Université de Batna –2– Faculté de Mathématiques et d'Informatique Département de Mathématiques Ana. Math. Eqs. Navier-Stokes Mr. Zerguine Mohamed 2021-2022

DEVOIR À DOMICILE 2^{ème} ANNÉE MASTER. OPTION : EDP

Considérons l'équation de la chaleur dans \mathbb{R}^N

$$\begin{cases}
\varepsilon \partial_t v_{\varepsilon} - \Delta v_{\varepsilon} = f, \\
v_{|t=0} = v_0,
\end{cases}$$
(EC)

Il est tentant de penser que v_{ε} converge vers v, solution de l'équation $-\Delta v = f$ quand ε tend vers zéro.

- (1) Prenons N = 2. Montrer que $E(x) = -\frac{1}{2\pi} \ln(|x|)$ définit une distribution et que $-\Delta E = \delta_0$.
- (2) Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ telle que $(1 + \ln(1 + |x|)) f(x) \in L^1(\mathbb{R}^2)$. Déduire que

$$v(x) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \ln(|x - y|) f(y) dy$$

vérifie l'équation $-\Delta v = f$.

(3) Supposons que $v_0 \in L^1(\mathbb{R}^N)$. Pour tout $\varepsilon, t > 0$ et $x \in \mathbb{R}^N$, on pose

$$v_{\varepsilon}(t,x) = \int_{\mathbb{R}^N} \frac{e^{-\varepsilon|x-y|^2/(4t)}}{(4\pi t/\varepsilon)^{N/2}} v_0(y) dy.$$

Montrer que v_{ε} converge vers 0 uniformément sur $[\delta, \infty) \star \mathbb{R}^N$ pour tout $\delta \in]0, \infty[$.

(4) Soit $f \in L^1(\mathbb{R}^N)$ à valeurs non négatives. Pour tout $\varepsilon, t > 0$ et $x \in \mathbb{R}^N$, on pose

$$w_{\varepsilon}(t,x) = \int_0^t \int_{\mathbb{R}^N} \frac{e^{-\varepsilon|x-y|^2/(4(t-s))}}{(4\pi(t-s)/\varepsilon)^{N/2}} f(y) ds dy.$$

Montrer que, si N > 2, w_{ε} admet une limite finie quand $\varepsilon \to 0$, tandis que si la dimension N = 1 ou N = 2, alors $\lim_{\varepsilon \to 0} w_{\varepsilon}(t, x) = +\infty$.

(5) Donner une formule pour v_{ε} solution de (EC), en fonction de v_0 et f.

Indication : Utiliser le fait que $(\frac{\pi}{a})^{\frac{N}{2}}e^{-\frac{\xi^2}{4a}}$ est la trasformée de Fourier de $e^{-\frac{ax^2}{2}}$.

- (6) Déduire que $v_{\varepsilon} \ge 0$ quand $v_0 \ge 0$ et $f \ge 0$.
- (7) Prenons N = 2. Dans ce cas, on suppose que f ne dépend pas de la variable t, et que $v_0 \in L^1(\mathbb{R}^2)$, $\nabla v_0 \in L^1(\mathbb{R}^2)$ et $f \in L^1(\mathbb{R}^2)$. Montrer alors que

$$\lim_{\varepsilon \to} \nabla v_{\varepsilon}(t, x) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \frac{x - y}{|x - y|^2} f(y) dy.$$

(8) Que peut-on conclure?