if dim H � 2, the inclusions C
∗U(H) ⊂ R(H), C

∗S(H) ⊂
R(H) are strict. In the following theorem, we give a complete characterization of the set R(H) using the spectral properties
of normal operators.

Theorem 5. Let S ∈ N(H). Then the following properties are equivalent:

(i) ‖S ⊗ S−1 + S−1 ⊗ S‖λ = ‖S‖‖S−1‖ + 1
‖S‖‖S−1‖ ,

(ii) ∃θ ∈ [0,π [, Dθ ∩ σ1(S) �= ∅, Dθ ∩ σ2(S) �= ∅.

Proof. (i) ⇒ (ii). From Theorem 3(i) and from the compactness of σ(S), we may choose λ, μ in σ(S) such that d(ΦS ) =
| λ
μ + μ

λ
| = ‖S‖‖S−1‖+ 1

‖S‖‖S−1‖ . So from Theorem 3(ii) and Theorem 4(i), we obtain that ‖S‖‖S−1‖+ 1
‖S‖‖S−1‖ � | λ

μ |+ |μ
λ
| �

‖S‖‖S−1‖ + 1
‖S‖‖S−1‖ . Thus | λ

μ | + |μ
λ
| = ‖S‖‖S−1‖ + 1

‖S‖‖S−1‖ . Since S is normal, we may choose λ, μ in σ(S) such that

|λ| = ‖S‖ and |μ| = 1
‖S−1‖ . Then, put λ = ‖S‖eiθ and μ = 1

‖S−1‖ eiϕ for some reals θ , ϕ. Hence,

d(ΦS ) =
∣∣∣∣‖S‖∥∥S−1

∥∥ei(θ−ϕ) + 1

‖S‖‖S−1‖ e−i(θ−ϕ)

∣∣∣∣ = ‖S‖∥∥S−1
∥∥ + 1

‖S‖‖S−1‖ .

So it follows immediately that cos 2(θ − ϕ) = 1. Then θ ≡ ϕ[π ]. Therefore, the first implication follows immediately.

(ii) ⇒ (i). Let α ∈ Dθ ∩ σ1(S) and β ∈ Dθ ∩ σ2(S). Since S is normal, it follows that α = eiθ

‖S−1‖ , β = ‖S‖ei(θ+kπ) , where

k ∈ {0,1}. Then ‖S ⊗ S−1 + S−1 ⊗ S‖λ � |α
β

+ β
α | = ‖S‖‖S−1‖ + 1

‖S‖‖S−1‖ . On the other hand, since S is normal and from

Theorem 3 and Theorem 4(i), it follows that ‖S ⊗ S−1 + S−1 ⊗ S‖λ � supλ,μ∈σ(S)(| λ
μ |+|μ

λ
|) = ‖S‖‖S−1‖+ 1

‖S‖‖S−1‖ . Therefore

(i) follows immediately. �
Corollary 2.

(i) If dim H � 2, then R(H) = C
∗U(H) ∪ C

∗S(H).

(ii) If dim H � 3, the inclusion C
∗U(H) ∪ C

∗S(H) ⊂ R(H) is strict.

4. Characterization on the unitary reflection and unitary operators

We denote by

D(H) = {
S ∈ I(H): ∀X ∈ B(H),

∥∥S X S−1 + S−1 X S
∥∥ � 2‖X‖}.

In [1], Corach, Porta and Recht proved that S(H) ⊂ D(H); and since ΦλS = ΦS for every λ ∈ C
∗ and S ∈ I(H), so it is

easy to see that C
∗S(H) ⊂ D(H).

In [5], we showed that this last inclusion is exactly an equality. That means

C
∗S(H) = {

S ∈ I(H): ∀X ∈ B(H),
∥∥S X S−1 + S−1 X S

∥∥ � 2‖X‖}.
So the characterization of the class of operators C

∗S(H) by inequalities was established. Using the polar decomposition
of an invertible operator and the last formula it follows immediately that

∀S ∈ I(H), ∀X ∈ B(H),
∥∥S∗ X S−1 + S−1 X S∗∥∥ � 2‖X‖. (∗)

Then we may deduce easily the two other characterizations of C
∗S(H) given in the following proposition.

Proposition 4. Let S ∈ I(H). Then the following properties are equivalent:

(i) ∀X ∈ B(H), ‖S X S−1 + S−1 X S‖ = ‖S∗ X S−1 + S−1 X S∗‖,
(ii) ∀X ∈ B(H), ‖S X S−1 + S−1 X S‖ � ‖S∗ X S−1 + S−1 X S∗‖,

(iii) S ∈ C
∗S(H).

Proof. (i) ⇒ (ii). The implication is trivial.
(ii) ⇒ (iii). Let S = V P the polar decomposition of S . Then we have

∀X ∈ B(H)
∥∥S X S−1 + S−1 X S

∥∥ �
∥∥S∗ X S−1 + S−1 X S∗∥∥ = ∥∥P (V ∗ X)P−1 + P−1(V ∗ X)P

∥∥ � 2‖V ∗ X‖ = 2‖X‖.
Hence S ∈ C

∗S(H).
(iii) ⇒ (i). The implication is trivial. �
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Also, it is easy to see that the set C
∗S(H) is exactly the set of all invertible normal operators S ∈ B(H) satisfying the

condition σ(S) ⊂ Dθ , for some θ ∈ [0,π [ (see [5, Lemma 4.3]). Without this last condition, the characterization of set N(H)

of all invertible normal operators in B(H) is given in the following proposition:

Proposition 5. Let S ∈ I(H). Then the following properties are equivalent:

(i) S ∈ N(H),

(ii) ∀X ∈ B(H), ‖S X S−1‖ + ‖S−1 X S‖ = ‖S∗ X S−1‖ + ‖S−1 X S∗‖,
(iii) ∀X ∈ B(H), ‖S X S−1‖ + ‖S−1 X S‖ � 2‖X‖.

Proof. It is clear that the condition (i) is equivalent to each of the two following properties:

(1) ∀X ∈ B(H), ‖S X‖ = ‖S∗ X‖,
(2) ∀X ∈ B(H), ‖X S‖ = ‖X S∗‖.

(i) ⇒ (ii). The implication follows immediately from (1) and (2).
(ii) ⇒ (iii). Using the property (∗), it follows immediately that

∀X ∈ B(H)
∥∥S X S−1

∥∥ + ∥∥S−1 X S
∥∥ = ∥∥S∗ X S−1

∥∥ + ∥∥S−1 X S∗∥∥ �
∥∥S∗ X S−1 + S−1 X S∗∥∥ � 2‖X‖.

Therefore (iii) holds.
(iii) ⇒ (i). Let S = V P and S∗ = U Q be the polar decomposition of S and S∗ (where P = |S| and Q = |S∗|). It is easy to

see that the condition (iii) is equivalent to the following condition:

(iv) ∀X ∈ B(H), ‖P X P−1‖ + ‖Q −1 X Q ‖ � 2‖X‖.

Since σ(P 2) = σ(Q 2), then from the spectral theorem it follows that σ(P ) = σ(Q ). Using this last equality and the
condition (iv), and applying [5, Theorem 3.6] it follows that P = Q . Therefore S∗ S = S S∗. �
Remark 4. It follows from the above proposition that

N(H) = {
S ∈ I(H): ∀X ∈ B(H),

∥∥S X S−1
∥∥ + ∥∥S−1 X S

∥∥ = ∥∥S∗ X S−1
∥∥ + ∥∥S−1 X S∗∥∥}

= {
S ∈ I(H): ∀X ∈ B(H),

∥∥S X S−1
∥∥ + ∥∥S−1 X S

∥∥ � 2‖X‖}.
In the rest of this section, we shall characterize another important subclasses of N(H). We start with the following

lemma which will be used in all the following characterizations.

Lemma 2.

(i) Let S ∈ S(H). Then ‖S‖‖S−1‖ = 1 if and only if S = ‖S‖V , for some V ∈ Us(H).

(ii) Let S ∈ I(H). Then ‖S‖‖S−1‖ = 1 if and only if S = ‖S‖V , for some V ∈ U(H).

Proof. The proof is trivial. �
Theorem 6. Let S ∈ I(H). Then the following properties are equivalent:

(i) ∀X ∈ B(H), ‖S∗ X S−1 + S−1 X S∗‖ = 2‖X‖,
(ii) ‖S∗ ⊗ S−1 + S−1 ⊗ S∗‖λ = 2,

(iii) S ∈ R
∗U(H),

(iv) ∀X ∈ B(H), ‖S X S−1‖ + ‖S−1 X S‖ = 2‖X‖.

Proof. (i) ⇒ (ii). The implication is trivial.
(ii) ⇒ (iii). Using Theorem 4(i), it follows that 2 = ‖S∗ ⊗ S−1 + S−1 ⊗ S∗‖λ = ‖S‖‖S−1‖+ 1

‖S‖‖S−1‖ . Hence ‖S‖‖S−1‖ = 1.

Therefore (iii) follows immediately from Lemma 2(ii).
(iii) ⇒ (iv). The implication is trivial.
(iv) ⇒ (i). Using the above proposition it follows that S is normal. So from the same proposition and the property (∗),

we may deduce that
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∀X ∈ B(H) 2‖X‖ = ∥∥S X S−1
∥∥ + ∥∥S−1 X S

∥∥ = ∥∥S∗ X S−1
∥∥ + ∥∥S−1 X S∗∥∥ �

∥∥S∗ X S−1 + S−1 X S∗∥∥ � 2‖X‖.
Therefore (i) holds. �
Remark 5. It follows from the above theorem that

U(H) = {
S ∈ I1(H): ∀X ∈ B(H),

∥∥S∗ X S−1 + S−1 X S∗∥∥ = 2‖X‖}
= {

S ∈ I1(H): ∀X ∈ B(H),
∥∥S X S−1

∥∥ + ∥∥S−1 X S
∥∥ = 2‖X‖}

= {
S ∈ I1(H):

∥∥S∗ ⊗ S−1 + S−1 ⊗ S∗∥∥
λ

= 2
}
.

Theorem 7. Let S ∈ R(H). Then the following properties are equivalent

(i) ∀X ∈ B(H), ‖S X S−1 + S−1 X S‖ � 2‖X‖,
(ii) ‖S ⊗ S−1 + S−1 ⊗ S‖λ = 2,

(iii) S ‖ S−1,

(iv) S ∈ R
∗U(H).

Proof. (i) ⇒ (ii). This implication is trivial.
(ii) ⇒ (iii). It is clear that 2 = d(ΦS ) = ‖S‖‖S−1‖ + 1

‖S‖‖S−1‖ , and hence ‖S‖‖S−1‖ = 1. So from Lemma 2(ii) we obtain

that S = ‖S‖V , where V ∈ U(H). Since V is normal, then from Proposition 3, it follows that d(U S,S−1 ) = d(ΦS ) = d(ΦV ) =
d(UV ∗,V ) = 2‖V ‖2 = 2‖S‖‖S−1‖. Therefore, from Proposition 2, it follows that S ‖ S−1.

(iii) ⇒ (iv). Since 2‖S‖‖S−1‖ = d(ΦS ) = ‖S‖‖S−1‖ + 1
‖S‖‖S−1‖ , then ‖S‖‖S−1‖ = 1. Therefore (iv) follows immediately

from Lemma 2(ii).
(iv) ⇒ (i). This implication is trivial. �

Remark 6. It follows from the above that

U(H) = {
S ∈ R1(H): ∀X ∈ B(H),

∥∥S X S−1 + S−1 X S
∥∥ � 2‖X‖}

= {
S ∈ R1(H):

∥∥S ⊗ S−1 + S−1 ⊗ S
∥∥

λ
= 2

}
= {

S ∈ R1(H): S ‖ S−1}.
Problem 1. Is it true that U(H) is characterized by

U(H) = {
S ∈ I1(H): ∀X ∈ B(H),

∥∥S X S−1 + S−1 X S
∥∥ � 2‖X‖}?

Theorem 8. Let S ∈ S(H). Then the following properties are equivalent

(i) ∀X ∈ B(H), ‖S X S−1 + S−1 X S‖ = 2‖X‖,
(ii) ‖S ⊗ S−1 + S−1 ⊗ S‖λ = 2,

(iii) S ‖ S−1,

(iv) S ∈ R
∗Us(H).

Proof. The proof is similar than the proof of Theorem 7, only we use Lemma 2(i) instead of Lemma 2(ii). �
Remark 7. (i) It follows from the above theorem that the class of unitary reflection operators in B(H) is characterized by

Us(H) = {
S ∈ S1(H): ∀X ∈ B(H),

∥∥S X S−1 + S−1 X S
∥∥ = 2‖X‖}

= {
S ∈ S1(H):

∥∥S ⊗ S−1 + S−1 ⊗ S
∥∥

λ
= 2

}
= {

S ∈ S1(H): S ‖ S−1}.
(ii) From the above theorem and from the characterization of the class C

∗S(H), we find easily that the class C
∗Us(H)

is characterized by

C
∗Us(H) = {

S ∈ I(H): ∀X ∈ B(H),
∥∥S X S−1 + S−1 X S

∥∥ = 2‖X‖}.
(iii) From above, the relation “S ‖ S−1, S ∈ S1(H)” characterize the set Us(H); and the relation “S ‖ S−1, S ∈ R1(H)”

characterize the set U(H). It has been showed in [3, Theorem 9] that the relation “A ‖ A∗ , A ∈ B(H)” characterize the set
of all normaloid operators in B(H).
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