Tutorial -1- Solutions
 Algebra 2

Background

- Vector space : Recall that $(V,+,$.$) is a \mathbb{R}$-vector space which satisfy the following conditions (called axioms)

Axioms for vector addition

1. Commutative : For all $u, v \in V, u+v=v+u$.
2. Associative : For all $u, v, w \in V,(u+v)+w=u+(v+w)$.
3. Additive identity : There exists an element $0_{V} \in V$, such that $0_{V}+u=u$ for all $u \in V$.
4. Additive inverse : For every $u \in V$, there exists an element $-u \in V$ such that $u+(-u)=0_{V}$.

Axioms for scalar multiplication

5. Associative : For all $\lambda, \mu \in \mathbb{R}$ and all $u \in V, \lambda \cdot(\mu \cdot u)=(\lambda \mu) \cdot u$.
6. Distributive 1 : For all $\lambda \in \mathbb{R}$ and all $u, v \in V, \lambda \cdot(u+v)=\lambda \cdot u+\lambda \cdot v$.
7. Distributive 2: For all $\lambda, \mu \in \mathbb{R}$ and all $u \in V,(\lambda+\mu) \cdot u=\lambda \cdot u+\mu \cdot u$.
8. Unitarity : For all $u \in V, 1 \cdot u=u$.

- Vector subspace : A subset F of V (vector space) is called a vector subspace on \mathbb{K} of V if it satisfies the following three conditions :

1) $0_{V} \in F$.
2) $\forall x, y \in F, x+y \in F$ (F is closed under addition $)$.
3) $\forall \alpha \in \mathbb{K}, \forall x \in F, \alpha . x \in F$ (F is closed under scalar multiplication).

- Linearly independent famillies : A familly $\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ of vectors of V (vector space) is linearly independent if :

$$
\forall \lambda_{1}, \lambda_{2}, \ldots \ldots ., \lambda_{n} \in \mathbb{K}, \quad \lambda_{1} v_{1}+\ldots \ldots . .+\lambda_{n} v_{n}=0_{V} \Longrightarrow \lambda_{1}=\lambda_{2}=\ldots \ldots . .=\lambda_{n}=0 .
$$

- Generating families : A familly $\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ of vectors of V (vector space) is a generating familly of V if every vectors of V is a linear combiniation of of the vectors $v_{1}, \ldots \ldots . ., v_{n}$. In other words,

$$
\forall v \in V, \exists \lambda_{1}, \ldots \ldots ., \lambda_{n} \in \mathbb{K}: v=\lambda_{1} v_{1}+\ldots \ldots \ldots+\lambda_{n} v_{n} .
$$

We also say that the familly $\left\{v_{1}, v_{2}, \ldots \ldots ., v_{n}\right\}$ generates V and we write $V=\operatorname{span}\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$.

- Basis of a vector space : A familly $\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ of vectors in a vector space V is called a basis of V if it satisfies the following tow conditions :

1) $\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ is a linearly independent familly of V.
2) $V=\operatorname{span}\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$.

Solution 1

1. Commutativity : Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$, then

$$
\begin{aligned}
\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right) & =\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \\
& =\left(y_{1}+x_{1}, y_{2}+x_{2}\right) \\
& =\left(y_{1}, y_{2}\right)+\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Therefore, axiom (1) holds.
2. Associativity : Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$, we have

$$
\begin{aligned}
\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)+\left(z_{1}, z_{2}\right) & =\left(x_{1}+y_{1}, x_{2}+y_{2}\right)+\left(z_{1}, z_{2}\right) \\
& =\left(x_{1}+y_{1}+z_{1}, x_{2}+y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right)+\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, y_{1}\right)+\left(\left(y_{1}, y_{2}\right)+\left(z_{1}, z_{2}\right)\right) .
\end{aligned}
$$

Then, axiom (2) holds.
3. Additive identity : The vector $0_{\mathbb{R}^{2}}=(0,0)$ satisfies the condition (3) since, for each $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, we have

$$
\begin{aligned}
(0,0)+\left(x_{1}, x_{2}\right) & =\left(0+x_{1}, 0+x_{2}\right) \\
& =\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

4. Additive inverse : Let $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, then the vector $\left(-x_{1},-x_{2}\right) \in \mathbb{R}^{2}$, satisfies the condition (4), since :

$$
\begin{aligned}
\left(x_{1}, x_{2}\right)+\left(-x_{1},-x_{2}\right) & =\left(x_{1}+\left(-x_{1}\right), x_{2}+\left(-x_{2}\right)\right) \\
& =(0,0) .
\end{aligned}
$$

5. Associativity of multiplication : Let $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $\lambda, \mu \in \mathbb{R}$, we have

$$
\begin{aligned}
\lambda .\left(\mu \cdot\left(x_{1}, x_{2}\right)\right) & =\lambda \cdot\left(\mu x_{1}, \mu x_{2}\right) \\
& =\left(\lambda \mu x_{1}, \lambda \mu x_{2}\right) \\
& =(\lambda \mu) \cdot\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Then, axiom (5) holds.
6. Distributivity 1: Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$, and $\lambda \in \mathbb{R}$, then

$$
\begin{aligned}
\lambda \cdot\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right) & =\lambda \cdot\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \\
& =\left(\lambda x_{1}+\lambda y_{1}, \lambda x_{2}+\lambda y_{2}\right) \\
& =\left(\lambda x_{1}, \lambda x_{2}\right)+\left(\lambda y_{1}, \lambda y_{2}\right) \\
& =\lambda \cdot\left(x_{1}, x_{2}\right)+\lambda \cdot\left(y_{1}, y_{2}\right) .
\end{aligned}
$$

Therefore, axiom (6) holds.
7. Distributivity 2: Let $\lambda, \mu \in \mathbb{R}$ and $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, we have

$$
\begin{aligned}
(\lambda+\mu) \cdot\left(x_{1}, x_{2}\right) & =\left((\lambda+\mu) x_{1},(\lambda+\mu) x_{2}\right) \\
& =\left(\lambda x_{1}+\mu x_{1}, \lambda x_{2}+\mu x_{2}\right) \\
& =\left(\lambda x_{1}, \lambda x_{2}\right)+\left(\mu x_{1}, \mu x_{2}\right) \\
& =\lambda \cdot\left(x_{1}, x_{2}\right)+\mu\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Then, axiom (7) holds.
8. Unitarity : Let $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, 1 \cdot\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right)$.

We conclude that $\left(\mathbb{R}^{2},+,.\right)$ is a vectorial space on \mathbb{R}.

Solution 2

1. F_{1} is a voctor subspace of \mathbb{R}^{3}. Indeed :
(1) $0_{V}=0_{\mathbb{R}^{3}}=(0,0,0) \in F_{1}$, because $0-0+0=0$.
(2) Let $u=\left(x_{1}, y_{1}, z_{1}\right)$ and $v=\left(x_{2}, y_{2}, z_{2}\right)$ be an element of F_{1}. Then

$$
\begin{align*}
& x_{1}-y_{1}+z_{1}=0 \tag{1}\\
& x_{2}-y_{2}+z_{2}=0 \tag{2}
\end{align*}
$$

Summing up (11) and (2), yields

$$
x_{1}+x_{2}-\left(y_{1}+y_{2}\right)+z_{1}+z_{2}=0
$$

Which implies that $u+v=\left(x_{1}+y_{1}, x_{2}+y_{2}, z_{1}+z_{2}\right)$ inside in F_{1}, thus F_{1} is closed under addition.
(3) Let α be any scalar and $u=(x, y, z)$ be an element of F_{1}. Then $x-y+z=0$, which leads $\alpha x-\alpha y+\alpha z=0$, thus $\alpha . u=(\alpha x, \alpha y, \alpha z) \in F_{1}$. Therefore F_{1} is closed under scalar multiplication.
All three conditions of a subspace vector are satisfied for F_{1}, we conclude that F_{1} is a subspace vector of \mathbb{R}^{3}.
2. Since $0_{\mathbb{R}^{3}}=(0,0,0) \notin F_{2}$, because $0-0+0 \neq 1$. Then, F_{2} is not a subspace vector of \mathbb{R}^{3}.
3. The set F_{3} contains $0_{\mathbb{R}^{3}}$ and the sum of tow vectors of F_{3} still into F_{3}, but F_{3} is not closed under scalar multiplication. For example, if we take $u=(-1,0,3) \in F_{3}$ and $\alpha=-2 \in \mathbb{R}$, then $-2 . u=(2,0,6) \notin F_{3}$, because the first compenent of αu isn't negative. Thus, F_{3} is not a subspace vector of \mathbb{R}^{3}.

Solution 3

We will show that the vectors $u=(-5,6,4), v=(1,0,-2)$ and $w=(0,3,5)$ are linearly independent.
Indeed: let $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$, we have

$$
\lambda_{1} u+\lambda_{2} v+\lambda_{3} w=0_{\mathbb{R}^{3}}
$$

Then

$$
\lambda_{1}(-5,6,4)+\lambda_{2}(1,0,-2)+\lambda_{3}(0,3,5)=(0,0,0)
$$

Therefore

$$
\left\{\begin{array}{l}
-5 \lambda_{1}+\lambda_{2}=0 \\
6 \lambda_{1}+3 \lambda_{3}=0 \\
4 \lambda_{1}-2 \lambda_{2}+5 \lambda_{3}=0
\end{array}\right.
$$

Which leads

$$
\lambda_{1}=\lambda_{2}=\lambda_{3}=0 .
$$

Then, the vectors u, v and w are linearly independent.

Solution 4

Let F be the subset of \mathbb{R}^{3} defined as :

$$
F=\left\{\left(x_{1}, x_{2}, 0\right) \in \mathbb{R}^{3} / x_{1}, x_{2} \in \mathbb{R}\right\} .
$$

1. F is a voctor subspace of \mathbb{R}^{3}. Indeed :
(1) $0_{V}=0_{\mathbb{R}^{3}}=(0,0,0) \in V$.
(2) Let $u=\left(x_{1}, x_{2}, 0\right)$ and $v=\left(y_{1}, y_{2}, 0\right)$ be an element of F. Then $u+v=\left(x_{1}+y_{1}, x_{2}+y_{2}, 0\right)$, because $x_{1}+y_{1} \in \mathbb{R}$ and $x_{2}+y_{2} \in \mathbb{R}$ then $u+v$ inside in F. Thus F is closed under addition.
(3) Let α be any scalar and $u=\left(x_{1}, x_{2}, 0\right)$ be an element of F. Then $\alpha . u=\left(\alpha x_{1}, \alpha x_{2}, 0\right) \in F$. Therefore F is closed under scalar multiplication.
All three conditions of a subspace vector are satisfied for F, we conclude that F is a subspace vector of \mathbb{R}^{3}.
2. We are looking for a basis for F, we start by searching a set generating of F

- For all $(x, y, 0) \in F$ we have : $(x, y, 0)=x(1,0,0)+y(1,0,0)$. Then span $F=\left\{v_{1}=(1,0,0), v_{2}=(0,1,0)\right\}$.
- Now, we show that the family $\left\{v_{1}, v_{2}\right\}$ is linearly independent.

Let $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, such that $\lambda_{1} v_{1}+\lambda_{2} v_{2}=0_{\mathbb{R}^{3}}$, then

$$
\lambda_{1}(1,0,0)+\lambda_{2}(0,1,0)=(0,0,0) .
$$

Which in turn implies that

$$
\left\{\begin{array}{l}
\lambda_{1}=0, \\
\lambda_{2}=0 .
\end{array}\right.
$$

Consequently, the vectors v_{1} and v_{2} are linearly independent, which proves that $\left\{v_{1}, v_{2}\right\}$ is a basis of F.
3. $\operatorname{dim} F=\operatorname{card}\left\{v_{1}, v_{2}\right\}=2$

Solution 5

1. We will show that the set $\left\{v_{1}=(0,1,1), v_{2}=(1,0,1), v_{3}=(1,1,0)\right\}$ is a basis of \mathbb{R}^{3}.

First, we show that the family is linearly independent. Indeed, let $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$, such that $\lambda_{1} v_{1}+\lambda_{2} v_{2}+\lambda_{3} v_{3}=0_{\mathbb{R}^{3}}$, then

$$
\lambda_{1}(0,1,1)+\lambda_{2}(1,0,1)+\lambda_{3}(1,1,0)=(0,0,0) .
$$

Which in turn implies that

$$
\left\{\begin{array}{l}
\lambda_{2}+\lambda_{3}=0 \\
\lambda_{1}+\lambda_{3}=0 \\
\lambda_{1}+\lambda_{2}=0
\end{array}\right.
$$

Which leads to

$$
\lambda_{1}=\lambda_{2}=\lambda_{3}=0 .
$$

Consequently, the vectors v_{1}, v_{2} and v_{3} are linearly independent.
Now, we are going to prove that the family $\left\{v_{1}, v_{2}, v_{3}\right\}$ is generating of \mathbb{R}^{3}.
Let $(x, y, z) \in \mathbb{R}^{3}$, we are looking for $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$, such that:

$$
(x, y, z)=\lambda_{1}(0,1,1)+\lambda_{2}(1,0,1)+\lambda_{3}(1,1,0) .
$$

Therefore

$$
\begin{align*}
& x=\lambda_{2}+\lambda_{3}, \tag{3}\\
& y=\lambda_{1}+\lambda_{3}, \tag{4}\\
& z=\lambda_{1}+\lambda_{2} . \tag{5}
\end{align*}
$$

Substracting the equation (4) from the equation (3), yields

$$
x-y=\lambda_{2}-\lambda_{1} .
$$

Summing up the last result with (5), we get

$$
\begin{equation*}
\lambda_{2}=\frac{1}{2}(x-y+z) . \tag{6}
\end{equation*}
$$

Inserting (6) into (3), we obtain

$$
\lambda_{3}=\frac{1}{2}(x+y-z) .
$$

In the similar way, we insert (6) into (5), we have

$$
\lambda_{1}=\frac{1}{2}(-x+y+z) .
$$

So $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}=\mathbb{R}^{3}$, we conclude that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of \mathbb{R}^{3}.
2. The components of the vector $w=(1,1,1)$ in the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ are : $\lambda_{1}=\frac{1}{2}(-1+1+1)=\frac{1}{2}$, $\lambda_{2}=\frac{1}{2}(1-1+1)=\frac{1}{2}, \lambda_{3}=\frac{1}{2}(1+1-1)=\frac{1}{2}$.

