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Equivalents Methods to Investigate Free Vibration 
of Isotropic and Orthotropic Thin Rectangular Plate 

with Non-Homogeneous Supports 

A. Sekhri1, T. Benmansour2, H. Cheridi2

Abstract – Evaluating approximate frequency for isotropic and orthotropic plates is a 
complicated problem, thus exploiting the general formula of Hearmon, it is proposed in this 
investigation to calculate the fundamental mode of isotropic and orthotropic plates with two non-
homogenous supports (cases: SCSC & SSCC). For the higher mode of modal frequency, a 
particular form of Rayleigh’s method is used leading to a simple procedure for calculating the 
fundamental frequency. A new simple and qualitative method is proposed and has permitted a 
good strategy to evaluate the quality of results obtained. In order to verify the precision of the 
proposed qualitative method, a confrontation with finite element method using ANSYS software 
was done. The complementary utilization of Hearmon’s principle and the qualitative method has 
also permitted a successful advance in evaluating higher modes. This combined procedure gives a 
strategy of a vibratory analysis of isotropic and orthotropic plates; it permits the satisfaction of 
the preliminary conception needs of the structure to be studied, and also provides a qualitative 
method for expertise and investigation of dynamical responses. In all cases, the dynamic 
investigation is based on some evaluation criteria such as: limit conditions effect, plate dimensions 
ratio effect, material effect and mode number effect. Copyright © 2011 Praise Worthy Prize S.r.l. 
- All rights reserved.
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Nodal Lines Position - Qualitative Analysis Method, Rayleigh Method, Finite Element 
Method

Nomenclature

E1, E2, E3 Young’s modulus in bending for x, y and z
direction respectively 

G12 Shear modulus in bending for xy plane 

12 Poisson’s ratio corresponding to compressive 
strain in x direction due to extensional stress in 
y direction 

21 Poisson’s ratio corresponding to compressive 
strain in y direction due to extensional stress in 
x direction 

a Length of side parallel to x-axis 
b Length of side parallel to y-axis 
h Plate thickness 

Circular frequency 
f Frequency equal to /2

Mass density of the material 
W Transverse displacement of a point on the 

plate along z direction 
t Time 
i Number of half waves in x direction 
j Number of half waves in y direction 
M Bending moment reaction for clamped edges 
S Simply supported support 

C Clamped support 
x, y, z  Axis of the reference system

I. Introduction 

Structural engineering such as civil, mechanical, 
aeronautical, aerospace, and naval, sports equipment and 
military using orthotropic plates is common in all these 
fields. The frequent use of such structures requires an 
investigation of orthotropic plates to develop an exact 
and confident conception. In engineering, the finite 
element method (FEM) provides a complete solution to 
the problem of evaluation of vibration modes and 
dynamic responses of an orthotropic plate where the 
properties of materials and limit conditions are known. 
However, during the early stages of development and 
design of the project, it is very useful to have a simplified 
method to calculate the modal frequency of orthotropic 
rectangular plates. The essential task of this project was 
to select the dimensions and properties of materials, as 
well as applying control quality for design accuracy by 
finite element method (FEM) means. The problem of free 
vibration of orthotropic rectangular plates has been 
intensively studied during the last six decades by several 
researchers from different nationalities. It began with the 
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article of Hearmon [1] who initiated the study of some 
particular cases; it is possible to find a large number of 
contributions to the solution of the problem, using 
different techniques, which apply to plates with a variety 
of edge and form conditions. Hence, it is theoretically 
possible to calculate exact solutions of frequency, only 
for the case of a plate with simply supported sides. For 
this reason, considerable efforts are made to develop 
approximate methods with more accuracy. Leissa and 
Bert [2]-[8] have summarised series of articles on the 
dynamic behaviour of composite plates and sandwiches 
while the use of finite elements model is described in 
reference [9]. A review of scientific literature in this field 
shows that, because of its conceptual simplicity [10], one 
of the most popular methods to get approximate solutions 
of frequencies for an orthotropic rectangular plate is the 
method of Rayleigh-Ritz. Hearmon in 1959 [11] 
proposed an approximate solution for general free 
vibration of orthotropic plates and applied the method of 
Rayleigh and used the characteristic functions of beams 
instead of function shapes of  plates, for any combination 
of conditions clamped or simply supported. His approach 
is an extended development of Warburton [12] work for 
all vibration modes of isotropic plates with any boundary 
conditions combination: free, simply supported, or 
clamped. The contribution of Marongoni et al. [13] is 
among the articles in which the method of Rayleigh-Ritz 
is used. This particularly interesting contribution is a 
continuation to the method presented by Bazely et al. 
[14] to calculate lower limits of frequencies for isotopic 
rectangular plates, in order to evaluate lower and upper 
limits of natural frequencies of a clamped rectangular 
plate made from orthotropic materials. They used a 
combination of Rayleigh-Ritz method for the upper 
limits and a decomposition method proposed by Bazely 
for the evaluation of lower limits. This leads to high 
degree of confident approximate results analysis. 

Recently Rossi et al. [15] expanded the analysis to a 
more complicated case i.e. plates with one or more free 
edges. The difficulty arises for the case of a free edge 
boundary condition that prevents the use of the 
formulation of Rayleigh-Ritz. Rossi et al. have overcome 
the problem of using an optimized formulation of 
Rayleigh-Ritz method proposed by Laura et al [16]. The 
results show an excellent agreement with calculation by 
FEM, including the case of a concentrated mass. 

Gorman [17] applied the superposition method, 
developed for isotropic plates [18], for the case of 
clamped plate, which showed a good consistency of the 
method including the eigen values calculated for a wide 
range of plates varying in geometries and orthotropic 
materials types available for use in engineering. The 
proposed method has attracted the attention of several 
investigators who searched the differential equation 
which satisfy exactly all plates and boundary conditions 
with a satisfying degree of precision. In fact, Li [19] 
showed that it is desirable also to analyze the forced 
vibration of orthotropic plates, while Mossou and Nivoit 
[20] used the method to provide a reliable non-

destructive testing method to determine elastic constants 
of an orthotropic material forming a rectangular plate 
free of vibration. 

In Reference [21], a solution in a double trigonometric 
series is introduced to solve the forced vibration problem 
of clamped orthotropic plates using an iterative method 
for analyzing free vibration. Sakata et al. [22] applied an 
iterative method deduced from a differential equation 
obtained for a plate already studied in isotropic cases 
[23], in order to obtain natural frequencies of orthotropic 
rectangular plates with accurate results. They confirm 
that the method is simpler than other methods available 
in literature such as, for example, Rayleigh-Ritz method 
that requires a large effort of calculation. In Reference 
[24], the possibility of using approximate solutions for 
calculating the frequency of anisotropic plate is 
investigated. In fact, the authors compared the frequency 
of an anisotropic plate simply supported, calculated using 
an exact numerical analysis [25], and according to the 
exact solution of simply supported orthotropic plates. 
The problem of clamped edges of plates is studied by 
comparing the frequencies of anisotropic plates with the 
values obtained using Huber orthotropic and formulas 
applied for isotropic plates [26]. It is noticed, according 
to an engineering point of view, that these two 
approximations gave enough accurate values. Finally, 
another approach is used by Chen [27] to calculate the 
fundamental vibration frequency of an orthotropic plate. 
He used an iterative approach based on finite difference 
equations and numerical integration, which showed that 
with less effort of calculation, it is possible to obtain 
good precision compared to other numerical 
technologies.

All methods described above involve a considerable 
effort of calculation; that is why they are not desirable: 
1. To define a rapid approximate method;  
2. To execute preliminary project designs in the first 

phase of development or the last general verification 
for rapid precision. 

For this reason, a simplified method for evaluating 
natural frequencies of an orthotropic plate is invested in 
this work. The method is based on a formula developed 
in a general form, using the results obtained by 
researchers who have approached the problem in recent 
decades.  

Based on a general expression of fundamental 
frequency of a plate, suggested by Hearmon [1] and 
based on three factors that take into account the boundary 
conditions, it is possible to access higher modal 
frequencies, by means of a numerical procedure that uses 
a formulation of Rayleigh method. This reduces the 
problem of evaluating any frequency of orthotropic plate 
on the basis of the fundamental frequency of an 
equivalent plate associated with the real one. A similar 
approach is used by Sakata [28] to study higher natural 
frequencies, but it is limited to the case of an isotropic 
rectangular plate simply supported along both sides, 
parallel to the y-axis, and retained against restraint 
rotation along the other side parallel to x-axis. 
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A. Qualitative method of dynamic analysis of 
rectangular plates: 

Qualitative method is based on theory of long plates 
(infinite), whose behaviour is dominated by privileged 
little sense of rectangular plate. In this case, the plate 
behaves like an equivalent beam, based on its two 
supports along the long plate. 

By simple observation and on basis of fixed 
conditions as well as the dimensions ratio (Lx/Ly), we can 
quickly appreciate comparative study of both upper and 
lower rigidities and consequently the extreme lower and 
upper frequencies, which limit dynamic answers within 
tolerable limits and thus judge the quality of results that 
can be achieved according to a more sophisticated 
analysis.

B. Approximate quantitative analysis of dynamic 
rectangular plates: 

In this work problem of approximating frequencies for 
orthotropic plate is investigated. Based on a general 
formula of approximate frequency, as proposed by 
Hearmon, the calculation of basic mode is shown for an 
orthotropic rectangular plate with different fixity 
conditions, using coefficients values that already exist in 
scientific literature [1]. In addition to higher modes of 
frequencies, a particular form of Rayleigh method is 
proposed, leading to a simple procedure for calculation 
of fundamental frequency. In fact, calculation of higher 
frequencies is reduced to the evaluation of fundamental 
frequency of a specific equivalent plate associated 
with the actual original one. 

In all cases, dynamic investigation is based on some 
evaluation criteria including boundary conditions effect; 
plate dimensions ratio effect, material effects and mode 
number effect. To verify the accuracy of the proposed 
method, a confrontation with finite element method 
ANSYS is done.

II. Problems and Applications 

Mathematical models and corresponding solutions of a 
plate simply supported on its four edges are cited from 
classical theory [29] and some numerical methods are 
considered to handle the solution of other cases of limit 
conditions. Accurate determination of frequencies, 
outside simply supported case presents difficulties in the 
integration of differential equation of dynamics motion 
of 4th order. That is why the use of approximate methods 
for the purpose of practice calculation of frequency is 
necessary: 

For this reason, in this work, a simplified method to 
evaluate the natural frequency of an orthotropic plate is 
investigated. The method is based on an approximate 
formula developed in a general form, using results 
obtained by researchers who have approached the 
problem in recent decades. Based on the general 
expression of fundamental frequency of plate, as 
suggested by Hearmon [1] and based on three factors that 
take into account boundary conditions, it is possible to 

access higher modal frequencies, by means of a 
numerical procedure, which uses a specific formulation 
of Rayleigh method. This reduces the problem of 
evaluating any frequency of an orthotropic plate based on 
fundamental frequency of an equivalent plate associated 
with the real one. An orthotropic material is 
characterized by the fact that elastic mechanical 
properties have two symmetrical plans thus only four 
independent elastic constants specifically E1, E2, G12, 12

are considered. Coefficient 21 can be determined using 
equation: 
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The hypothesis of Love-Kirchoff which neglects shear 
force and rotary inertia effect with reference to Fig. 1 
[30] is used: 

h

Lx=a 

o

x

y
z

Ly=b 

Fig. 1. Model adopted in the paper 

TABLE I 
MECHANICAL PROPERTIES [5]

Mechanicals
Properties 

ISO ORTHO 

E1 (MPa) 1 E+10 1 E +10 
E2 (Mpa) 1 E+10 6.67 E+09 

12 0.2 0.25 
G12 (MPa) 4.17 E+09 3.04 E + 09 

 (kg/m3) 7800 7800 

TABLE II 
GEOMETRICAL PROPERTIES

 Model 1 Model 2 Model 3 

Lx (m) 4 4 4 
Ly (m) 3 3.2 2.667 

Thickness(m) 0.01 0.01 0.01 

Hence, motion equation is obtained by: 
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A solution of general form is considered, that is: 

w W x, y Acos t B sin t  (3) 

It is possible to obtain from former equation an 
expression of two variables only: 

4 4
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x x y

W
D x, y W

y

 (4) 

with 2 h equation (4) must be solved to satisfy 

the following limit conditions: 

M=0; R=0 for Free side (F) 
M=0; W=0 for simply supported side (SS) 
W=0; W/ x (or W/ y) =0 for Clamped side (C) 

III. Discussion of Some Results 

III.1. Finites Elements Method 

The response according to finite element analysis is 
based on some models of rectangular meshing with 
(20x20), (40x40), (80x80) and (120x120). The case of 
80x80 has been taken as a reference of comparison [31].  

Fig. 2. Evolution of frequency factor with function modal number 
(N1[ 11], N2[ 12], N3[ 21], N4[ 22],N5[ 23], N6[ 32]. Rectangular plate 

type SSSS, with dimension ratio (a/b) =1.25 

The precision of investigation method is based on the 
study of a plate constitute of one isotropic material and 
one orthotropic materials. A comparative study shows 
that the approximate method according to Hearmon is 

conservative regarding to finite element method. We 
notice however that the error level is acceptable ( - 0.7 
%.).

III.2. Dynamic Investigation

Dynamic investigation is based on some evaluation 
factors such as dimension ratio effect, limit conditions 
effect, material effect and modal sequence effect. 
According to these factors, analysis has permitted to 
apprehend some aspects of plate vibratory behaviour; 
especially limit conditions over the threshold growing of 
frequency curves with increasing of supplementary links. 
It is also noted that the increase of the frequency 
corrective term related to mode number. The influence of 
the augmentation of the dimension ratio (Lx/Ly) indicates 
a parabolic augmentation. Long plates in one direction or 
another, and regardless of material reduces the 
contribution of rigidities in long sense which reduces 
vibration behaviour to that of a beam supported on two 
elongated boards with fixity conditions of the same edges 
and the small sense. We have also proposed an original 
qualitative and quantitative dynamic method, based on 
the concept of long plates, which are dominated by the 
behavior of oriented beam according to the small sense 
of rectangular plate supposed infinite. This qualitative 
method helps to develop better impression on the 
assessment of dynamic behaviour of isotropic and 
orthotropic rectangular plates with non-homogeneous 
boundary conditions. 

According to dimensions ratio of plate (Lx/Ly), the 
fixity conditions of the equivalent beam (representative 
of the plate under study), correspond to those on both 
elongate sides. An approximate solution of vibration 
analysis of isotropic and orthotropic free rectangular 
plates is then introduced. Based on a general formulation 
of approximate frequency proposed by Hearmon, it is 
shown how to calculate the basic mode of an orthotropic 
rectangular plate subject to various fixity conditions 
using coefficient, which is already available in scientific 
literature.

However, for higher modes, a particular form of 
Rayleigh method is considered, leading to a simple 
procedure to calculate fundamental frequencies. In fact, 
the calculation of frequencies is reduced to the evaluation 
of the fundamental frequency of a special plate 
associated with the existing original one. 

Discussion: the influence of dimensions ratio (a/b) 
effect and the fixity conditions combination on the 
behavior of free vibration of orthotropic rectangular 
plates.

In the following graphs, we will study the evolution of 
the natural frequency factor under double influence of 
dimensions ratio and fixity conditions. 
Orthotropic plates subjected to the limit conditions: 

SCSC case 
SSCC case 
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Figure 3 shows the growing influence of dimensions 
ratio on the growing curves for two cases of fixities
SCSC and SSCC, on the other hand the influence of 
boundary conditions can be observed by comparing the 
upright dispersion of these two curves. 

Fig. 3. Effect of dimensions ratio a/b & condition of fixities SCSC 
and SSCC on factor evaluation of orthotropic rectangular plates 

frequencies 

It is noted that according to forefront of dimensions 
ratio (a/b), the level of frequency curves was inversed 
from a certain common ratio [(a/b)  1.45] which 
provides a common factor of frequency equal to 
substantially 944.8 which corresponds to the same type 
of behaviour despite fixities conditions which are 
different for these two plate cases. This interesting 
remark means that there is a limit of a/b for which the 
two types of rectangular plates SCSC and SSCC remain 
insensitive to the effect of boundary conditions and 
behave identically.  

There are also two rows for (a/b) ratios, depending on 
whether we are going in the sense of lower or upper 
value of the ratio [(a/b)  1.45].

In fact in one hand frequency curves form an upper 
limit for the case SCSC and a lower limit for the case 
SSCC, on the other hand inversed redistribution curves 
level which gives the opposite effect i.e. respectively to 
common dimension ratio 1.4, there is a lower limit for 
SCSC case and an upper limit for SSCC case.  

This remark is confirmed by the qualitative analysis 
(Figure 4) because the plate is evaluated in the direction 
of beam behaviour dominated by the small sense [(Lx=a) 
or (Ly=b)] depending on (a/b) ratio. 

 A comparative analysis of these two plates SCSC and 
SSCC for a growing evolution of [(a/b) >> 1.45] ratio 
gives a vibratory behaviour, which is identified with one 
of two types of equivalent beams respectively with fixity 
conditions (SCSC CC) and (SSCC CS), the 
qualitative observation proves that the level of frequency 
submit condition ( SSCC= SC < SCSC= CC) and confirms 
the data of the graph.  

In the case of [(a/b) << 1.45], the ratio leads to cases 
with equivalent beams of fixity conditions (SCSC SS) 
and (SSCC SC) respectively ( SSCC= SC > SCSC= SS),
which further confirms the given graph. 

C C

S

S

(a/b) >1.4  beam SS 

(a/b) < 1.4  beam CC

(a/b) <1.4  beam SC 

(a/b) >1.4  beam SC

S

Comparative study: N1 [ 11] S

C

S

S

CC

S

S

C

C

C

S

Fig. 4. Qualitative vibratory analysis of rectangular plates 
SCSC & SSCC according to elongated plate’s concept (mod1) 

This analysis allows us to see not only the effect of 
rectangular plate dimension ratio and the effect of 
support conditions, but also the distribution of the same 
support conditions.  

In fact, two types of fixities are used C and S, but in a 
different way, which gives the comments previously 
discussed. 

Orthotropic plate subjected to limit conditions of the 
following types; model 2: 

- Case SCSC 
- Case SSCC 

This application shows for these two frequency 
curves, the growing of the corrective term linked to mode 
number. In one hand, these two plates start from the same 
value for fundamental mode N1 ( 11=1.02) which is 
observed for vibratory qualitative analysis (Figure 5) 
concerned with the effect of the dimensions ratio [(a/b) = 
(4/3.2) = 1.25], in the other hand, it is noticed an 
alternative rollover of frequency factors gradually as 
evolution growing of modal number N2, N3, N4, N5. In 
order to justify this behaviour, qualitative analysis 
exploiting also approximate method of Hearmon, which 
is useful for upper modes, is used. 

Fig. 5. Evolution of circular frequency according to modal 
number (N1[ 11], N2[ 12], N3[ 21], N4[ 22], N5[ 31], N6[ 32],

and conditions of fixities of plates SCSC & SSCC 
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Justification of mode N2 [ 12]:
We should start to count from the bottom side to be 

consistent with the graph Figure 5, and relating figure 6. 
Now, if we focus on the sub plate (a/b’ = 8/3.2), 
generated by the mode of the considered sequence N2

( 12) (see Figure 6). We can observe, knowing the 
dimensions ratio of the original plat [(a/b) =4/3.2=1.25] 
model 2, and based on the theory of vibration of infinite 
plate, that the behavior should be dominated by the small 
side (ly=b). Two types of contributions will be discussed 
each case apart: 

Plat type SCSC
Since the dimension ratio for the two small modal 

plates (a/b’=8/3.2) generated is still within the conditions
to keep the vibration behavior under the control of the 
small side along the y direction (ly=b’= b/2), we get 
vibration contribution of two types of the same beams, 
both having clamped and roller support [SCSC 2 (SS)]. 
Figure 6 show how those beam are restrained. 

S

C

S

   
S

(a/b=a/2b’=4/3.2) a/b’=8/3.2) >1  direction ly control

4S < 3S+C ( 12)SCSC < ( 12)SSCC

   
S

Comparative study: N2 [ 12]

S

S

C C

S

C

SSC

Fig. 6. Qualitative vibratory analysis rectangular plates 
SCSC- vs- SSCC according to elongated plate’s concept (mod2) 

We should notice the essential feature of the nodal 
line, that it does not prevent rotation, however it restraint 
the beam from translating vertically. By summing the 
number of restraints involved, we can count: 

4 Rollers  (4S) 

In the same manner we can show for the following 
case.

Plat type SSCC
We get vibration contribution of two types of beams, 

one having clamped and roller support and the second 
having pin support at one end and a roller support at the 
other [ SSCC  (CS) + (SS)]. Figure 6 show how those 
beam are restrained. 

1 Clamps + 3 Rollers  (1C+3S) 

Finally, let us compare the two cases: 

Plat type SCSC:
Mode N2 ( 12) involve 4 Rollers  (4S) 

Plat type SSCC:
Mode N2 ( 12) involve 1 Clamps + 3 Rollers 
(1C+3S) 

Based on qualitative analysis we can say, since we 
have (4S) < (1C+3S), we should have ( 12)SCSC <
( 12)SSCC because there is less restraint in plate SCSC 
compared to SSCC plate type. This result is consistent 
with that given by the FEM analysis (see Figure 5). The 
square black point corresponding to SCSC plate type 12 

= 2.15 rad/s come then as expected under the circle red 
point corresponding to SSCC plate type 12= 2.45 rad/s. 

Justification of mode N3 [ 21]: 
We can see from figure 7, that qualitative analysis for 

mode N3 [ 21] for both plate cases SCSC & SSCC, 
developing for the first, a vibratory sequence dominated 
by vibration behavior of a double beam simply supported 
of types CS & SC, however, for the second, a vibratory 
sequence controlled by a vibratory behavior dominated 
by the combined contribution of two types of beams CS 
& SS. Finally let us compare the following two cases: 

Comparative study: N3

(a/b=2a’/b) = (4/3.2) (a’/b) (5/6.4) < 1  direction lx

.
2C+2S > 1C+3S ( 21)SCSC  > ( 21)SSCC

C

S

S

C

C C

S

S

C S CC S S

Fig. 7. Qualitative vibratory analysis of rectangular plates 
SCSC- vs- SSCC according to elongated plate’s concept (mod3)

Plat type SCSC:
Mode N3 ( 21) involve  2 Clamps + 2 Rollers 
(2C+2S) 
Plat type SSCC:
Mode N3 ( 21) involve 1 Clamps + 3 Rollers 
(1C+3S) 

Based on qualitative analysis we can say, since we 
have (2C+2S) > (1C+3S), we should have ( 21)SCSC >
( 21)SSCC. Rigidity for this sequence modal is higher for 
plate SCSC compared to that of plate SSCC, because 
there is more restraint in plate SCSC compared to SSCC 
plate type. This result is consistent with that given by the 
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FEM analysis (see Figure 7). The square black point 
corresponding to SCSC plate type 21= 2.36 rad/s come 
then as expected above the circle red point corresponding 
to SSCC plate type 21= 2.11 rad/s. 

Justification of mode N4 [ 22]: 
Let’s compare the two cases: 

Plate type SCSC:
Mode N4 ( 22) involve  8 Rollers  (8S) 

Plat type SSCC:
Mode N4 ( 22) involve  6 Rollers + 2 Clamps   
(6S+2C) 

Based on qualitative analysis we can say, since we 
have, (8S) < (2C+6S) we should have ( 22) SCSC < ( 22)
SSCC. We can see the rigidity for this sequence modal are 
higher for plate SSCC compared to that of plate SCSC, 
because there is more restraint in plate SSCC compared 
to SCSC plate type. 

This result is consistent with that given by the FEM 
analysis (see Figure 8). The circle red point 
corresponding to SSCC plate type 22= 3.46 rad/s come 
then as expected above the square black point 
corresponding to SCSC plate type 22= 3.42 rad/s. 

S

S

(a/b=2a’/2b’=4/3.2)   (a’/b’) = (4/3.2) >1  direction ly control 

8S < 2C+6S ( 22)SCSC < ( 22)SSCC

S

Comparative study: N4 [ 22]

SS

S S

CC

S

S

CC

S

S

C

C

Fig. 8. Qualitative vibratory analysis of rectangular plates  
SCSC-vs-SSCC according to elongated plate’s concept (mod4) 

Justification of mode N5 [ 31]: 
Let’s compare the two cases: 

Plate type SCSC:
Mode N5 ( 31) involve  4 Rollers + 2 Clamps 
(4S+2C)  

Plate type SSCC:
Mode N5 ( 31) involve  5 Rollers +1 Clamps 
(5S+1C) 

Based on qualitative analysis we can say, since we 
have (2C+4S) > (5S+1C), we should have ( 31) SCSC >
( 31) SSCC. We can see the rigidity for this sequence modal 
are higher for plate SCSC compared to that of plate 
SSCC, because there is more restraint in plate SCSC 
compared to SSCC plate type. 

This result is consistent with that given by the FEM 
analysis (see Figure 9).  

2C+4S > 1C+5S ( 22)SCSC > ( 22)SSCC

(a/b=3a’/b =4/3.2)   (a’/b’) = (4/9.6) < 1  direction lx control 

Comparative study: N5 [ 31]

S S
C C

S

C S
S

S

S

S

S

C

C

C

C

Fig. 9. Qualitative vibratory analysis of rectangular plates 
SCSC-vs- SSCC according to elongated plate’s concept (mod5) 

The square black point corresponding to SCSC plate 
type 31= 4.34 rad/s come then as expected above the 
circle red point corresponding to SSCC plate type 31=
3.9 rad/s. 

Justification of mode N6 [ 32]:
Finally let’s compare the two cases: 

Plate type SCSC:
Mode N6 ( 32) involve  4 Clamps +8 Rollers 
(4C+8S) 

Plate type SSCC:
Mode N6 ( 32) involve  2 Clamps +10 Rollers 
(2C+10S) 

Based on qualitative analysis we can say, since we 
have (4C+8S) > (2C+10S), we should have ( 22) SCSC >
( 22) SSCC. We can see the rigidity for this sequence modal 
are higher for plate SCSC compared to that of plate 
SSCC, because there is more restraint in plate SCSC 
compared to SSCC plate type. 

This result is consistent with that given by the FEM 
analysis (see Figure 10).  

The square black point corresponding to SCSC plate 
type 32= 5.39 rad/s come then as expected above the 
circle red point corresponding to SSCC plate type 32=
5.18 rad/s. 
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Note: All these discussion are resumed in Appendix II 

Etude Comparative: N6 [ 32]

CC
S

C
SS

SS

S C

CC C S

(a/b=3a’/2b’=4/3.2)   (a’/b’) = (8/9.6) <1  direction lx control 

4C+8S > 2C+6S ( 22)SCSC > ( 22)SSCC

C C

S S S S
C S

Fig. 10. Qualitative vibratory analysis of rectangular plates SCSC-vs-
SSCC according to elongated plate’s concept (mod6) 

Discussion of percentage of error: 
Results obtained with approximate method are 

confronted to numerical results (FEM) according to the 
following relation: 

100FEM APPR

FEM

Error

Errors according to approximate method are 
overestimated relatively to those obtained by FEM; 
however, the maximum peak obtained is 0.65%. (See 
Figure 5 curves green & bleu). 

IV. Quantitative Investigation for Higher 
Frequencies for Orthotropic Plates: 

It is important to note for rectangular plates that:
- The nodal line are rectilinear and rectangular to the 

edges 
- They divide the plate in sub plates that vibrate at the 

same value as .
- Nodal line presents zero displacements. 

Vibratory analysis of rectangular plate with two cases 
of fixities (SCSC and SSCC): 

The first frequency for orthotropic rectangular plates 
Hearmon proposed the following equation: 

2

D
f

h
 (5) 

where: 

4 4 2 2

A B C

a b a b
 (6) 

Application of the quantitative method based on A, B, 
C coefficients, which are obtained from a table for the 
values of  parameter (see Appendix I). 

a) SCSC orthotropic plate: 

Mod 1*1 
S

C

a

C

S

The circular frequency for mod 1*1 is obtained by the 
following equation: 

2 1 2
1 1 4 4 2 2

0 1951 0 485
4 73*

D . D . H
.

h a b a b
 (7) 

Mod 1*2 
S

a

C

S

C

Plate develops a modal sequence with two sub plates 
SCSC and SCSC where the nodal line position is 
symmetric because of the symmetry of the extreme 
supports SS. 

The circular frequency for mod 1*2 is obtained by the 
following equation: 

1 2
4 4

2
1 2

2
2

0 195

21
4 73

0 485

2

*

D . D

a b

.
. Hh

b
a

 (8) 
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Mod 2*1 

CC

a/2 

S

S
a/2

Plate develops a modal sequence with two sub plates 
SSSC and SCSS where the nodal line position is 
symmetric because of the symmetry of the extreme 
supports CC. 

The circular frequency for mod 2*1 is obtained by the 
following equation: 

2 1

2 1 2
4 4 2

2

0 1951 0 485

2 2

*

D . D . H

h ba a
b

 (9) 

Mod 2*2
S

CC

a/2 a/2 
  S 

Plate develops a modal sequence with four sub plates 
2 (SSSC & SCSS) where the nodal lines positions are 
symmetric because of the symmetry of the extreme 
supports CC and SS. 

The circular frequency for mod 2*2 is obtained by the 
following equation: 

2 2

2 1 2
4 4 2 2

2 4411 2 333

2 2 2 2

*

D . D . H

h a b a b

 (10) 

b) SSCC orthotropic plate 

Mod 1*1 

S

C

C

a
S

The circular frequency for the first mod 1*1 is 
obtained by the following equation: 

1 1

2 1 2
4 4 2 2

1 1 115
3 927

*

D D . H
.

h a b a b

 (11) 

Mod 1*2 

a

S

C

C

S

Plate develops a modal sequence with two sub plates 
SSSC & SSCC where the nodal lines positions are 
asymmetric because of the no symmetry of the extreme 
supports CS & CS. The circular frequency for mode 1*2 
is obtained by the following two equations: 

Sub plate SSCC 

2 1 2
1 2 4 4 2 2

1 1

1 1 115
3 927*

D D . H
.

h a b a b
 (12) 

Sub plate SSSC 

1 2

2 1 2
4 4 2 2

1 1

2 4411 2 333

*

D . D . H

h a b b a b b

 (13) 
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The value b1 is calculated if we suggest that the two 
sub plates vibrate at the same frequency 1*2(SSCC) =

1*2(SSSC).

Mod 2*1 

C

 a 1 a- a1

a

S

S

C

Plate develops a modal sequence with two sub plates 
SSCC & SSCS where the nodal lines positions are 
asymmetric because of the non symmetry of the extreme 
supports CS & CS. The circular frequency for mod 2*1 is 
obtained by the following equations: 

Sub plate SSCC 

4 4

2 1 2
2 1 2 2

1 1

1 1 115
3 927*

D D . H
.

h ba a b
 (14) 

Sub plate SSCC 

1 2
4 4

2 1
2 1

2 2
1

2 441

1

2 333*

D . D

ba a

. Hh

a a b

 (15) 

The value a1 is calculated if we suggest that the two 
sub plates vibrate at the same frequency 2*1(SSCC) =

2*1(SSCS).

Mod 2*2 

C

a 1 a- a 1

a

C

S

S

Plate develops a modal sequence with 4 sub plates 
SSSC, SSCC, SSSS, and SSCS where the nodal lines 
positions are asymmetric because of the non symmetry of 
the extreme supports CS & CS.  

The circular frequency for mod 2*2 is obtained by the 
following three equations: 

Sub plate SSCC 

2 1 2
2 2 4 4 2 2

1 1 1 1

1 1 115
3 927*

D D . H
.

h a b a b
 (16) 

Sub plate SSCS 

1 2
4 4

2 1 1
2 2

2 2
1 1

2 441

1

2 333*

D . D

a a b

. Hh

a a b

 (17) 

Sub plate SSSS 

1 2
4 4

2 1 1
2 2

2 2
1 1

1

2*

D D

a a b b

Hh

a a b b

 (18) 

The value a1 and b1 are calculated if we suggest that 
the 4 sub plates vibrate at the same frequency 2*2(SSCC) =

2*2(SSCS) = 2*2(SSSS) = 2*2(SSSC).
Note: Quantitative analysis can be extended also for 
all remaining higher modes.

V. Conclusion and Recommendations 

Qualitative method has permitted to support the results 
quality obtained for different frequency analysis graphs. 
Complementary use of Hearmon method principal and 
qualitative method has also permitted to go away with 
success in evaluating upper modes. 

This combined procedure constitutes a strategy of 
vibratory analysis of isotropic and orthotropic plates; it 
permits in one hand to satisfy needs of preliminary 
conception of structure to be studied, but also an 
investigation and expertise method of dynamic responses 
quality. 

The process of structural analysis can involve risks, 
especially when using computer.  

The paper describes a methodology for handling 
analysis which also can help to reduce such risks and 
which promotes an understanding of structural behavior. 

Futures recommendations; forced and free analysis 
may be extended to others cases of fixities and may be a 
topic of interesting study.
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Appendix I 
Conditions of 

fixities 
parameter  (Hearmon, R.F.S) 

2
4 4 2 2

1 1 2

a b a b

2

4 4 2 2

1 1 0 605
4 730

.
.

a b a b

2

4 4 2 2

0 475 1 0 566
4 730

. .
.

a b a b

2

4 4 2 2

1 1 1 115
3 927

.
.

a b a b

2

4 4 2 2

1 0 195 0 485
4 730

. .
.

a b a b

2
4 4 2 2

1 2 441 2 333. .

a b a b

Appendix II 

Mode 
Number 
NK( ij)

Plate Type 

Beam Type 
Involved 
By the 

Sequence 

Number of 
Restraints 

Total 
Number 

of
Restraints
Involved 

Frequency Ratio 
(From 

Qualitative 
Analysis) 

( ij)SCSC/( ij)SSCC 

N2 (1-2) 
SCSC 

SS 2 Rollers                      (S+S) 

4S 

2.15/2.45 < 1 

SS 2 Rollers                      (S+S) 

SSCC 

SS 2 Rollers                      (S+S) 

1C+3SCS 1 Clamp + 1 Roller        (C+S) 

N3 (2-1) 

SCSC 
CS 1 Clamp + 1 Roller        (C+S)) 

2C+2S

2.36/2.11 > 1 

CS 1 Clamp +1 Roller        (C+S) 

SSCC 
CS 1 Clamp + 1 Roller        (C+S) 

3S+C CS 1 Roller + 1 Roller         (S+S) 

N4 (2-2) 

SCSC 
SS SS 2 Rollers  (S+S) 2 Rollers  (S+S) 

8S 
       

3.42/3.46 < 1 

SS SS 2 Rollers  (S+S) 2 Rollers   (S+S) 

SSCC 
CS CS 1 Clamp +1 Roller 

(C+S)
1 Clamp + 1 Roller 

(C+S)
2C+6SCS CS 2 Rollers  (S+S) 2 Rollers  (S+S) 

N5 (3-1) 

SCSC 
CS 1 Clamp + 1 Roller           (C+S) 

2C+4S

4.34/3.39 > 1 

SS 1 Clamp + 1 Roller           (C+S) 

SC 2 Rollers                        (S+S) 

SSCC 
CS 1 Clamp + 1 Roller           (C+S) 

1C+5SSS 2 Rollers                        (S+S) 

SS 2 Rollers                        (S+S) 

N6 (3-2) 

SCSC 

CS CS 1 Clamp+ 1 Roller 
(C+S)

1 Clamp + 1 Roller 
(C+S)

4C + 8S 

5.39/5.18 > 1 

SS SS 2 Rollers     (S+S) 2 Rollers      (S+S) 

SC SC 1 Clamp +1 Roller 
(C+S)

1 Clamp + 1 Roller 
(C+S)

SSCC 
CS CS 1 Clamp+1 Roller 

(C+S)
1 Clamp + 1 Roller 

(C+S) 2C + 10S 

SS SS 2 Rollers     (S+S) 2 Rollers        (S+S) 

SS SS 2 Rollers     (S+S) 2 Rollers        (S+S) 

SSCS

SCSC

SSCC

CSCC

CCCC

SSSS 
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