University year : 2023-2024
Department :MI
Module : Algebra 2

Tutorial Series(1)

Exercise 1 For any $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$, define an operation of addition by

$$
\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)
$$

and an operation of scalar multiplication by

$$
\forall \alpha \in \mathbb{R}, \forall\left(x_{1}, x_{2}\right) \in \mathbb{R} ; \alpha \cdot\left(x_{1}, x_{2}\right)=\left(\alpha \cdot x_{1}, \alpha \cdot x_{2}\right)
$$

Is $\left(\mathbb{R}^{2},+,.\right)$ a vector space on the field \mathbb{R} ?
Exercise 2 Determine which of the following subsets are subspaces of \mathbb{R}^{3}. Give reasons for your answers.

1. $F_{1}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-y+z=0\right\}$.
2. $F_{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-y+z=1\right\}$.
3. $F_{3}=\left\{\left(x_{1}, 0, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1} \leqslant 0\right.$ et $\left.x_{3} \in \mathbb{R}\right\}$.

Exercise 3 Show that in the space \mathbb{R}^{3}, the vectors $u=(-5,6,4), v=(1,0,-2)$ and $w=$ $(0,3,5)$ are linearly independent.

Exercise 4 let F be the subset of \mathbb{R}^{3} defined as :

$$
F=\left\{\left(x_{1}, x_{2}, 0\right) \in \mathbb{R}^{3} \mid x_{1}, x_{2} \in \mathbb{R}\right\}
$$

1. Show that F is a vector subspace of \mathbb{R}^{3}.
2. Find the basis of F. Deduce the dimension of F.

Exercise 5 Let \mathbb{R}^{3} be the vector space on the field \mathbb{R},

1. Show that the set $\left\{v_{1}=(0,1,1), v_{2}=(1,0,1), v_{3}=(1,1,0)\right\}$ is a basis of \mathbb{R}^{3}.
2. Find the components of a vector $w=(1,1,1)$ in the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$
