Université Mostefa Ben Boulaïd - Batna 2 Faculty of Mathematics and Computer Science Statistics and Data Science Department Algebra 3 Tutorial series 2, 3

Exercice 1 Let $A = \begin{pmatrix} 2 & 4 & -2 \\ 0 & -4 & 3 \\ -3 & -7 & 4 \end{pmatrix}$

Find the characteristic polynomial of A.

Exercice 2 Let $M \in M_3(\mathbb{R})$ be the matrix

$$M = \left(\begin{array}{rrrr} -2 & 2 & 2\\ -1 & 1 & 1\\ -1 & 1 & 1 \end{array}\right)$$

Compute the eigenvalues and the eigenvectors of M. Is M diagonalizable ?

Exercice 3 Find a basis of \mathbb{R}^3 made of eigenvectors for the linear map $L : \mathbb{R}^3 \to \mathbb{R}^3$ that is represented by the matrix

$$[L] = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

concerning the standard basis

Exercice 4 Let $M = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 0 \end{pmatrix} \in M_3(\mathbb{R})$:

- (a) Determine the eigenvalues and the eigenvectors of M over the field \mathbb{R} .
- (b) Say, justifying the answer, if there exist a matrix $V \in M_3(\mathbb{R})$ and a diagonal matrix $D \in M_3(\mathbb{R})$ such that $M = PDP^{-1}$.
- (c) Determine a possible choice of such V and D.

Exercice 5 Let A be the matrix

$$A = \left(\begin{array}{rrrr} 2 & 1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- (a) Find the eigenvalues and the eigenvectors of A over the field \mathbb{R} . Is A diagonalizable?
- (b) Find the eigenvalues and the eigenvectors of A over the field \mathbb{C} . Is A diagonalizable?
- (c) Find an invertible matrix $V \in M_3(\mathbb{C})$ such that $P^{-1}AP$ is diagonal.

Exercice 6 Let $a \in \mathbb{R}$ and consider the matrix

$$A = \left(\begin{array}{cc} 1 & -1 \\ 1 & a \end{array}\right)$$

- (a) For which $a \in \mathbb{R}$ is A diagonalizable over \mathbb{R} ?
- (b) For which $a \in \mathbb{R}$ is $\lambda = 3$ an eigenvalue for A?
- (c) For which $a \in \mathbb{R}$ is $v = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$ an eigenvector for A?

Exercice 7 Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the endomorphism associated to the matrix

to the standard basis. Say if T is diagonalizable and, if so, compute a basis of \mathbb{R}^3 made of eigenvectors for T.

Exercice 8 Let A be the matrix

$$A = \left(\begin{array}{rrrr} 2 & 1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- 1. Find the eigenvalues and the eigenvectors of A over the field \mathbb{R} Is A diagonalizable?
- 2. Find the eigenvalues and the eigenvectors of A over the field \mathbb{C} . Is A diagonalizable?
- 3. Find an invertible matrix $V \in M_3(\mathbb{C})$ such that $P^{-1}AP$ is diagonal.

Exercice 9 Let $a \in \mathbb{R}$ and consider the matrix

$$A = \left(\begin{array}{cc} 1 & -1 \\ 1 & a \end{array}\right)$$

- 1. For which $a \in \mathbb{R}$ is A diagonalizable over \mathbb{R} ?
- 2. For which $a \in \mathbb{R}$ is $\lambda = 3$ an eigenvalue for A?
- 3. For which $a \in \mathbb{R}$ is $v = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$ an eigenvector for A?

Exercice 10 Let $a \in \mathbb{R}$ be a real parameter ad let L_a be the linear endomorphism of \mathbb{R}^3 defined as

$$L_a\left(\left[\begin{array}{c}x\\y\\z\end{array}\right]\right) = \left[\begin{array}{c}2ax+y+z\\x+ay+z\\-x+y+az\end{array}\right]$$

Study the diagonalizability of L_a , depending on the parameter a.

Exercice 11 Verify Cayley-Hamilton theorem for $A = \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix}$

Exercice 12 Is $A = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 2 & -1 \\ -1 & 1 & 3 \end{pmatrix}$ invertible? If so, find A^{-1} (use Cayley-Hamilton theorem).

Exercice 13 Find the minimal polynomial of $A = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix}$

Exercise 14 Let $p, q \in \mathbb{R}[x]$ be given by $p = x^2 - 2x - 3$, $q = x^3 - 2x^2 + 2x - 5$. Let $A \in M_2(\mathbb{R})$ and $B \in M_3(\mathbb{R})$ be given by

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 1 \\ -2 & 0 & 1 \\ 2 & 1 & 1 \end{pmatrix}$$

- 1. Compute p(A), p(B), q(A), q(B).
- 2. Compute the characteristic polynomials of A and B , from question 1. What do you notice ?
- 3. Let $\mathbb{F} = \mathbb{Z}_2$, the field of two elements and let $p = x^2 + x \in \mathbb{F}[x]$. Show that p(t) = 0, for all $t \in \mathbb{F}$.

Exercice 15 Find a 3×3 matrix whose minimal polynomial is x^2

Exercice 16 Let
$$A = \begin{pmatrix} 2 & 4 & -2 \\ 0 & -4 & 3 \\ -3 & -7 & 4 \end{pmatrix}$$

- (a) Find the characteristic polynomial of A.
- (b) Find the minimal polynomial of A
- (c) Find the characteristic vectors and a basis \mathcal{B} such that $[A]_{\mathcal{B}}$ is diagonal.

Exercise 17 What can the minimal polynomial of $T : \mathbb{R}^4 \to \mathbb{R}^4$ be if the characteristic polynomial of $[T]_{\mathcal{B}}$ is

 $\begin{array}{l} - (t-1)(t^3+1) \\ - (t^2+1)^2 ? \\ Here, \ \mathcal{B} \ is \ the \ standard \ basis \ of \ \mathbb{R}^4 \end{array}$