Publications

2004
Bouharkat M, Abdessmed R. Field choice of the meshing during the modelling of a multi-rolling up electric actuator. Journal of Electrical EngineeringJOURNAL OF ELECTRICAL ENGINEERING. 2004;4 :27-33.
RAHAL S, Azuma H. Flow Instabilities in a Czochralski Convective System. Engineering Systems Design and Analysis. 2004;41731 :179-185.
Kalla H. Génération automatique de distributions/ordonnancements temps réel, fiables et tolérants aux fautes.(automatic generation of distributed, real-time, fault-tolerant and reliable schedules). 2004.
Kalla H. Génération automatique de distributions/ordonnancements temps réel, fiables et tolérants aux fautes. 2004.
Abdessemed R, Hedjazi D, Tomachevitch VF. Improvement of the single-phase oscillating linear parametric motor. JEE, Romania.JEE, Romania. 2004;4 :5-10.
Redha MENANIM, N BENNEDJAI. Influence des paramètres physiques sur les débits aux exutoires des bassins versants. Annaba, Algérie; 2004 pp. pp 485-488.
Redha MENANIM. La recharge artificielle et la vulnérabilité à la pollution des eaux souterraines : Combinaison des approches pour le choix des sites de recharge. Cannes; 2004.
Khernane N, Derdous C, Barkat A, Ferdji M, Makhloufi H. Le traitement Chirurgicale des L.C.H (à propos de 55 hanches). Italie; 2004.
Benaggoune S, Abdessemed R. Mathematical modelling and numerical simulation of steady state and transient operations of PMBLDC motor drive system. JEE, Romania.JEE, Romania. 2004;4 :35-41.
Ayache R, Richter E, Bouabellou A. Microstructure of β-FeSi2 buried layers synthesis by ion implantation. Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms [Internet]. 2004;216 (1) :137-142. Publisher's VersionAbstract
Kalla H, Girault A, Sorel Y. A new transformation scheme based on active replication strategy that tolerates failures. 2004.
A S. On the norm of elementary operatorsin standard operator algebras. Acta Sci. Math. (Szeged). 2004;70 :229-236.Abstract
Let A be a complex normed algebra. For A,B ∈ A, define a basic
elementary operator MA,B : A → A by MA,B(X) = AXB.
Given a standard operator algebra A acting on a complex normed space
and A,B ∈ A we have:
(i) The lower estimate kMA,B +MB,Ak ≥ 2(√2 − 1)kAkkBk holds.
(ii) The lower estimate kMA,B +MB,Ak ≥ kAkkBk holds if
inf
∈C kA + Bk = kAk or inf
∈C kB + Ak = kBk.
(iii) The equality kMA,B +MB,Ak = 2kAkkBk holds if
kA + Bk = kAk + kBk for some unit scalar .
These results extend analogous estimates established earlier for standard
operator subalgebras of Hilbert space operators.
ameur_acta_2004.pdf
Seddik A. On the numerical range and norm of elementary operators. Linear and multilinear algebraLinear and Multilinear Algebra. 2004;52 :293-302.
Si-Ameur M. Numerical simulation of turbulent underexpanded jet. International Journal of Fluid Mechanics ResearchInternational Journal of Fluid Mechanics Research. 2004;31.
FORTAKI T, Khedrouche D, Bouttout F, Benghalia A. A numerically efficient full-wave analysis of a tunable rectangular microstrip patch. International journal of electronicsInternational journal of electronics. 2004;91 :57-70.
Benfarhi L, Belkacemi M, Tolba A. Object oriented sparse matrix computation for power system simulation. Archives of Electrical EngineeringArchives of Electrical Engineering. 2004;53 :369-384.
A S. Onthe Numerical Range and NormofElementary Operators. Linear and Multilinear Algebra. 2004;52 :293-302.Abstract
Let BðEÞ be the complex Banach algebra of all bounded linear operators on a complex Banach space E: For
n-tuples A ¼ ðA1, . . . ,AnÞ and B ¼ ðB1, . . . ,BnÞ of operators on E, let RA, B denote the operator on BðEÞ
defined by RA, BðXÞ ¼
Pn
i¼1AiXBi :
For A, B 2 BðEÞ, we put UA, B ¼ RðA, BÞ, ðB,AÞ:
In this note, we prove that
co
Xn
i¼1
ii : ð1, . . . , nÞ 2 VðAÞ, ð1, . . . , nÞ 2 VðBÞ
( )
W0ðRA, BjJÞ
where VðÞ is the joint spatial numerical range, W0ðÞ is the algebraic numerical range and J is a norm ideal of
BðEÞ: We shall show that this inclusion becomes an equality when RA, B is taken to be a derivation. Also, we
deduce that wðUA, BjJÞ 2ð
ffiffiffi2
p
1ÞwðAÞwðBÞ, for A,B 2 BðEÞ and J is a norm ideal of BðEÞ, where wðÞ is the
numerical radius.
On the other hand, in the particular case when E is a Hilbert space, we shall prove that the lower estimate
bound kUA, BjJk 2ð
ffiffiffi2
p
1ÞkAkkBk holds, if one of the following two conditions is satisfied:
(i) J is a standard operator algebra of BðEÞ and A,B 2 J:
(ii) J is a norm ideal of BðEÞ and A, B 2 BðEÞ:
num._ran._and_norm.pdf
Ayache R, Bouabellou A, Richter R. Optical characterization of β-FeSi2 layers formed by ion beam synthesis. Materials Science in Semiconductor Processing [Internet]. 2004;7 (4-6) :463-466. Publisher's VersionAbstract
Samah M, Khelfane H, Bouguerra M, Chergui A, Belkhir MA, Mahtout S. Optical responses of alkali-halide matrix (NaCl)-doped silver. Physica E. 2004;23 (1-2) :217.
IE N, Nafaa B, S L. Origines de la salinité des eaux de la nappe phréatique de la basse Vallée de l’Oued Mya (Ouargla).; 2004.

Pages