
FILE ORGANIZATION



Introduction

• File organization is a critical aspect of data management that

determines how data is stored, accessed, and managed across

computing systems

• Explores fundamental concepts of file organization, from high-level

application perspectives to low-level system implementations

• Investigates key allocation methods, indexing strategies, and the

complex mechanisms that transform raw data storage into an

efficient, structured ecosystem



Review

• A file is the concept through which a program or an application stores

data in memory storage. Files are used at different levels of

abstraction with different semantics:

• Application Level

• System Level



Review

• Note

• All operations at the 'application' level (logical level) go through the

system, which translates them into low-level operations to physically

access the I/O blocks. Since I/O operations are time-consuming, the system

maintains in main memory a special, limited-size area (the buffer cache)

that allows it to keep copies of selected physical blocks according to certain

strategies (for example, the most frequently used ones). This buffer area is

completely transparent to the application programs that use the files.



Review

• Example

• When an application requests to read a specific record, the system

first checks if the concerned block is already in main memory (in the

buffer cache). If it is, the sought record will be directly transmitted to

the application without any physical read operation.



File Modeling

• Memory storage is modeled as a contiguous area of sequentially
numbered blocks (these numbers represent the block addresses).
Blocks are contiguous areas of bytes of the same size, containing,
among other things, the data (records) of files.



Characteristics and Header Block

• In order for the system to manage a file, it needs to know information

about its characteristics: the blocks used by the file, the organization

of the file, the associated access rights, etc.



Characteristics and Header Block

• Example 1

• For a certain type of file system, block 0 could be reserved to contain

a table where each row provides information on the characteristics of

a file (name, size, blocks used, etc.). When an application wishes to

open a file with a given name, the system retrieves its information

from this table.



Characteristics and Header Block

• Example 2

• In sequential memory storage such as magnetic tapes, this type of

information (the characteristics) was found at the beginning of each

file, which is why it was called the "header block".



Allocation methods

• An allocation method refers to how disk blocks are allocated for files:

• Contiguous allocation

• Linked allocation

• Indexed allocation



Contiguous Allocation

• Each file occupies a set of contiguous blocks on the disk

• Simple – only starting location (block x) and length (number of blocks) 

are required

• Random access

• Wasteful of space (dynamic storage-allocation problem)

• File cannot grow



Contiguous Allocation



Linked Allocation

• Each file is a linked list of disk blocks: blocks may be scattered 
anywhere on the disk.

• Simple – need only starting address

• Free-space management system – no waste of space

• No random access

• a space is required for the pointers.

Block = Pointer



Linked Allocation



Linked Allocation



Indexed Allocation

• Access operations such as search, and insertion can become

increasingly inefficient as data grows.

• Indexing methods help enhance performance to some extent by

utilizing an auxiliary structure, known as an index table, to speed up

searches."



Indexed Allocation

• Without an Index:

• Sequential Traversal: Scanning records sequentially, resulting in linear
complexity.

• Binary Search: Applicable only if the file is sorted, achieving logarithmic
complexity.

• With an Index:

• Traverse the index to locate the desired record, enabling direct access.

• Caution: Updates to the file become more expensive due to the need to
maintain the index.



Indexed Allocation

• Definition:

• Indexes are created based on one or more fields used to build the

index. An index is typically an organized table of <key, address> pairs

designed to speed up the search process for records in a file.



Indexed Allocation



Indexed Allocation

• Note:

• For these methods, two files are used: the index file and the data file.

Typically, the data file is not sorted. It can be an array or a linear

linked list of blocks on the disk. The index file is assumed to be in

memory and sorted according to the keys of the records. The index

can be at one or multiple levels, as we will describe later. The internal

organization of the file is arbitrary.



Indexed Allocation

Example 1

• The use of indexes is based on the following observation: to find a book in

a library, instead of examining each book one by one (corresponding to

sequential search), it is faster to consult the catalog where they are

organized by subject, author, and title. Each entry in an index includes a

value extracted from the data and a pointer to its original location. An

entry can be easily retrieved by searching for its location in the index.



Indexed Allocation

• Example 2

• INDEXED FILES

• To access a record in a file randomly, we need to know the address of 
the record.

Key Address

.

.

.

.

.

.

1

2

k

Record

Addresses

Record
Address

FileIndex

Key



Indexed Allocation

• Example 3



Advantages of index methods

• Even if the index is not in memory, index methods have the following 

advantages:

• Enable binary search even for variable-length records.

• Performing binary search on the index file is much faster than on 

the data file itself.

• Deletion of records using "flags" is done without disk access.



Disadvantages of index methods

• If the index is too large to fit in memory:

• Binary search becomes expensive.

• Rearrangement is costly due to shifts.

• In such cases, other techniques are employed, such as trees or 

hashing.



Index Types based on Key Density

• Dense: If it contains all the keys from the data file. In this case, there 

is no need to keep the file sorted.

• Sparse: If it does not contain all the keys from the data file (for 

example, only one key per block). In this case, the file must be sorted.



Dense Index

• Contains a record for every value of the sorting key in the indexed file.

• Over time, this type of index can occupy a significant amount of 

memory space.

• However, they have a very short search time.



Sparse Index

• Contains records for some values of the sorting key in the indexed file. 

Sparse indexes have advantages:

• They occupy less space.

• They impose fewer constraints during insertions and 

deletions.



Types based on the nature of the key

Primary Index:

• If the key field does not contain duplicate values, the index is then 

considered "primary.“

• An index ordered in the same way as the data file, which is 

sequentially ordered according to a key. (The indexing field is equal to 

this Key.)



Primary Index at One Level

• The index is a set of pairs (key, address) entirely arranged in main 
memory. The file is a collection of blocks (in this example, the blocks 
are contiguous) on the disk. Each block contains a set of records. 
Records may span two logically consecutive blocks. This is illustrated 
in the following figure:

Key

Block 1 Block 2 Block 3



Primary Index at One Level

• The data and index files can be of any structure (contiguous blocks, 
chained blocks, etc.). Similarly, the records can be of fixed or variable 
format (with or without overlapping).



Basic Operations

• To develop an indexing method, the following basic operations are 
necessary:

• Create an index and data file

• Load the index file into memory before use

• Search for a record with a given key

• Insert a record

• Delete a record

• Modify a record



Search for a Record with a Given Key

• To search for a record with a given key in the file, start with a binary 

search on the index.

• If the key is found, the block containing the record is brought into 

main memory to retrieve the record.

• If the record spans two blocks, the second block is also brought in 

to retrieve the rest of the record.



Insert a Record

• Inserting a record is done as follows:

• If the key is not found in the index, it is inserted, potentially 

causing shifts.

• The record is then inserted at the end of the file.



Delete a Record

• Deletion is typically logical, hence extremely fast.

• Reorganization is then needed to physically eliminate the deleted 

records.

• Typically, a new file is constructed as part of this process.



Primary Index at Multiple Levels

• If the index is too large to fit in main memory, a second index is built 

on the ordered index file. In this case, a single key is chosen for each 

block of the index file (sparse index) to construct the second index.

• If the second index is still too large to fit in main memory, it is stored 

on disk (second index file), and a third index is built by choosing a key 

for each block of the second index file. This process can be repeated, 

as necessary.





Key a

Key b

Key a

Key b
Level 1

Level 2

Index

Data File



Search for a Record with a Given Key

• To search for a record with a given key, begin by searching for the key 

in the level 1 index. An interval is then selected. The search continues 

in the level 2 index only within this interval. If the key is found, 

proceed in the same way as in the case with a single index. It is clear 

that the two binary searches on the two small vectors (level 1 index 

and a portion of the level 2 index) are much faster than a single 

binary search on a single large vector (level 2 index).



FILE ORGANIZATION

Hashing



Outlines

• Introduction

• Hashing Principle

• Terminology

• Hash Functions

• Collision Resolution Methods

• Conclusion



Introduction

• Issue: Suppose we want to organize data (records) arriving in any 

order into an array.

• Possible Solutions: Generally, there are two ways to organize them:

1. If the array is unordered:

• Sequential search → O(n) → Slow

• Insertion is done at the end of the array → O(1) → Fast



Introduction

2. If the array is ordered:

• Binary search for retrieval → O(log2(n)) → Fast

• Insertion causes shifting of elements in the array → O(n) → Slow



Introduction

• A third possibility for organizing data in an array is to:

• Place the data "x" at a location "y" calculated by a function "h" such that 

y = h(x).

• This is referred to as a hash table or Hashing.

• In this type of organization, whether inserting or searching for data, the 

operations can be performed quickly (O(c)).



Principle

x1

x3

x8
x2

x5

x6

x4
x7

Data to store

Address calculation allows 

storing data (x) in a table (HT) 

of size N, using a function (h)

h(x)
Organization through 

address calculation

0

1 x2

2 x4

3 x8

4

5 x6

6

… x5

… x1

…

… x3

N-1 x7

The function "h" should 

return values between 0 

and N-1

Hash Table "TH"



Terminology

• The function h is called the hash function.

• The primary address (h(x)) of data x is the result returned by the hash function h.

• Synonyms are data that share the same primary address, i.e., x1 and x2 are 

synonyms if h(x1) = h(x2). It is also said that x1 and x2 collide.

• Overflow occurs when there is data not in its primary address. It is also said to be 

stored in a secondary address.

• The secondary address is determined by a given method, known as a collision 

resolution method.



Principle

x1

x3

x8
x2

x5

x6

x4
x7

Data to store

h(x)
Organization through 

address calculation

0

1 x2

2 x4

3 x8

4

5 x6

6

… x5

… x1

…

… x3

N-1 x7

Hash Table "TH"

To use a hashing technique, the following must be defined:

1. A hash function "h."

2. A collision resolution method.



HASH FUNCTIONS

• The goal is to find a function h such that 0 ≤ h(x) < N, minimizing the 

number of collisions.

➢Ideally, having a bijective hash function, meaning a function that assigns a 

new location in the table for each data to be inserted.

➢The worst-case scenario is when all data is hashed to the same address.

➢An acceptable solution is one where some data shares the same address (h is 

surjective).



HASH FUNCTIONS

• There are several hash functions, the most commonly used ones being:

1. The division function.

2. The middle square function.

3. The radix transformation function.



HASH FUNCTIONS

1. The division function:   h(x) = x MOD N

➢It returns the remainder of the division by N, where N is the size of the table.

➢It is an easy and fast function to compute, but its quality depends on the value 

of N.

➢It is demonstrated that:

• Choosing N as a power of 2 is generally not a good idea.

• Choosing N as a prime number is usually a good choice.



HASH FUNCTIONS

1. The division function:  h(x) = x MOD N

➢Example: Calculate the hash function for the following data:

No collisions in the case where N = 11 because N is a prime number.

X N = 10 N = 11

5 5 5

55 5 → Collision 0

23 3 1

453 3 → Collision 2



HASH FUNCTIONS

2.  The middle square function

➢Square the data x (x2) and take the middle digits.

➢This method gives good results if the squared number does not have zeros.

➢Example: Calculate the hash function for the following data:

X x2 N = 10 N = 100

500 250000 0 0

12 144 4 14 or 44

453 205209 5 or 2 52



HASH FUNCTIONS

• The radix transformation function:  h(x) = (x)b MOD N

➢Convert the data "x" into a base "b" numeral system and take the remainder of 

the division by "N."

➢Example: Calculate the hash function for the following data when b = 11 and 

N = 10 or 100:

X10 X11 N = 10 N = 100

12 11 1 11

453 382 2 82



HASH FUNCTIONS

• In conclusion, there is no universal hash function.

• However, a good function should be:
• Fast to compute

• Uniformly distribute elements

• It depends on:
• The machine

• The elements

• But no function can completely avoid collisions, and they 
will need to be handled.



HASH FUNCTIONS

• Exercise 1: Let E = {a, b, c, d, e, f, g, h} be a set of records. We want 

to insert these records into a hash table of 10 slots based on their key:

1. Calculate the primary address of each record in cases where the hash 

function is:

a) Division, i.e., h(x) = x MOD N

b) Middle square, i.e., square the data x (x2) and take the middle 

digit

c) Radix transformation, i.e., (x)b MOD N, where b = 11

Record a b c d e f g h

Key 5 51 23 453 500 12 38 42



HASH FUNCTIONS

• Solution: Let E = {a, b, c, d, e, f, g, h} be a set of records. We want to 

insert these records into a hash table of 10 slots based on their key:

1. Calculate the primary address of each record.

Record a b c d e f g h

Key or x 5 51 23 453 500 12 38 42

X MOD N 5 1 3 3 0 2 8 2

Middle Square 2 6 2 5 0 4 4 7

5 0 2 6

x11 MOD N 5 7 1 2 5 1 5 2



COLLISION RESOLUTION METHODS

• During the insertion of x, if the primary address h(x) is already in use 

by another data, the collision resolution method helps find another 

(free) location for x.



COLLISION RESOLUTION METHODS

• To resolve collisions, two strategies are available:

a. Direct methods or addressing by computation:

   1. Linear probing

   2. Double hashing

b. Indirect methods or chaining:

   3. Separate chaining

   4. Internal chaining



COLLISION RESOLUTION METHODS

1. Linear Probing:

• If a collision occurs at the position h(x), we try the preceding 

positions: h(x)-1, h(x)-2, h(x)-3, ..., 0, N-1, N-2, ..., until finding an 

empty slot.

• Encountering an empty slot indicates that the data does not exist.

• A vacant slot in the hash table must be sacrificed to complete the 

testing sequence.



COLLISION RESOLUTION METHODS
1. Linear Probing: Exercise 1 (Question 2. a):

Record a b c d e f g j

h(x) 5 1 3 3 0 2 8 2

Index Empty Record

0 T

1 T

2 T

3 T

4 T

5 T

6 T

7 T

8 T

9 T

Index Empty Record

0 T

1 F b

2 T

3 F c

4 T

5 F a

6 T

7 T

8 T

9 T

Initial state of the Hash Table

After the insertion of a, b, and c:



COLLISION RESOLUTION METHODS
1. Linear Probing: Exercise 1 (Question 2. a):

Record a b c d e f g j

h(x) 5 1 3 3 0 2 8 2

Index Empty Record

0 T

1 T b

2 T d

3 T c

4 T

5 T a

6 T

7 T

8 T

9 T

Collision

Calculation of h(d) - 1 = 2 ⇒ empty slot



COLLISION RESOLUTION METHODS
1. Linear Probing: Exercise 1 (Question 2. a):

Record a b c d e f g j

h(x) 5 1 3 3 0 2 8 2

Index Empty Record

0 F e

1 F b

2 F d

3 F c

4 T

5 F a

6 T

7 T

8 T

9 T

Collision

Calculation of h(f) - 1 = 1 ⇒ occupied slot

Calculation of h(f) - 2 = 0 ⇒ occupied slot

Calculation of h(f) - 3 + 10 = 9 ⇒ empty slot

After the insertion of e



COLLISION RESOLUTION METHODS
1. Linear Probing: Exercise 1 (Question 2. a):

Record a b c d e f g j

h(x) 5 1 3 3 0 2 8 2

Index Empty Record

0 F e

1 F b

2 F d

3 F c

4 T

5 F a

6 T

7 T

8 F g

9 F f

Collision

Calculation of h(f) - 1 = 1 ⇒ occupied slot

Calculation of h(f) - 2 = 0 ⇒ occupied slot

Calculation of h(f) - 3 + 10 = 9 ⇒ empty slot

Calculation of h(j) - 4 + 10 = 8 ⇒ occupied slot

Calculation of h(j) - 5 + 10 = 7 ⇒ empty slot

After the insertion of f, g



COLLISION RESOLUTION METHODS
1. Linear Probing: Exercise 1 (Question 2. a):

Record a b c d e f g j

h(x) 5 1 3 3 0 2 8 2

Index Empty Record

0 F e

1 F b

2 F d

3 F c

4 T

5 F a

6 T

7 F j

8 F g

9 F f

After the insertion of j



COLLISION RESOLUTION METHODS
1. Linear Probing:

Record a b c d e f g j

h(x) 5 1 3 3 0 2 8 2

Address Primary P P Secondary P S P S

Index Empty Record

0 F e

1 F b

2 F d

3 F c

4 T

5 F a

6 T

7 F j

8 F g

9 F f

• The search for "k" (such that h(k) = 2) ends with failure in the 

empty slot at index 6. The test sequence is: 2, 1, 0, 9, 8, 7.

• If we were to insert "k," the data would be assigned to slot 6 (if 

it's not the last empty slot).

• The table is considered full when the number of inserted 

elements equals N-1, requiring the sacrifice of an empty slot.



COLLISION RESOLUTION METHODS
1. Linear Probing:

• The search for a data point x proceeds as follows:

a) Calculate the primary address of x (i.e., i = h(x)).

b) If hash table slot "i" contains the data x, the search is complete.

c) Otherwise, search for data x in the preceding slots: i-1, i-2, i-3, ..., 0, N-1, 

N-2, ..., until finding data x or an empty slot.

d) If the search stops with an empty slot, it indicates that the data does not 

exist.



COLLISION RESOLUTION METHODS

1. Linear Probing:

• The insertion of data x unfolds as follows:

a) Calculate the primary address of x (i.e., i = h(x)).

b) If slot "i" in the hash table is empty, then insert x into this slot and mark it as 

non-empty.

c) Otherwise, traverse the preceding slots: i-1, i-2, i-3,..., 0, N-1, N-2, ..., until 

finding an empty slot (i.e., "j").

d) Insert x into slot "j" and mark it as non-empty.



COLLISION RESOLUTION METHODS

1. Linear Probing:

• The physical deletion of data x results in an empty slot.

• This new empty slot may make other data inaccessible.

• For example, if we delete b by emptying slot 1, we 

simultaneously lose data f (where h(f) = 2) because it is 

no longer accessible.

• Therefore, tests must be performed before emptying a 

slot.

Index Empty Record

0 F e

1 F b

2 F d

3 F c

4 T

5 F a

6 T

7 F j

8 F g

9 F f



COLLISION RESOLUTION METHODS
1. Linear Probing:

• The principle of deleting data x is as follows:

a) Search for the address i of x.

b) Traverse all preceding slots: j = i-1, i-2, i-3,..., 0, N-1, N-2, …, until finding an 

empty slot. For each slot j, check that its data remains accessible if slot i is 

emptied.

c) If all slots j remain accessible when emptying i, then empty slot i and stop.

d) Otherwise, move slot j to slot i and attempt to empty its original location by testing 

the slots above that have not yet been tested. This follows the same principle as 

applied to slot i.



COLLISION RESOLUTION METHODS

1. Linear Probing:

• For example, if we delete b by emptying slot 1,

• We will move the data f (h(f) = 2) to slot 1 and the data j (h(j) = 2) to 

slot 9.
Index Empty Record

0 F e

1 F b

2 F d

3 F c

4 T

5 F a

6 T

7 F j

8 F g

9 F f

Index Empty Record

0 F e

1 F f

2 F d

3 F c

4 T

5 F a

6 T

7 F

8 F g

9 F j



COLLISION RESOLUTION METHODS
3. Separate chaining:

• Overflow data (in case of collisions) is stored in an area not 
"addressable" by the hash function, for example, outside the table in 
the form of a Linked List.

• The "Link" field connects the data 

in primary slots with their 

synonyms in overflow.

• The number of inserted data may 

exceed the size of the table (N).

Index Empty Record Link

0 F e Null

1 F b Null

2 F f

3 F c

4 T Null

5 F a Null

6 T Null

7 F Null

8 F g Null

9 F Null

j k null

d null

h(f) = h(j) = h(k) = 2

h(c) = h(d) = 3



COLLISION RESOLUTION METHODS

3. Separate chaining:

• The search for data x proceeds as follows:

a) Calculate the primary address of x (i.e., i = h(x)).

b) If the "i" slot in the hash table contains the data x, then the search 

is complete.

c) Otherwise, continue the sequential search in the "link" list.



COLLISION RESOLUTION METHODS

3. Separate chaining:

• The insertion of data x proceeds as follows:

a. Calculate the primary address of x (i.e., i = h(x)).

b. If the "i" slot is empty, then insert the data into this slot.

c. Otherwise, insert (at the beginning) into the list associated with 

this slot.



COLLISION RESOLUTION METHODS

3. Separate chaining:

• The deletion of data x proceeds as follows:

a. Search for data x in the hash table.

b. If x is in its primary address (the data in slot h(x)), then

i. If the "link" list is not empty, move the first element of the list into 

slot h(x) (overwriting x).

ii. Otherwise, empty slot h(x).

c. Otherwise (x is in overflow in a list), delete it from that list.



Conclusion

• File organization is a sophisticated discipline bridging logical data 
representation and physical storage mechanisms

• No universal solution exists - file management requires careful 
consideration of data volume, access patterns, and system constraints

• Future developments will focus on creating more intelligent and 
dynamic methods for managing increasingly complex data landscapes

• The ultimate goal: developing storage systems that are fast, reliable, 
and adaptable to evolving computational needs


	Slide 1: FILE ORGANIZATION 
	Slide 2: Introduction
	Slide 3: Review
	Slide 4: Review
	Slide 5: Review
	Slide 6: File Modeling
	Slide 7: Characteristics and Header Block
	Slide 8: Characteristics and Header Block
	Slide 9: Characteristics and Header Block
	Slide 10: Allocation methods
	Slide 11: Contiguous Allocation
	Slide 12: Contiguous Allocation
	Slide 13: Linked Allocation
	Slide 14: Linked Allocation
	Slide 15: Linked Allocation
	Slide 16: Indexed Allocation
	Slide 17: Indexed Allocation
	Slide 18: Indexed Allocation
	Slide 19: Indexed Allocation
	Slide 20: Indexed Allocation
	Slide 21: Indexed Allocation
	Slide 22: Indexed Allocation
	Slide 23: Indexed Allocation
	Slide 24: Advantages of index methods
	Slide 25: Disadvantages of index methods
	Slide 26: Index Types based on Key Density
	Slide 27: Dense Index
	Slide 28: Sparse Index
	Slide 29: Types based on the nature of the key
	Slide 30: Primary Index at One Level
	Slide 31: Primary Index at One Level
	Slide 32: Basic Operations
	Slide 33: Search for a Record with a Given Key
	Slide 34: Insert a Record
	Slide 35: Delete a Record
	Slide 36: Primary Index at Multiple Levels
	Slide 37
	Slide 38
	Slide 39: Search for a Record with a Given Key
	Slide 40: FILE ORGANIZATION
	Slide 41: Outlines
	Slide 42: Introduction
	Slide 43: Introduction
	Slide 44: Introduction
	Slide 45: Principle
	Slide 46: Terminology
	Slide 47: Principle
	Slide 48: HASH FUNCTIONS
	Slide 49: HASH FUNCTIONS
	Slide 50: HASH FUNCTIONS
	Slide 51: HASH FUNCTIONS
	Slide 52: HASH FUNCTIONS
	Slide 53: HASH FUNCTIONS
	Slide 54: HASH FUNCTIONS
	Slide 55: HASH FUNCTIONS
	Slide 56: HASH FUNCTIONS
	Slide 57: COLLISION RESOLUTION METHODS
	Slide 58: COLLISION RESOLUTION METHODS
	Slide 59: COLLISION RESOLUTION METHODS
	Slide 60: COLLISION RESOLUTION METHODS
	Slide 61: COLLISION RESOLUTION METHODS
	Slide 62: COLLISION RESOLUTION METHODS
	Slide 63: COLLISION RESOLUTION METHODS
	Slide 64: COLLISION RESOLUTION METHODS
	Slide 65: COLLISION RESOLUTION METHODS
	Slide 66: COLLISION RESOLUTION METHODS
	Slide 67: COLLISION RESOLUTION METHODS
	Slide 68: COLLISION RESOLUTION METHODS
	Slide 69: COLLISION RESOLUTION METHODS
	Slide 70: COLLISION RESOLUTION METHODS
	Slide 71: COLLISION RESOLUTION METHODS
	Slide 72: COLLISION RESOLUTION METHODS
	Slide 73: COLLISION RESOLUTION METHODS
	Slide 74: COLLISION RESOLUTION METHODS
	Slide 75: Conclusion

