The effect of static drying on the physicochemical quality of camel (Camelus dromedarius) meat slices as driedin an oven at 65 ◦C, with the aim of contributing to food safety. During the experiments, meat was cutinto. 8 ± 0.2 cm thick slices, soaked in a saline solution for 30 min, and then dried. Moisture content wasmeasured during the drying phase, and physicochemical parameters, such as protein, ash, sodium, pH, and mineral content, such as calcium (Ca), phosphor (P), magnesium (Mg), potassium (K), zinc (Zn), iron (Fe), copper (Cu) and manganese (Mn), were monitored before and after drying. The colorimetric parametersof the dried samples are also measured. The results show that the physicochemical quality of the dried camelmeat meets the requirements of the Codex Alimentarius Commission. Indeed, the moisture content decreased from 73.94 ± 0.51% to 13.33 ± 0.44%, and the dried food samples were characterized by increases (i) from 19.72 ± 0.30% to 50.97 ± 0.65% in protein content; (ii) from 1.115 ± 0.012% to 4.781 ± 0.047%, in ash content; (iii) from 260 ± 11.7 mg to 1690 ± 32 mg, in the sodium content (for 100 g of dry matter), and (iv) from 5.956 ± 0.087 to 6.203 ± 0.091 in pH value. However, the variation is not significant for all mineral content parameters. Finally, themean values of the colorimetric parameters of brightness (L*), redness (a*), and yellowness (b*) are 37.13 ± 1.64, 22.02 ± 0.72, and 7.73 ± 0.69, respectively (before drying) and they are 25.57 ± 1.56, 9.43 ± 0.78, and 3.74 ± 0.21, respectively (after drying).
A nanometric buried layer of iron disilicide was synthesized by ion implantation in Si(1 1 1) p-type at different temperatures using 195 keV Fe ions with a dose of \(2\).\(10^{17}\)\(Fe^{+}/cm^{2}\). The investigation of the phase composition is carried out by Rutherford backscattering spectrometry (RBS), whereas the structural characterization is obtained by X-ray diffraction (XRD) pole figure. The process of the silicidation has been investigated at a function of the ion implantation temperatures ranging from 200 to 440 °C. The precipitates favor epitaxial growth with respect to Si(1 1 1) planes with epitaxial relationships \( \beta\)-FeSi\(_{2}\)(2 2 0) //Si(1 1 1) and/or \(\beta\)-FeSi\(_{2}\) (2 0 2) // Si(1 1 1).
Notre article tente d’analyser de tout prêt les manuels de 2ème génération en Algérie pour déterminer l’impact de l’algérianisation des textes-supports sur l’objectif interculturel en classe de Fle. Ainsi, notre travail portera sur l’analyse des textes- supports du manuel scolaire officiel de la 4ème année primaire pour voir si ces textes algérianisés demeurent un lieu propice, un espace favorable à la rencontre des cultures et des identités différentes et par ricochet à la concrétisation de la compétence interculturelle.
Liquefied petroleum gas (LPG) storage fires and explosions occur due to uncontrolled gas leaks and the gradual breakdown of associated safety barriers. By installing an effective safety barrier, these accidents can be greatly reduced. However, this study assesses the probability of failure of emergency safety barriers (ESBs) to help decision makers understand how they can support decisions to reduce the risks associated with LPG storage. In this context, an extension of the event tree analysis is proposed named emergency event tree analysis (EETA). The aim of this paper is to develop an integrated approach that uses interval type-2 fuzzy sets and Analytic Hierarchy Process (AHP) method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers (ESBs). In addition, a case study on the failure probability assessment of the emergency safety barriers of the LPG plant in Algeria based on the proposed methodology is provided and carried out to illustrate its effectiveness and feasibility. The results demonstrated the ability of interval type-2 fuzzy sets and the AHP method to provide highly reliable results and to evaluate the failure probability of emergency safety barriers in emergencies situations. However, the classical event tree analysis (CETA) does not take into account the possibility of assessing the emergency consequences of different accident scenarios. Consequently, it only allows you to estimate the occurrence probability of accident scenarios. The results of this study show that the value of the probability of failure of the emergency safety barriers can be used to estimate the probability of occurrence of emergency consequences under different accident scenarios, improved the reliability and help prioritize emergency improvement measures. The study provides scientific and operational references for analyzing emergency consequences of the various accident scenarios in all fields such as petrochemical, maritime industry, and health occupational.
Condition monitoring (CM) of industrial processes is essential for reducing downtime and increasing productivity through accurate Condition-Based Maintenance (CBM) scheduling. Indeed, advanced intelligent learning systems for Fault Diagnosis (FD) make it possible to effectively isolate and identify the origins of faults. Proven smart industrial infrastructure technology enables FD to be a fully decentralized distributed computing task. To this end, such distribution among different regions/institutions, often subject to so-called data islanding, is limited to privacy, security risks, and industry competition due to the limitation of legal regulations or conflicts of interest. Therefore, Federated Learning (FL) is considered an efficient process of separating data from multiple participants to collaboratively train an intelligent and reliable FD model. As no comprehensive study has been introduced on this subject to date, as far as we know, such a review-based study is urgently needed. Within this scope, our work is devoted to reviewing recent advances in FL applications for process diagnostics, while FD methods, challenges, and future prospects are given special attention.