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Abstract Based on known theoretical developments in lin-
ear dynamics of homogeneous beams, two homogenization
approaches of composite beams are developed further to an
anterior work using two equivalent properties: the physi-
cal and the mechanic–geometrical properties. Further to the
assumption of Euler–Bernoulli beams, dynamic parameters
are needed. Equations of a given beam structure subjected
to free un-damped and/or damped vibration are established.
The natural frequency responses of the first five modes are
obtained from both approaches, and then compared with
those obtained from a finite element model approach, tak-
ing into account different slenderness and boundary condi-
tions. The result shows good agreement. An extension to the
equivalent physical parameter homogenization method using
the behaviour law in nonlinear state is presented here. Thus,
the homogenization is extended to an elastically equivalent
model elaboration for a system having an elastic–plastic and
bilinear behaviour. The aim is to use analytical expressions
from an elastically equivalent model for a nonlinear system
of multilayer beam type to obtain the new corrected dynamic
parameter. Based on the ductility factor method combined
with the secant method that uses a substitute structure and
secant stiffness to account for nonlinear behaviour, we devel-
oped a formula using global effective flexural modulus E∗
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the equivalent mass density ρ∗, as well as the two types of
viscous damping parameter (these types include a viscous
resistance to transverse displacement C∗ of the beam and
a viscous resistance to straining of the beam material C∗

S)

which can be incorporated into the formula without difficulty.
The nonlinear analysis shows that the degradation of rigid-
ity decreases the frequencies response curve, which tends to
increase the vibration periods giving an additional storage
space for the structure capacity to accumulate displacements
of a higher degree compared to those of the elastic case.
The importance of the nonlinearity assumption is shown,
which fits better with the real mechanical performances of the
structure.

Keywords Composite · Ductility factor · Damping factors
of Rayleigh · Euler Bernoulli beam · Global equivalent
mechanical–geometrical properties · Global equivalent
physical properties · Homogenization · Law
of elastic–plastic and bilinear behaviour · Vibration
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Abbreviations
n Recurrence index
E∗ Equivalent longitudinal modulus of elasticity
ρ∗ Equivalent mass volume
C∗

s Equivalent inner damping coefficient
C∗ Equivalent outer damping coefficient
(EI)eq Bending stiffness factor
(CsI)eq Equivalent damping factor
(ρA)eq Transversal inertia factor
Ceq Equivalent outer damping coefficient
ρ, E and G Mass volume, Young modulus and

shear modulus, respectively
Ai , hi , ρi Fold i relative characteristics relatives
N Number of folds
Mn Generalised mass
ξn , ξeq Linear damping factor of nth mode,

nonlinear equivalent damping factor
a0 and a1 Arbitrary coefficients
�i Vibration mode i
Yi Modal amplitude (normal or principal

coordinates)
vi (x, t) Geometric displacement coordinates for

mode i
ωn Natural frequency of vibration for mode N

1 Introduction

The lightness and robustness considerations have directed
very early aeronautical and naval constructors, civilians
and industrialists to composite material solutions [1]. The
dynamic analysis of composite beams allows a better moni-
toring of their mechanical behaviour and facilitates thereafter
their exploitation from the point of view of their design and
their use. Although only a few studies were initiated within
the theory described here, it will be partly validated by other
theories based on the analysis of Pagano [2] as well as appli-
cations stated in reference [3].

The treatment of laminated beams developed in this work
is based on a simple theory. The method of analysis is known
as the Bernoulli–Euler theory of elementary mechanics of
materials. Although the application of this theory is quite
restricted, it yields considerable insight into the analysis of
laminated structures and provides a natural introduction to
the more general theory of geometrically-exact multilayer
beams [4–6]. Two homogenization methods are presented,
the first being based on the equivalent physical characteristics
whilst the second is based on the equivalent mechanical–
geometrical characteristics.

The general expression of equivalent transition factors
developed through the two homogenization approaches is
obtained while taking into account the effect of energy dissi-
pation (internal and external damping). These factors are later
modified to take account of the rigidity-weakening effect
in the nonlinear stage. The dynamic responses are obtained
based on natural frequencies and Rayleigh’s damping factors.
The analytical expressions of these responses are obtained in
linear stage according to two approaches, physical approach
(I), and mechanical–geometrical approach (II), respectively,
and developed in the same manner as in the post-elastic phase.

The natural frequencies are determined and compared
with those obtained from a finite element model. Afterwards,
the effect of support conditions on the damping contribution
is considered. The comparative study has shown a very good
accuracy. The post-elastic behaviour doesn’t affect the good
concordance of the predictable responses obtained by the two
approaches (I, II).

The aim is to produce a homogeneous formula that is
obtaining relationships of similar behaviours to those of
isotropic homogeneous beams, allowing the attainment of
a quick and simple solution to the problem of frequency cal-
culation of multilayered beams, taking into account the two
cases of linear and nonlinear behaviours.

2 Characteristics of Straight Section

Figure 1 represents a straight beam of section (S) composed
of a symmetrical pile of N isotropic materials of different
thicknesses. If A, is the total surface, h the total height of the
straight section (S) and Ai and hi are, respectively, the surface
and height of the i th fold, then the following equations are
obtained:

A =
N∑

i=1

Ai and h =
N∑

i=1

hi

Moreover, the mechanical characteristics (ρi , Ei , C Si and
Ci ) of the multilayered beam for each fold i , are mainly its
mass ρi , modulus of elasticity Ei and the internal and external
damping factors, C Si , and Ci .
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Fig. 1 Multilayered beam

3 Homogenization Approaches

3.1 Case of Slender Beams

The movement equations are determined from the dynamic
equilibrium studies as shown in equations [3,7,8]. The equi-
librium equations, expressed throughout the study of a por-
tion of a beam, are valid each time and are strictly the same as
those of homogeneous isotropic beams because their demon-
stration doesn’t involve the material properties. However,
although the calculation of the beam’s natural frequencies
is a function of the beam’s mechanical properties, it doesn’t
depend on the exciter forces involved. This enables the study
to be carried out in the range of free vibrations.

Assumptions and reminder:

– The case of small harmonic movements of equilibrium
status is respected around the equilibrium position.

– The plies are perfectly bound together, so that no slip
occurs at ply interfaces.

– The beam has both geometric and material property sym-
metry about the neutral surface (i.e., the plies are symmet-
rically arranged about the xz plane.

– Plane sections, before deformation, remain plane after
deformation.

– Each ply is linearly elastic with no shear coupling (i.e. ply
orientations are either 0◦ or 90◦).

In the case of transversal harmonic free vibrations of a non-
damped beam and if no exciter force is involved, the move-
ment equation is given by the following formula:

∂2

∂x2

[
EI

∂2

∂x2 + Cs I
∂3v

∂x2∂t

]
+ ρ A

∂2v

∂t2 + C
∂v

∂t
= 0 (1)

T

(M + MD) +
∂ (M +MD)/∂X

T+∂T/∂X

FI1FD1

FI0FD0

FI1FD1

- - - - - - - - - - - - - - -

M + MD

FIiFDi

Fig. 2 Portion (dx) of a beam of N folds with forces acting on each
fold

The solution is determined by the “variables separation”,
and the natural frequency expression in the case of beams
of homogeneous rectangular section, is given by:

ω = C

√
EI

ρ Al4 (2)

where
C = (al)2 Factor depending on boundary conditions.

3.1.1 Approach I : Homogenization Using Physical
Properties: E∗, ρ∗, C S∗, C∗

This approach allows the equivalent physical properties
of a multilayered beam to be found Fig. 2. The equilibrium
of forces and moments is given by the following equations:

T + ∂T

∂x
.dx − T −

(
N∑

i=i

(tI i + tDi )

)
dx = 0 (3)

(M + MD) + ∂(M + MD)

∂x
dx − (M + MD) + T .dx = 0

(4)

where

– T refers to the shear force,
– Index, 0, refers to the central fold,
– fi , fDi represent respectively the distributed transversal

forces of inertia and damping of material i .

fh = ρi Ai
∂2v(x, t)

∂2t
fdi = Ci (x)

∂v(x, t)

∂t

From another side and according to the static study: The
bending moment is given by:

M = ∂α

∂x

N∑

i=0

∫ ∫

A

Ei y2 dA (5)
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And the curvature is given by:

M = ∂α

∂x
= ∂2v

∂x2 (6)

where
v is the vertical displacement.

The damping moment caused by the partial viscous resis-
tance related to the component material strain of each fold is
given by:

MDi = Csi Ii
∂3v(x, t)

∂x3∂t

By developing the integral of forces acting in the dynamic
equilibrium of the differential element dx of the multilayered
beam and after substituting the bending moment M and the
shear force T with their respective values (3) and (5), the
following governing differential equation of the free damped
dynamic movement written in its general homogenized form
(case of multilayer of N folds, distributed in “mirror sym-
metry” manner) is obtained, based on the recurrence index:

n = Np − 1

2
(7)

The partial differential equation of free motion is given in a
condensed form by:

∂2

∂x2

⎛

⎝
N p∑

i=1

Ei Ii
∂2v(x, t)

∂x2 +
N p∑

i=1

CSi Ii (x)
∂3v(x, t)

∂x2∂t

⎞

⎠

+
N p∑

i=1

ρi Ai
∂2v(x, t)

∂t2 +
N p∑

i=1

Ci (x)
∂v(x, t)

∂t
= 0 (8.a)

Or in its explicit form by:
⎡

⎢⎢⎢⎢⎣
E0 + 2

⎡

⎢⎢⎢⎢⎣

n∑
i=1

Ei

⎡

⎢⎢⎢⎢⎣

(
Ai
A0

)3 +

3 Ai
A0

⎛

⎝
Ai
A0

+
2

n∑
i=1

A(i−1)

A0
− 1

⎞

⎠
2

⎤

⎥⎥⎥⎥⎦

⎤

⎥⎥⎥⎥⎦

⎤

⎥⎥⎥⎥⎦

×
(

1
N 3

P

)
I ∂4v

∂x4

+

⎡

⎢⎢⎢⎢⎣
Cs0 + 2

⎡

⎢⎢⎢⎢⎣

n∑
i=1

CSi

⎡

⎢⎢⎢⎢⎣

(
Ai
A0

)3 +

3 Ai
A0

⎛

⎝
Ai
A0

+
2

n∑
i=1

A(i−1)

A0
− 1

⎞

⎠

⎤

⎥⎥⎥⎥⎦

⎤

⎥⎥⎥⎥⎦

⎤

⎥⎥⎥⎥⎦

×
(

1
N 3

P

)
I ∂3v

∂x2∂t

+
[
ρ0 + 2

(
n∑

i=1
ρi

Ai
A0

)][
1 + 2

n∑
i=1

Ai
A0

]2 (
1

NP

)
A ∂2v

∂t2

+
[

1 + 2
n∑

I+1

Ai
A0

]3 [
C0 +

n∑
i=1

Ci

](
1

N 3
P

)
∂v
∂t = 0

(8.b)

Once homogenized, this equation has the same form as
that obtained by Euler–Bernoulli for homogeneous beams,
knowing that:

∂2

∂x2

[
E∗ I

∂2v

∂x2 +Cs I
∂3v

∂x2∂t

]
+ρ∗ A

∂2v

∂t2 +C∗ ∂v

∂t
=0 (9)

By analogical identification of Eqs. (8.a) and (9), the
equivalent modulus of elasticity is found and by dividing
the stiffness (rigidity) by the inertia moment I of the whole
straight section, the following is obtained:

E∗ =
∑N p

i=1 Ei Ii

I

[
E0 + 2

[
n∑

i=1

Ei

[(
Ai

A0

)3

+ 3
Ai

A0

(
Ai

A0
+ 2

n∑

i=1

A(i−1)

A0
− 1

)2
⎤

⎦

⎤

⎦ 1

N 3
p

⎤

⎦ (10)

The effective mass per unit volume is also given by:

ρ∗ =
∑Np

i=1 ρi Ai

A
=
⎡

⎣ρ0
A0

A
+ 2

⎛

⎝
Np∑

i=1

ρi
Ai

A

⎞

⎠

⎤

⎦ (11.a)

ρ∗
(

ρ0 + 2
n∑

i=1

ρi

)
1

Np
(11.b)

The damping factors (coefficients) which represent, respec-
tively, the resistance effect at global deformation speed (inner
damping) is given by:

C∗
S =

∑NP
i CSi Ii

I
=
[

C0 + 2

[
n∑

i=1

Ci

[(
Ai

A0

)3

+ 3
Ai

A0

(
Ai

A0
+ 2

n∑

i=1

A(i=1)

A0
− 1

)2
⎤

⎦

⎤

⎦

⎤

⎦
(

1

N 3
P

)
(12)

and the viscous resistance effect at global transversal strain
(distributed outer damping) by:

C∗ =
∑NP

i Ci

I
=
[

C0 + 2

(
n∑

i=1

Ci

)]

×
[

1 + 2
n∑

i=1

Ai

A0

]3 (
1

N 3
P

)
(13)

The general solution of Eqs. 8.a, 8.b is obtained similarly to
the homogeneous case (1), by substitution of E by E∗, ρ by
ρ∗, Cs by Cs∗, and C by C∗ into the homogeneous equation.
Depending on the different cases of boundary conditions,
the frequencies’ equation is obtained according to boundary
conditions (Table 1).
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Table 1 Frequencies’ equations for different boundary conditions

Schema Boundary conditions Frequency equations

x = 0, v(0,t) = M(0,t) = 0 Sin(an1) = 0

x = 1, v(1,t) = M(1,t) = 0

Or

x = 0, φ(0) = φ′′(0) = 0

x = 1, φ(1) = φ′′(1) = 0

x = 0, v(0, t) = v′(0, t) = 0 Cos(an1).Cosh(an1) − 1 = 0

x = 1, v(1, t) = v′(1, t) = 0

Or

x = 0, φ(0) = φ′(0) = 0

x = 1, φ(1) = φ′(1) = 0

X = 0,v(0, t) = v′(0, t) = 0 Cos(an1). Cosh(an1) + 1 = 0

X = 1, T (1, t) = M(1, t) = 0

Or

x = 0, φ(0) = φ′(0) = 0

x = 1, φ′′(1) = φ′′′(1) = 0

x = 0, v(0, t) = v′(0, t) = 0 Tan(an1). Tanh(an1) − 1 = 0

x = 1, v(1, t) = M(1, t) = 0

Or

x = 0, φ(0) = φ′(0) = 0

x = 1, φ(1) = φ′′(1) = 0

X = 0, v(0, t) = v′(0, t) = 0 Tan(an1). Tanh(an1) − 1 = 0

X = 1, v(1, t) = M(1, t) = 0

Or

x = 0, φ(0) = φ′(0) = 0

x = 1, φ(1) = φ′′(1) = 0

3.1.2 Theoretical Application: Computation of
Homogenized Physical Properties of a Symmetrical
Multilayer Formed by a Reversed Orthotropic Fold

Even if the given example as presented in Fig. 3 looks very
particular, it still remains needed within a very important the-
oretical application, as a common method used in the design
of industrial applications or the development of symmetrical
test models for experimental use. The homogenized physical
properties are summarized by simple recurrence, under their
general form, and are ready for use.

For a given value, N
If n is even then i = 0 for extreme layers
If n is odd then i = 1 for extreme layers

Homogenized physical parameters for a number NP of
plies having the same thickness

Ei, Ii, Ai, ρi, Csi, Ci, hi

E1,I1, A1, ρ1, Cs1, C1, h1

E0, I0, A0, ρ0, Cs0, C0, h0

b

E1, I1, A1, ρ1, Cs1, C1, h1

E0, I0, A0, ρ0, Cs0, C0, h0

E1, I1, A1, ρ1, Cs1, C1, h1

E0, I0, A0, ρ0, Cs0, C0, h0

E1, I1, A1, ρ1, Cs1, C1, h1

Ei, Ii, Ai, ρi, Csi, Ci, hi

Fig. 3 Transversal section of a symmetric mirror multilayer

E∗ = E0 +
[

n∑

i=1

2Ei (1 + 12n2)

]
.

1

N 3
p

ρ∗ =
(

ρ0 + 2
n∑

i=1

ρi

)
1

Np

C∗
S = CS0 +

[
n∑

i=1

2CSi (1 + 12n2)

]
.

1

N 3
p

C∗ =
(

C0 + 2
n∑

i=1

Ci

)(
1

N 3
P

)

n =
(

N − 1

2

)
. (14)

3.2 Approach II: Homogenization Approach Based on
Equivalent Mechanical–Geometrical Properties: (EI)eq,
(ρA)eq, (CsI)eq and (Ceq)

By analogy, the dynamic equation of damped free motion of a
homogenized multilayer composite beam can be expressed as
a function of physical–mechanical properties in the following
general shape:

∂2

∂x2

[
(EI)eq

∂2v
∂x2 +

(Cs I )eq
∂3v

∂2x2∂t

]
+ (ρ A)eq

∂2v

∂t2 + Ceq
∂v

∂t
= 0 (15)

The natural frequency is expressed as:

ω = a2

√√√√ (EI)eq∑n
i=1 (ρ A)i

= C

√
(EI)eq

l4
∑n

i=1 (ρ A)i
(16)

with: i = 1, 2, . . ., n number of layers.
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3.2.1 Bending Stiffness (Rigidity) Factor

Once the expression of the reduction efforts of both homo-
geneous and non-homogeneous assumptions is written, the
equivalent parameters are then identified.

The equivalent parameter (EI)eq is determined assuming
a perfect adhesion at different interface levels by equalizing
elastic curvatures relative to the two types of beams, which
gives:

MF (x) = 1

3

N∑

i=1

bE
(

y3
i − y3

i−1

) ∂2v

∂x2 (17)

By identification with the elastic equation of a homogeneous
beam:

MF (x) = EI
∂2v

∂x2 (18)

We have:

(EI)eq = 1

3

N∑

i=1

bE(y3
i − y3

i−1) (19a)

For a width b, equal to a unit, the equivalent bending rigidity
(stiffness) will be:

(EI)eq = 1

3

∑
Ei (y3

i − y3
i−1) (19b)

where
(yi ), (yi − 1)—upper and lower position coordinates
of fold (i).

Similarly, the set of forces in dynamic equilibrium of the
differential element dx , is obtained by the following analog-
ical development analysis:

3.2.2 Equivalent Damping Factor

MDi (x) =
yi∫

yi−1

σDi ydA =
yi∫

yi−1

CSi
∂ε

∂t
ybdy

=
yi∫

yi−1

Csi by2 ∂3v(x, t)

∂x2∂t
dy (20a)

MD(x) =
N∑

i=1

MDi =
N∑

i=1

CSi
y3

i − y3
i

3

∂2ν

∂x2∂t
bdy (20b)

Elsewhere, it is easy to show according to Navier–Bernoulli
(deformation varies linearly according to the transversal sec-
tion); the expression of the global damping moment is written
as:

MD =
yi∫

yi−1

(CS I )eq

[
∂3v

∂x2∂t

]
bdy (20c)

And by identification:

(CS I )eq = 1

3

∑
bCSi (y3

i − y3
i−1). (21)

3.2.3 Transversal Inertia Factor

FI = (ρ A)eq
∂2v

∂t2 =
N∑

i=1

FIi =
N∑

i=1

ρi Ai
∂2v

∂t2

(ρ A)eq =
N∑

i=1

ρi Ai .

(22)

3.2.4 Outer Damping Factor Ceq

FD =(C(x))eq

[
∂v

∂v

]
bA=

N∑

i=1

fDi =
N∑

i=1

Ci (x)

[
∂v

∂t

]
bA

(C(x))eq =
N∑

i=1

Ci (x).

(23)

It is noticed that this approach is more simply formulated and
is for quick use; it can therefore be a good alternative for a
first estimation. However, the expression of Eq. (15) obtained
is similar to that obtained by the multilayer classical theory
[8].

3.3 Homogenization Analysis of Damping Factors
in Linear Phase

For the purpose of completeness of the dynamical analysis,
from a formal point of view and to facilitate its future use
for the forced damped cases, the partial differential equation
governing the dynamic movement of systems of distributed
characteristics is reformulated in its decoupled form, under
normal coordinates.

3.3.1 Formulation of the Decoupled Dynamic Equation
in Damped Bending

The dynamic equation for a free damped case is obtained as:

∂2

∂2

(
EI

∂2v(x, t)

∂x2 + CS I
∂3v(x, t)

∂x2∂t

)

+ρ A
∂2v(x, t)

∂t2 + C
∂v(x, t)

∂t
= 0 (24)

After transformation, this equation is decoupled then obtained
in its shape under normal coordinates.

v(x, t) =
∞∑

i=1

ϕi (x)Yi (t) (25)
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where
�i : vibration mode i
Yi : modal amplitude (normal or principal coordinates)
vi (x,t): Geometrical displacement coordinates for mode i .

The decoupled equation with damping is given by:

∞∑

i=1

ρ Aϕ2
i (x)

(
d2Yi (t)

dt2

)
+

∞∑

i=1

C(x)ϕi (x)

(
dYi (t)

dt

)

+
∞∑

i=1

d2

dx2

[
CS I

d2ϕi

dx2

]
dYi (t)

dt

+
∞∑

i=1

d2

dx2

[
E I

d2ϕi

dx2

]
Yi (t) = 0. (26)

3.3.2 Conditions for the Orthogonally Damping

It is presumed that the transformation to normal coordinates
enables the decoupling of damping forces in the same manner
as for the rigidity mass (stiffness mass). Rayleigh [7] showed
that this assumption is possible, if the damping effects are
taken proportionally to the rigidity mass as follows:

C(x) = a0m(x) = a0ρ A and CS = a1 E

where a0 and a1are arbitrary coefficients of proportionality.
After substitution into the equation, a decoupled equation in
normal coordinates is obtained as:

Mn
d2Y (t)

dt2 + (a0 + a1ω
2
n Mn)

dY (t)

dt
+ ω2

n MnY (t) = 0

(27)

By definition, Mn , is called generalized mass of the beam for
the mode Ôn , and is given by the integral:

Mn

L∫

0

ϕ2
n(x)ρ Adx (28)

This equation can be rearranged, dividing by Mn and putting
the damping factor of the nth mode:

ζn = a0

2ωn
+ a1ωn

2
(29)

The equation of damping factor (29) shows that for a
damping proportional to the mass [C(x) = a0m(x)], the
damping factor is inversely proportional to the frequency. In

addition, for a damping proportional to the rigidity (Cs =
a1 E), the damping factor is directly proportional to the
frequency. Depending on the type of structure and for the
extreme frequencies field, the damping factor ξn has a prior-
ity link with one or the other of the two factors of damping.

Finally, a standard form of the decoupled equation of
dynamic free damped motion of the homogeneous multilay-
ered beam is obtained, as:

d2Y (t)

dt2 + 2ζnωn
dYn(t)

dt
+ ω2

nYn(t) = 0 (30)

Depending on the type of approach used I, or II, the equiv-
alent parameters are added to obtain corresponding modal
frequencies, modal vibrations and modal damping factors,
respectively.

4 Comparative Study

4.1 Study According to Natural Frequencies

A finite element model [9], using a solid element, has been
carried out to appreciate the convergence of the proposed
approaches in the case of the Euler–Bernoulli assumption.
Several boundary limit cases have been studied, by investi-
gating the variation effect of geometrical slenderness (l/r ).
The results are obtained from a mirror symmetry multilayer
example of five folds, of constant thickness, h = 2 mm
(Table 2) with a Bernoulli slender beam (L/r = 346, 242,
121). The results are shown in Fig. (4a, b).

4.2 Discussion: Slender Beam

To validate approaches I and II, we applied the method used
by reference [3] and [2] using Table 2. The comparative study
showed the same results. The effective modulus formula as
developed here is an alternative and slightly simpler scheme
for finding E∗. We can observe the same remark as from refer-
ence [3] “the flexural modulus of the laminated beam, unlike
the young’s modulus of the homogeneous isotropic beam,
depends on the ply stacking sequence and the ply module.
That is, if the properties do not change through the thickness
of a beam, the flexural modulus is the same as the Young’s
modulus”.

Table 2 Presentation of study
model Number Material type Volume mass (t/m3) Young modulus (E107) (t/m2) Poisson modulus (μ)

2 Aluminium 2.7 0.72 0.3

1 Cupper 2.93 1.2 0.3

0 Steel 7.8 2 0.3

1 Cupper 2.93 1.2 0.3

2 Aluminium 2.7 0.72 0.3
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Fig. 4 a Natural frequencies of the first five modes of a multilayered
beam of five folds (N = 5) for Fixed-Free (F − Fr ) supports. b Natural
frequencies of the first five modes of a multilayered beam of five folds
(N = 5) for Simply-Supported (S − S) supports

Overall and from Fig. 4a, b, a very good convergence of
results is noticed by the two proposed approaches, mainly for
the first four modes. The curves show a very slight difference
around 10 %) for the last mode. This divergence increases
for low values of geometrical slenderness (l /r = 120). This
could be due to the neglect of the shear force and rotational
inertia effects.

4.3 Study According to Modal Damping Factor
(Linear Case)

Four types of boundary support conditions, [SS (Supported-
Supported), SC (Supported-clamped), CC (clamped-
clamped), and CF (clamped-Free)] are considered. The com-
parative analysis between the four types of curves (Fig. 5) is
also obtained in graphical form to appreciate the influence
of boundary conditions on the modal dissipative potential
contribution. For indication, the corresponding figures are
obtained according to approach I, based on physical proper-
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Fig. 5 Boundary conditions effect on the amount of modal damping
for a slender beam (L/r = 346)

ties, for the case of a composite beam (l/r = 346), consisting
of 5 isotropic layers distributed symmetrically to a middle
plan (Fig. 3) and defined as shown in table N◦II.

4.4 Discussion: Evaluation of Modal Damping Factors
Linear Case of Isotropic Multilayer (N = 5 Layers)

We notice, according to Fig. 5, that within the lower modes
range (N < 3), the amount of damping brought about by
mass effect is dominant and that the comparative study of
the damping curves for the different cases of boundary con-
ditions shows that the damping rate is greater for hyper-
static beams (C–C) and (C–S). Inversely within the higher
modes range, damping is essentially generated by wave’s
effect where Young’s Modulus E plays a major role. At this
modal level the comparative study of the damping curves is
totally reversed compared to the lower modes range, where
damping is found to be greater for the isostatic beams (C–F)
and (S–S).

5 Equivalent Vibration Period teq and Equivalent
Viscous Damping Factor ξeq-Bilinear Case

Some physical aspects of the nonlinear behaviour converted
to an equivalent elastic linear system are better expressed by
the equations of the variation of period Teq and the damping
factor ξeqwith respect to the ductility factor μ [10,11]. For
a bilinear System of a Single Degree Of Freedom (SSDOF)
(Figs. 6 and 7), with a module in post-plastic state equal to
α times the product of the initial module k0 (elastic state),
the relationship between the natural period of the equivalent
system vibration (with a rigidity ksec) and the original system
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fy: flow force 
δy: displacement at the flow limit
δmax: (absolute maximum peak) deformation of 
non elastic system.

( )ααμ −+1yf

yf

yμδδ =maxyδ

k

1

seck

1

kα1

if

Fig. 6 Force–deformation relationship for a bilinear system of a single
degree of freedom (SSDOF)

period (T0 = Tn : natural period of system in vibration, in
linearly elastic range, (δmax ≤ δy) is given by:

5.1 Bilinear Case: Equivalent Period

Teq

Tn
=
√

k0

ksec
=
√

μ

1 − α + αμ
(31)

with:
μ = δmax/δy

μ : ductility factor.

5.2 Equivalent Damping Factor

The usual method [10,11], to define the equivalent damping
of a system is to equalize the dissipative energy for one cycle
of vibration of the non-elastic system with that of an equiv-
alent linear system. Based on this concept, it is proven that
the viscous damping factor for an equivalent linearly elastic
system (Figs. 6 and 7) is given by:

ζeq = 1

4π

ED

ES
(32)

with:

ES = ksec
Y 2

m

2
(33)

After substitution of the two energetic quantities ED and
Es in Eq. (31), the following is obtained

ζeq = ξ0 + 2

π

[
(1 − α)(μ − 1)

μ − αμ + αμ2

]
(34)

Force,f

SE

( )1yf αμ α+ −

Es : Potential Energy of deformation of the system 
with ksec

ED: Included Dissipated Energy of non elastic 

system enveloped by the hysteresis curve.

Deformationmaxδ
yδ

D
E

yf

Fig. 7 Viscous damping due to the energy of hysteresis lens

The total viscous damping for the linearly equivalent system
is:

ζeq = ξ0 + ξeq (35)

where ξ0 is the nominal linear viscous damping in the sys-
tem and T is the small amplitude linear period (that is, the
damping and period when μ = 1).

5.3 Elastic–Plastic Case: Equivalent Period (α = 0)

Teq

T
=
√

k0

kS
= √

μ (36)

5.4 Elastic–Plastic Case: Equivalent Damping Factor
(α = 0)

ζeq = ξ0 + 2

π

[
1 − 1

μ

]
. (37)

6 General Expressions of Homogenized Parameters
Developed for Both Approaches: SI and SII

The two homogenization approaches, one, based on phys-
ical properties (SI), and the other, based on mechanical–
geometric properties (SII), are reviewed to take account of
the nonlinear behaviour effect (Figs. 8, 9).

6.1 Bilinear Case, Approach SI

fn

fs
= ωn

ωs
=
(√

E∗ I
ρ∗ AL4

)

(√
E∗

s I
ρ∗ AL4

) =
√

E∗
E∗

s
=
√

μ

1 − α + αμ
(38)
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Fig. 9 Variation of equivalent damping factor ξeq with ductility Factor
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6.2 Elastic–Plastic Case, Approach SI: α = 0

fn

fs
= ωn

ωs
=
(√

E∗ I
ρ∗ AL4

)

(√
E∗

s I
ρ∗ AL4

) =
√

E∗
E∗

s
=
√

μ

1
(39)

6.3 Bilinear Case, Approach SII

fn

fs
= ωn

ωs
=

(√
(EI)eq

(ρ A)eq L4

)

(√
(EI)Seq

(ρ A)eq L4

) =
√

(EI)eq

(EI)Seq
=
√

μ

1 − α + αμ

(40)
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Fig. 10 Comparative curve of linear and nonlinear frequencies, for the
case of the (F-Fr) multilayered beam (N = 5), of slenderness (L/R =
346)

6.4 Elastic–Plastic Case, Approach SII: α = 0

fn

fs
= ωn

ωs
=

(√
(EI)eq

(ρ A)eq L4

)

(√
(EI)Seq

(ρ A)eq L4

) =
√

(EI)eq

(EI)Seq
=
√

μ

1
(41)

6.4.1 Typical Application to the Case of a Multilayered
Beam (F-Fr) with l/r = 346 and an Elastic–Plastic
Behaviour Characterized by: α = 0 and μ = 5

The frequency curves (Fig. 10) for the case of a slender beam
of L/r = 346 (Bernoulli assumption) are used as an exam-
ple to compare them with the curves of frequencies obtained
from this method, based on the secant rigidity (stiffness)
modulus. The behaviour model is supposed to be elastic–
plastic with α = 0 and a ductility factor taken arbitrarily
equal to 5 (μ = 5).

Discussion

In order to better grasp some physical aspects of the nonlinear
behaviour brought back to an equivalent elastic linear system,
the variation curves of the period Teq and of the damping
factor ξeq are obtained compared to the factor of ductility
μ (Figs. 8 and 9). The frequency curves in the case of the
beam of slenderness L/r = 346 are used as an example to
be compared with those obtained according to the method of
secant module of rigidity. The model behaviour is supposed
to be elastic–plastic with, α = 0 and a ductility factor taken
arbitrarily as μ = 5.

Referring to both the elastic linear and the elastic–plastic
cases, the natural periods are shown on the graphs (Fig. 10).
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The frequency curves of the elastic–plastic case decrease
on average by up to 50 % compared to those of the linear
elastic case. The convergence of both approaches SI and SII is
maintained like that of the case of the elastic state (Approach
I and II).

7 Conclusions

For various engineering applications, the most commonly
used theory in structural mechanics, for modelling the behav-
iour of the dynamic bending of beams is the formulation of
Euler–Bernoulli. Consequently, two approaches of homoge-
nization have been proposed for the dynamic beam case of
free damped motion. Comparative study with respect to the
method from reference [3] showed excellent concordance.

The natural responses, investigated by the two approaches
are satisfactory for the relatively slender multilayered beams.
They are very useful because of their simple form for the
computation of dimension design and comparisons. In addi-
tion the nonlinearity effect doesn’t affect the accuracy of the
frequency responses given by the two approaches, SI and
SII, and based on the elastic–plastic and bilinear models of
behaviour.

The considered example, which takes into account the
ductility effect and the elastic–plastic behaviour law, shows
the importance of the nonlinear assumption, which copes bet-
ter with the real mechanical performances of the structure.
The deterioration of the global rigidities reduces the frequen-
cies, which tends to increase the vibration periods, thus giv-
ing supplementary storage space for the structure capacity to
accumulate displacements of higher degree relatively to the
considered structure in elastic state.

However, the nonlinear study has to be enlarged on, to
take into account some phenomena such as rotational iner-
tia and transversal shear so that they can be generalized to
Timoshenko beams. In addition, results for the case with the
extension of the present approach to the general setting of
multilayer beams, with the ability of the model to accommo-
date shear distortion in each layer, a large deformation and a
large overall motion, should be further discussed in a future
publication”.

The transverse dynamic loading study can give other use-
ful indications which allow the completion of the evaluation
of the homogenization parameters according to different lin-
ear and nonlinear assumptions. However extensive experi-
mental work is still needed, to validate the present work.

Annex

Validation of effective modulus using comparison between
the author’s formula and Gibson’s formula [3] through appli-
cation from Table 2 and using a section of laminated beam of

depth h = 10 mm and width b = 10 mm. The total number
of plies is N = 5. The ply thicknesses are the same.

Let’s give an answer from Author’s formula (10):

E∗ =
∑Ni

i=1 E I

I
=
[

E0 + 2
n∑

i=1

Ei

[(
Ai

A0

)3
]

+3
Ai

A0

(
A1

A0
+ 2

n∑

i=1

A(i−1)

A0
− 1

)]
1

N 3
p

E∗ = 1

N 3
P

⎡

⎢⎢⎣
EFe+2ECu

{(
ACu
AFe

)3+3 ACu
AFe

(
ACu
AFe

+1
)2
}

+2EAL

{(
AAL
AFe

)3+3 AAL
ACu

(
AAL
AFe

+2 ACu
AFe

+1
)2
}

⎤

⎥⎥⎦

The ply thicknesses are the same therefore we have also the
same cross section for each ply

AFe = ACu = AAL = Cte

E∗ = 1

53 [EFe + 26ECu + 98EAL] = 0.8304(10)7 t

m2

Alternatively, the simplified formula (14) could be used:

E∗ =
[

E0 +
n∑

i=1
2Ei (1 + 12n2)

]
1

N 3
p

n = ( N−1
2

) = 5−1
2 = 2

E∗ = 1

N 3
P

EFe + 2

⎡

⎣
ECu {1 + 12(1)}
+
EAL {1 + 12(4)}

⎤

⎦

= 0.8304(10)7 t

m2

Let’s give an answer from reference’s [3] and [2] using known
formula:

E f = 8

h3

N
2∑

j=1

(Ex )(z
3
j − z3

j−1)

Ex : Young’s modulus of j th ply along the x direction

– Z : distance from neutral surface defined by the xy-plane
– N : the total number of plies
– Z j : the distance from the neutral surface to the outside

of the j th ply

For an even number of plies of uniform thickness
(h = constant), we have

z j = jh

N

where J : position of the j th ply
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The explicit formula for an even number of plies is then
given by:

E f = 8

N 3

N
2∑

j=1

(Ex )(3 j2 − 3 j + 1)

To use this formula for our purpose for an odd number of
plies, we simply need to divide each ply into identical plies
having half the thickness of the original ply (h = 1 mm), so
that the total number of plies is now even N = 5 × 2 = 10.

Again we obtain the same result

E∗ = 1

53 [ EFe + 26ECu + 98EAL ] = 0.8304(10)7 t

m2

Finally we can obtain the global effective modulus related to
elastic–plastic case (39)

E∗
s = E∗

μ
= 0.8304(107)

5
= 0.16608(107)

t

m2

fn

fs
= ωn

ωs
=

√
5

1
= 2.236

For both linear (2) and nonlinear (39) cases the circular fre-
quency for the first mode of vibration of a cantilever beam is
easily obtained equal to

ωn = 3.516

√
E∗ I

AL4

ωs = ωn√
5

= 1.573

√
E∗ I

AL4 .
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